research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

First crystal structure of a Pigment Red 52 compound: DMSO solvate hydrate of the monosodium salt

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: m.schmidt@chemie.uni-frankfurt.de

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 29 January 2021; accepted 8 March 2021; online 19 March 2021)

Pigment Red 52, Na2[C18H11ClN2O6S], is an industrially produced hydrazone-laked pigment. It serves as an inter­mediate in the synthesis of the corresponding Ca2+ and Mn2+ salts, which are used commercially for printing inks and lacquers. Hitherto, no crystal structure of any salt of Pigment Red 52 is known. Now, single crystals have been obtained of a dimethyl sulfoxide solvate hydrate of the monosodium salt of Pigment Red 52, namely, monosodium 2-[2-(3-carb­oxy-2-oxo-1,2-di­hydro­naphthalen-1-yl­idene)hydrazin-1-yl]-5-chloro-4-methyl­benz­ene­sulfonate dimethyl sulfoxide monosolvate monohydrate, Na+·C18H12ClN2O6S·H2O·C2H6OS, obtained from in-house synthesized Pigment Red 52. The crystal structure was determined by single-crystal X-ray diffraction at 173 K. In this monosodium salt, the SO3 group is deprotonated, whereas the COOH group is protonated. The residues form chains via ionic inter­actions and hydrogen bonds. The chains are arranged in polar/non-polar double layers.

1. Chemical context

Pigment Red 52 (P.R.52, Na2[C18H11N2ClO6S]), is produced industrially as an inter­mediate in the synthesis of Pigment Red 52:1 (Ca[C18H11N2ClO6S]) and Pigment Red 52:2 (Mn[C18H11N2ClO6S]) (Czajkowski et al., 1980[Czajkowski, W. (1980). Dyes Pigments, 1, 17-25.]; Hunger & Schmidt, 2018[Hunger, K. & Schmidt, M. U. (2018). Industrial Organic Pigments: Production, Properties, Applications. Weinheim: Wiley-VCH.]). P.R.52:1 and P.R.52:2 are used for the colouration of printing inks and lacquers (Hunger & Schmidt, 2018[Hunger, K. & Schmidt, M. U. (2018). Industrial Organic Pigments: Production, Properties, Applications. Weinheim: Wiley-VCH.]). No crystal structures of P.R.52, or of its various metal salts, have previously been determined. Pigment Red 48 is an isomer of P.R.52, differing by mutual exchange of CH3 and Cl substituents. Recently, the crystal structures of two hydrates of the monosodium salt of P.R.48 have been published (Tapmeyer et al., 2020[Tapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). Acta Cryst. C76, 716-722.]). Correspondingly, similar monosodium hydrate phases could also be expected for P.R.52. Hitherto, nothing has been known about the existence of a monosodium salt of P.R.52 or its hydrates or solvates. In attempts to crystallize P.R.52 from di­methyl­sulfoxide, single crystals were obtained, which turned out to be a mono-DMSO solvate monohydrate of the monosodium salt of P.R.52:1. The crystal structure was determined by X-ray analysis.

2. Structural commentary

Pigment Red 52 monosodium salt DMSO monosolvate monohydrate crystallizes in the triclinic space group P[\overline{1}] with one pigment anion, one sodium cation, one mol­ecule of DMSO and one water mol­ecule in the asymmetric unit (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
A perspective view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The pigment exhibits the hydrazone tautomeric form, like all industrial hydrazone pigments (formerly known as `azo pigments') (Gilli et al., 2005[Gilli, P., Bertolasi, V., Pretto, L., Antonov, L. & Gilli, G. (2005). J. Am. Chem. Soc. 127, 638-640.]; Schmidt et al., 2008[Schmidt, M. U., Brüning, J., Wirth, D. & Bolte, M. (2008). Acta Cryst. C64, o474-o477.]; Hunger & Schmidt, 2018[Hunger, K. & Schmidt, M. U. (2018). Industrial Organic Pigments: Production, Properties, Applications. Weinheim: Wiley-VCH.]). The N—H group forms two intra­molecular [ S11(6)] N—H⋯O hydrogen bonds (Table 1[link]). The sulfonate group is deprotonated, whereas the carb­oxy­lic group is protonated. The protonation site is unambiguously determined by the difference electron density, from the S—O and C—O bond lengths in the SO3 and COOH groups, and from the hydrogen-bond pattern. Intra­molecular and inter­molecular bond lengths and angles are in the usual ranges. The organic anion is nearly planar, with an RMSD of 0.553 Å for all non-hydrogen atoms, except for the oxygen atoms of the sulfonate group. The dihedral angle between the naphthyl moiety and the phenyl ring is 9.84 (16)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.82 (4) 2.14 (4) 2.747 (3) 131 (3)
N1—H1⋯O4 0.82 (4) 1.84 (4) 2.532 (4) 141 (4)
O6—H6⋯O1S 0.92 (5) 1.67 (5) 2.575 (4) 168 (4)
O1W—H1WA⋯O5i 0.80 (5) 2.33 (5) 2.944 (3) 134 (4)
O1W—H1WA⋯O1Si 0.80 (5) 2.48 (5) 3.138 (5) 140 (4)
O1W—H1WB⋯O3 0.84 (6) 2.11 (6) 2.942 (3) 176 (5)
Symmetry code: (i) x+1, y, z.

The carb­oxy­lic acid group is coplanar with the naphthyl moiety [dihedral angle of 1.2 (5)°, see Fig. 1[link]]. This coplanarity is a peculiarity, as in most other related structures, the COOH group is rotated out of the naphthyl plane (Table 2[link]).

Table 2
Angles (°) of the C–COO(H) plane to the mean plane of the carbon skeleton of the β-oxynaphthoic acid moiety

Refcode Salt Solvate / Hydrate |Angle|
BIHNUCa Ca[C17H10N2O6ClS]2 2 DMF 0.09
GUNZAT Na[C18H12ClN2O6S] 2 H2O 2.43
FAWQUR Ca[C18H12N2O6S]   22.5
KAQSAW Ca[C17H8Cl2N2O6S] 2 H2O 23.3
FAWQIF Ca[C18H14N2O7S] 2 H2O 26.3
GUNZEX Na[C18H12ClN2O6S] 1 H2O 28.6
BOGDUZa Dy[C13H7N5O3][BONA]b 2 DMF, 2 H2O 36.6
FAWQOL Ca[C18H12N2O6S] 1 H2O 37.7
BOGFIPa Eu[C13H7N5O3][BONA]b DMF, 4 H2O 39.0
BOGFAHa Tb[C13H7N5O3][BONA]b DMF, 4 H2O 39.0
BOGFELa Sm[C13H7N5O3][BONA]b DMF, 4 H2O 39.1
Notes: (a) This is not a pigment with a Colour Index number; (b) BONA = β-oxynaphthoic acid.

3. Supra­molecular features

The protonated carboxyl oxygen atom of the COOH group donates a hydrogen bond to the DMSO mol­ecule (Table 1[link]). The other carboxyl oxygen atom accepts a hydrogen bond from the water mol­ecule and additionally coordinates to the sodium ion. The sodium ion is sixfold coordinated to one oxygen atom of the COOH group, the carbonyl group, an oxygen atom of the sulfonate group, and two water mol­ecules (one belonging to the same asymmetric unit, the other one transformed by −x, 1 − y, −z). The sixth coordination site is occupied by an O atom of a sulfonate group of a neighbouring anion, generated by the symmetry operation −1 + x, y, z. The coordination polyhedron is a distorted octa­hedron. The crystal packing is characterized by chains built via Na—O coordinations, running along the a-axis direction (Fig. 2[link]). Within this chain, the phenyl ring is π-stacked above the O=C—C=N—N—H moiety of a symmetry-equivalent anion (1 + x, y, z) with the shortest distance C6⋯C12 of 3.303 (5) Å. The N–NH unit is stacked above the naphthyl-COOH group with the shortest distance N1⋯C21 (1 + x, y, z) of 3.304 (4) Å (Fig. 3[link]).

[Figure 2]
Figure 2
Packing diagram viewed approximately along [100].
[Figure 3]
Figure 3
π-stacking of two anions, one drawn with full bonds and the other one with open bonds.

4. Database survey

For Pigment Red 52 and its derivatives, this is the first crystal structure published. Some closely related structures are compared in Table 2[link], viz. bis­[6-chloro-3-(3-carb­oxy-2-oxo­anthracenylidenehydrazono)benzene­sulfonato]­bis­(di­methyl­formamide)­calcium (BIHNUC; Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]), [4-(4,6-di­chloro-2-sulfophen­yl)azo-3-hy­droxy-2-naphtho­ato]di­aqua­calcium (KAQSAW; Kennedy et al., 2000[Kennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638-640.]), {3-carb­oxy-1-[2-(5-chloro-4-methyl-2-sulfophen­yl)diazen-2-ium-1-yl]naphthalen-2-olato}di­aqua­sodium, {3-carb­oxy-1-[2-(5-chloro-4-methyl-2-sulfophen­yl)diazen-2-ium-1-yl]naphthalen-2-olato}-aqua-sodium (GUNZAT and GUNZEX, respectively; Tapmeyer et al., 2020[Tapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). Acta Cryst. C76, 716-722.]), {3-carb­oxy-1-[2-(4-methyl-2-sulfophen­yl)diazen-2-ium-1-yl]naphthalen-2-olato}calcium, {2-[2-(3-carb­oxy-2-oxy-1-naphth­yl)diazenium­yl]-5-methyl­benzene­sulfonato}­tri­aqua­calcium, {2-[2-(3-carb­oxy-2-hy­droxy-1-naphth­yl)diazenium­yl]-5-methyl­benzene­sulfonato}­aqua­calcium (FAWQUR, FAWQIF and FAWQOL, respectively; Bekö et al., 2012a[Bekö, S. L., Hammer, S. M. & Schmidt, M. U. (2012a). Angew. Chem. Int. Ed. 51, 4735-4738.],b[Bekö, S. L., Hammer, S. M. & Schmidt, M. U. (2012b). Angew. Chem. 124, 4814-4818.]), bis­(3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato)bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­didysprosium(III) N,N-di­methyl­formamide solvate, bis­{3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato}bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­dieuropium(III) N,N-di­methyl­formamide solvate, bis­{3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato}bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­diterbium(III) N,N-di­methyl­formamide solvate, bis­(3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato)bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­disamarium(III) N,N-di­methyl­formamide solvate (BOGDUZ, BOGFIP, BOGFAH and BOGFEL, respectively; Xie et al., 2019[Xie, S.-F., Huang, L.-Q., Zhong, L., Lai, B.-L., Yang, M., Chen, W.-B., Zhang, Y.-Q. & Dong, W. (2019). Inorg. Chem. 58, 5914-5921.]).

5. Synthesis and crystallization

The title compound was obtained by recrystallization experiments of in-house synthesized P.R.52.

5.1. Synthesis of Pigment Red 52

2-Amino-5-chloro-p-toluene­sulfonic acid (22.15 g, 0.1 mol) was dissolved with sodium hydroxide (6.4 g) in water (500 ml). The temperature was set at 278 K and concentrated hydro­chloric acid (40 ml) as well as sodium nitrite (7.2 g) in water (100 ml) were added. The suspension was stirred for 30 min. The suspension was treated with amido­sulfonic acid until all excess nitrous acid was destroyed. The suspension was then added dropwise to a solution of β-oxynaphthoic acid (18.8 g, 0.1 mol) with NaOH (20.1 g) in water (550 ml). The pH was kept at alkaline conditions, around 11 to 9, maintained by the addition of 2 M NaOH solution as required, and the temperature was maintained at 278 K. When the dropwise addition of the suspension was finished, the solution was allowed to accommodate to room temperature and subsequently heated to 353 K for half an hour. The red suspension was then neutralized with 2 M HCl, filtered off and the obtained red powder was washed with water and dried at 323 K. The yield of the crude product was about 98%, but X-ray powder diffraction revealed the presence of some sodium chloride as impurity.

5.2. Crystallization of the title compound

The crude in-house synthesized P.R.52 (0.59 g) was dissolved in DMSO (60 ml). The solution was transferred to a glass vessel, which in turn was placed into a further, larger vessel with water (100 ml). The outer vessel was closed with a plastic lid and stored for 20 days at room temperature, allowing the water to diffuse into the DMSO via the gas phase. Single crystals of the title compound were picked from the solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms bonded to C were refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C) or with Cmeth­yl—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C). The methyl group attached to the phenyl ring was allowed to rotate but not to tip. The H atoms bonded to N and O were found in the difference-Fourier synthesis and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula Na+·C18H12ClN2O6S·C2H6OS·H2O
Mr 538.94
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 5.7347 (4), 10.9336 (8), 18.4692 (12)
α, β, γ (°) 104.844 (5), 97.478 (5), 95.404 (6)
V3) 1100.00 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.23 × 0.09 × 0.02
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.445, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14981, 3864, 2992
Rint 0.049
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.098, 1.08
No. of reflections 3864
No. of parameters 324
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.33
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL and XP (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2015b) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Monosodium 2-[2-(3-carboxy-2-oxo-1,2-dihydronaphthalen-1-ylidene)hydrazin-1-yl]-5-chloro-4-methylbenzenesulfonate dimethyl sulfoxide monosolvate monohydrate top
Crystal data top
Na+·C18H12ClN2O6S·C2H6OS·H2OZ = 2
Mr = 538.94F(000) = 556
Triclinic, P1Dx = 1.627 Mg m3
a = 5.7347 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9336 (8) ÅCell parameters from 12767 reflections
c = 18.4692 (12) Åθ = 3.4–27.4°
α = 104.844 (5)°µ = 0.44 mm1
β = 97.478 (5)°T = 173 K
γ = 95.404 (6)°Needle, red
V = 1100.00 (14) Å30.23 × 0.09 × 0.02 mm
Data collection top
STOE IPDS II two-circle
diffractometer
2992 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.049
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 66
Tmin = 0.445, Tmax = 1.000k = 1212
14981 measured reflectionsl = 2121
3864 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.0815P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3864 reflectionsΔρmax = 0.27 e Å3
324 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.33825 (14)0.84822 (8)0.39943 (5)0.0267 (2)
S10.52780 (13)0.72725 (7)0.20025 (4)0.01767 (18)
N10.4274 (5)0.5113 (2)0.28158 (16)0.0202 (6)
H10.327 (7)0.519 (3)0.248 (2)0.030 (10)*
N20.3632 (4)0.4232 (2)0.31510 (14)0.0190 (6)
O10.5585 (4)0.8648 (2)0.21703 (13)0.0255 (5)
O20.2857 (4)0.6713 (2)0.19634 (12)0.0233 (5)
O30.6302 (4)0.6669 (2)0.13374 (12)0.0233 (5)
O40.0393 (4)0.4384 (2)0.19077 (13)0.0304 (6)
O50.3920 (4)0.3586 (2)0.10391 (13)0.0289 (5)
O60.6211 (4)0.2111 (2)0.13512 (14)0.0318 (6)
H60.722 (8)0.211 (4)0.092 (3)0.053 (13)*
C10.6441 (5)0.5895 (3)0.30879 (17)0.0182 (6)
C20.7033 (5)0.6915 (3)0.27795 (17)0.0176 (6)
C30.9189 (5)0.7691 (3)0.30758 (17)0.0195 (7)
H30.9610760.8389140.2879120.023*
C41.0722 (5)0.7460 (3)0.36520 (18)0.0192 (7)
C51.0206 (5)0.6441 (3)0.39538 (17)0.0197 (7)
C60.8039 (5)0.5675 (3)0.36633 (17)0.0198 (7)
H6A0.7633550.4978830.3863330.024*
C71.1910 (6)0.6171 (3)0.45670 (19)0.0250 (7)
H7A1.1900080.6803280.5050180.038*
H7B1.3512370.6219420.4436310.038*
H7C1.1428660.5314210.4614060.038*
C110.1537 (5)0.3519 (3)0.29167 (17)0.0189 (6)
C120.0153 (6)0.3617 (3)0.22721 (18)0.0220 (7)
C130.2443 (5)0.2803 (3)0.20857 (18)0.0200 (7)
C140.2928 (6)0.1985 (3)0.25062 (18)0.0206 (7)
H140.4418280.1458900.2371810.025*
C150.1318 (6)0.1870 (3)0.31425 (17)0.0198 (7)
C160.1975 (6)0.1025 (3)0.35634 (18)0.0232 (7)
H160.3490770.0522840.3425940.028*
C170.0435 (6)0.0924 (3)0.41705 (19)0.0277 (8)
H170.0882090.0348560.4451450.033*
C180.1790 (6)0.1664 (3)0.4379 (2)0.0289 (8)
H180.2844550.1589510.4801980.035*
C190.2474 (6)0.2504 (3)0.39741 (19)0.0259 (7)
H190.3994280.3001110.4119180.031*
C200.0923 (5)0.2620 (3)0.33504 (18)0.0201 (7)
C210.4220 (5)0.2885 (3)0.14433 (18)0.0204 (7)
Na10.0772 (2)0.53586 (12)0.09912 (7)0.0231 (3)
S21.06094 (15)0.18210 (8)0.06033 (5)0.0275 (2)
O1S0.8734 (5)0.1866 (3)0.00506 (17)0.0598 (9)
C1S1.0132 (7)0.0551 (4)0.1364 (2)0.0370 (9)
H1S11.1319880.0478170.1810880.055*
H1S20.8540810.0723760.1485100.055*
H1S31.0272390.0248840.1216970.055*
C2S1.3286 (7)0.1091 (4)0.0416 (2)0.0360 (9)
H2S11.4576350.1039490.0831290.054*
H2S21.3084180.0229760.0375690.054*
H2S31.3673180.1601650.0061060.054*
O1W0.2484 (4)0.4817 (3)0.02986 (13)0.0235 (5)
H1WA0.288 (8)0.415 (5)0.034 (3)0.056 (15)*
H1WB0.359 (9)0.536 (5)0.058 (3)0.065 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0170 (4)0.0301 (4)0.0295 (5)0.0030 (3)0.0035 (3)0.0075 (3)
S10.0161 (4)0.0210 (4)0.0164 (4)0.0031 (3)0.0008 (3)0.0066 (3)
N10.0148 (13)0.0246 (14)0.0211 (15)0.0007 (11)0.0017 (12)0.0093 (11)
N20.0185 (14)0.0214 (13)0.0176 (14)0.0037 (11)0.0022 (11)0.0062 (11)
O10.0285 (13)0.0213 (11)0.0253 (13)0.0036 (9)0.0013 (10)0.0067 (9)
O20.0157 (11)0.0332 (12)0.0229 (12)0.0025 (9)0.0006 (9)0.0123 (10)
O30.0200 (11)0.0314 (12)0.0184 (12)0.0077 (9)0.0034 (9)0.0052 (9)
O40.0238 (12)0.0412 (14)0.0280 (13)0.0070 (10)0.0064 (10)0.0218 (11)
O50.0265 (13)0.0308 (12)0.0299 (14)0.0025 (10)0.0044 (10)0.0159 (11)
O60.0218 (13)0.0412 (14)0.0291 (14)0.0110 (11)0.0098 (11)0.0162 (11)
C10.0155 (15)0.0198 (15)0.0182 (16)0.0020 (12)0.0033 (12)0.0029 (12)
C20.0182 (15)0.0204 (15)0.0151 (16)0.0044 (12)0.0030 (12)0.0058 (12)
C30.0182 (16)0.0214 (16)0.0183 (16)0.0019 (13)0.0039 (13)0.0042 (12)
C40.0111 (15)0.0246 (16)0.0196 (17)0.0013 (12)0.0021 (12)0.0024 (13)
C50.0189 (16)0.0232 (16)0.0170 (17)0.0061 (13)0.0027 (13)0.0043 (13)
C60.0177 (16)0.0221 (15)0.0186 (17)0.0001 (12)0.0006 (13)0.0055 (13)
C70.0213 (17)0.0307 (17)0.0221 (18)0.0036 (14)0.0033 (14)0.0087 (14)
C110.0159 (16)0.0232 (15)0.0161 (16)0.0010 (12)0.0016 (12)0.0038 (12)
C120.0231 (17)0.0230 (16)0.0204 (17)0.0039 (13)0.0017 (13)0.0072 (13)
C130.0192 (16)0.0214 (15)0.0190 (17)0.0030 (12)0.0020 (13)0.0053 (13)
C140.0187 (16)0.0185 (15)0.0213 (17)0.0008 (12)0.0024 (13)0.0012 (13)
C150.0239 (16)0.0181 (15)0.0161 (16)0.0031 (12)0.0019 (13)0.0031 (12)
C160.0259 (17)0.0212 (16)0.0219 (18)0.0018 (13)0.0021 (14)0.0062 (13)
C170.0328 (19)0.0266 (17)0.0269 (19)0.0037 (15)0.0038 (15)0.0140 (14)
C180.034 (2)0.0289 (18)0.0237 (19)0.0048 (15)0.0024 (15)0.0103 (14)
C190.0214 (17)0.0296 (17)0.0257 (18)0.0018 (14)0.0024 (14)0.0095 (14)
C200.0222 (16)0.0198 (15)0.0188 (17)0.0057 (13)0.0036 (13)0.0051 (12)
C210.0196 (16)0.0198 (15)0.0180 (17)0.0020 (13)0.0003 (13)0.0016 (13)
Na10.0209 (6)0.0316 (7)0.0194 (7)0.0071 (5)0.0034 (5)0.0104 (5)
S20.0263 (5)0.0274 (4)0.0254 (5)0.0001 (3)0.0056 (4)0.0073 (4)
O1S0.0366 (16)0.098 (3)0.0368 (17)0.0043 (16)0.0163 (13)0.0204 (17)
C1S0.030 (2)0.038 (2)0.039 (2)0.0021 (16)0.0134 (17)0.0039 (17)
C2S0.033 (2)0.046 (2)0.029 (2)0.0064 (17)0.0096 (17)0.0072 (17)
O1W0.0214 (12)0.0267 (13)0.0211 (13)0.0055 (11)0.0001 (10)0.0051 (10)
Geometric parameters (Å, º) top
Cl1—C41.744 (3)C12—C131.463 (5)
S1—O11.445 (2)C13—C141.358 (4)
S1—O21.449 (2)C13—C211.487 (4)
S1—O31.461 (2)C14—C151.437 (4)
S1—C21.792 (3)C14—H140.9500
N1—N21.321 (4)C15—C161.407 (4)
N1—C11.395 (4)C15—C201.408 (5)
N1—H10.82 (4)C16—C171.369 (5)
N2—C111.324 (4)C16—H160.9500
O2—Na12.614 (3)C17—C181.396 (5)
O3—Na1i2.353 (2)C17—H170.9500
O4—C121.244 (4)C18—C191.384 (5)
O4—Na12.283 (2)C18—H180.9500
O5—C211.215 (4)C19—C201.402 (4)
O5—Na12.548 (3)C19—H190.9500
O6—C211.320 (4)Na1—O1Wii2.408 (3)
O6—H60.92 (5)Na1—O1W2.432 (3)
C1—C61.395 (4)Na1—S2iii3.3866 (15)
C1—C21.410 (4)Na1—Na1ii3.782 (2)
C2—C31.392 (4)S2—O1S1.496 (3)
C3—C41.380 (4)S2—C1S1.774 (4)
C3—H30.9500S2—C2S1.778 (4)
C4—C51.393 (4)C1S—H1S10.9800
C5—C61.390 (4)C1S—H1S20.9800
C5—C71.504 (4)C1S—H1S30.9800
C6—H6A0.9500C2S—H2S10.9800
C7—H7A0.9800C2S—H2S20.9800
C7—H7B0.9800C2S—H2S30.9800
C7—H7C0.9800O1W—H1WA0.80 (5)
C11—C201.464 (4)O1W—H1WB0.84 (6)
C11—C121.467 (4)
O1—S1—O2113.86 (13)C17—C18—H18119.7
O1—S1—O3112.63 (13)C18—C19—C20119.9 (3)
O2—S1—O3112.10 (13)C18—C19—H19120.0
O1—S1—C2105.64 (13)C20—C19—H19120.0
O2—S1—C2107.23 (13)C19—C20—C15119.1 (3)
O3—S1—C2104.56 (13)C19—C20—C11122.1 (3)
N2—N1—C1119.8 (3)C15—C20—C11118.8 (3)
N2—N1—H1115 (3)O5—C21—O6122.3 (3)
C1—N1—H1125 (3)O5—C21—C13124.8 (3)
N1—N2—C11120.3 (3)O6—C21—C13112.9 (3)
S1—O2—Na1141.39 (13)O4—Na1—O3iv111.35 (10)
S1—O3—Na1i140.63 (13)O4—Na1—O1Wii149.04 (11)
C12—O4—Na1147.7 (2)O3iv—Na1—O1Wii85.77 (8)
C21—O5—Na1137.0 (2)O4—Na1—O1W94.69 (9)
C21—O6—H6112 (3)O3iv—Na1—O1W151.14 (10)
N1—C1—C6120.5 (3)O1Wii—Na1—O1W77.20 (9)
N1—C1—C2120.0 (3)O4—Na1—O567.73 (8)
C6—C1—C2119.5 (3)O3iv—Na1—O583.28 (8)
C3—C2—C1118.4 (3)O1Wii—Na1—O590.04 (9)
C3—C2—S1116.2 (2)O1W—Na1—O5119.38 (10)
C1—C2—S1125.3 (2)O4—Na1—O268.36 (8)
C4—C3—C2120.8 (3)O3iv—Na1—O298.90 (8)
C4—C3—H3119.6O1Wii—Na1—O2136.49 (9)
C2—C3—H3119.6O1W—Na1—O278.79 (9)
C3—C4—C5121.9 (3)O5—Na1—O2133.44 (8)
C3—C4—Cl1118.0 (2)O4—Na1—S2iii137.82 (8)
C5—C4—Cl1120.1 (2)O3iv—Na1—S2iii71.38 (6)
C6—C5—C4117.2 (3)O1Wii—Na1—S2iii71.14 (7)
C6—C5—C7121.1 (3)O1W—Na1—S2iii81.06 (7)
C4—C5—C7121.8 (3)O5—Na1—S2iii149.09 (7)
C5—C6—C1122.2 (3)O2—Na1—S2iii69.67 (6)
C5—C6—H6A118.9O4—Na1—Na1ii126.76 (9)
C1—C6—H6A118.9O3iv—Na1—Na1ii121.08 (8)
C5—C7—H7A109.5O1Wii—Na1—Na1ii38.83 (6)
C5—C7—H7B109.5O1W—Na1—Na1ii38.37 (6)
H7A—C7—H7B109.5O5—Na1—Na1ii108.42 (8)
C5—C7—H7C109.5O2—Na1—Na1ii109.67 (7)
H7A—C7—H7C109.5S2iii—Na1—Na1ii72.20 (4)
H7B—C7—H7C109.5O1S—S2—C1S105.97 (19)
N2—C11—C20116.4 (3)O1S—S2—C2S106.36 (19)
N2—C11—C12123.4 (3)C1S—S2—C2S97.93 (17)
C20—C11—C12120.2 (3)O1S—S2—Na1iii103.09 (14)
O4—C12—C13122.4 (3)C1S—S2—Na1iii109.51 (13)
O4—C12—C11119.5 (3)C2S—S2—Na1iii131.85 (13)
C13—C12—C11118.1 (3)S2—C1S—H1S1109.5
C14—C13—C12119.5 (3)S2—C1S—H1S2109.5
C14—C13—C21120.7 (3)H1S1—C1S—H1S2109.5
C12—C13—C21119.8 (3)S2—C1S—H1S3109.5
C13—C14—C15123.9 (3)H1S1—C1S—H1S3109.5
C13—C14—H14118.1H1S2—C1S—H1S3109.5
C15—C14—H14118.1S2—C2S—H2S1109.5
C16—C15—C20119.9 (3)S2—C2S—H2S2109.5
C16—C15—C14120.5 (3)H2S1—C2S—H2S2109.5
C20—C15—C14119.6 (3)S2—C2S—H2S3109.5
C17—C16—C15120.1 (3)H2S1—C2S—H2S3109.5
C17—C16—H16119.9H2S2—C2S—H2S3109.5
C15—C16—H16119.9Na1ii—O1W—Na1102.80 (9)
C16—C17—C18120.3 (3)Na1ii—O1W—H1WA111 (3)
C16—C17—H17119.9Na1—O1W—H1WA111 (3)
C18—C17—H17119.9Na1ii—O1W—H1WB128 (4)
C19—C18—C17120.7 (3)Na1—O1W—H1WB100 (3)
C19—C18—H18119.7H1WA—O1W—H1WB103 (5)
C1—N1—N2—C11177.3 (3)Na1—O4—C12—C11172.1 (3)
O1—S1—O2—Na1109.0 (2)N2—C11—C12—O41.6 (5)
O3—S1—O2—Na120.3 (2)C20—C11—C12—O4179.9 (3)
C2—S1—O2—Na1134.49 (19)N2—C11—C12—C13178.0 (3)
O1—S1—O3—Na1i118.6 (2)C20—C11—C12—C130.4 (4)
O2—S1—O3—Na1i111.4 (2)O4—C12—C13—C14179.9 (3)
C2—S1—O3—Na1i4.4 (2)C11—C12—C13—C140.4 (4)
N2—N1—C1—C66.2 (4)O4—C12—C13—C210.5 (5)
N2—N1—C1—C2173.9 (3)C11—C12—C13—C21179.2 (3)
N1—C1—C2—C3178.7 (3)C12—C13—C14—C150.7 (5)
C6—C1—C2—C31.5 (4)C21—C13—C14—C15178.9 (3)
N1—C1—C2—S13.8 (4)C13—C14—C15—C16178.2 (3)
C6—C1—C2—S1176.0 (2)C13—C14—C15—C201.0 (5)
O1—S1—C2—C337.7 (3)C20—C15—C16—C170.5 (5)
O2—S1—C2—C3159.4 (2)C14—C15—C16—C17179.7 (3)
O3—S1—C2—C381.4 (2)C15—C16—C17—C180.4 (5)
O1—S1—C2—C1144.8 (3)C16—C17—C18—C190.2 (5)
O2—S1—C2—C123.0 (3)C17—C18—C19—C200.2 (5)
O3—S1—C2—C196.2 (3)C18—C19—C20—C150.3 (5)
C1—C2—C3—C40.7 (4)C18—C19—C20—C11178.3 (3)
S1—C2—C3—C4177.0 (2)C16—C15—C20—C190.5 (4)
C2—C3—C4—C50.9 (5)C14—C15—C20—C19179.7 (3)
C2—C3—C4—Cl1179.8 (2)C16—C15—C20—C11178.2 (3)
C3—C4—C5—C61.6 (4)C14—C15—C20—C111.0 (4)
Cl1—C4—C5—C6179.1 (2)N2—C11—C20—C190.8 (4)
C3—C4—C5—C7178.3 (3)C12—C11—C20—C19179.4 (3)
Cl1—C4—C5—C71.0 (4)N2—C11—C20—C15177.8 (3)
C4—C5—C6—C10.8 (4)C12—C11—C20—C150.7 (4)
C7—C5—C6—C1179.1 (3)Na1—O5—C21—O6173.8 (2)
N1—C1—C6—C5179.4 (3)Na1—O5—C21—C135.9 (5)
C2—C1—C6—C50.8 (4)C14—C13—C21—O5179.7 (3)
N1—N2—C11—C20176.5 (3)C12—C13—C21—O50.8 (5)
N1—N2—C11—C122.0 (4)C14—C13—C21—O60.6 (4)
Na1—O4—C12—C137.6 (6)C12—C13—C21—O6178.9 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.82 (4)2.14 (4)2.747 (3)131 (3)
N1—H1···O40.82 (4)1.84 (4)2.532 (4)141 (4)
O6—H6···O1S0.92 (5)1.67 (5)2.575 (4)168 (4)
O1W—H1WA···O5i0.80 (5)2.33 (5)2.944 (3)134 (4)
O1W—H1WA···O1Si0.80 (5)2.48 (5)3.138 (5)140 (4)
O1W—H1WB···O30.84 (6)2.11 (6)2.942 (3)176 (5)
Symmetry code: (i) x+1, y, z.
Angles (°) of the C–COO(H) plane to the mean plane of the carbon skeleton of the β-oxynaphthoic acid moiety top
RefcodeSaltSolvate / Hydrate|Angle|
BIHNUCaCa[C17H10N2O6ClS]22 DMF0.09
GUNZATNa[C18H12ClN2O6S]2 H2O2.43
FAWQURCa[C18H12N2O6S]22.5
KAQSAWCa[C17H8Cl2N2O6S]2 H2O23.3
FAWQIFCa[C18H14N2O7S]2 H2O26.3
GUNZEXNa[C18H12ClN2O6S]1 H2O28.6
BOGDUZaDy[C13H7N5O3][BONA]b2 DMF, 2 H2O36.6
FAWQOLCa[C18H12N2O6S]1 H2O37.7
BOGFIPaEu[C13H7N5O3][BONA]bDMF, 4 H2O39.0
BOGFAHaTb[C13H7N5O3][BONA]bDMF, 4 H2O39.0
BOGFELaSm[C13H7N5O3][BONA]bDMF, 4 H2O39.1
Notes: (a) This is not a pigment with a Colour Index number; (b) BONA = β-oxynaphthoic acid.
 

References

First citationBekö, S. L., Hammer, S. M. & Schmidt, M. U. (2012a). Angew. Chem. Int. Ed. 51, 4735–4738.  Google Scholar
First citationBekö, S. L., Hammer, S. M. & Schmidt, M. U. (2012b). Angew. Chem. 124, 4814–4818.  Google Scholar
First citationCzajkowski, W. (1980). Dyes Pigments, 1, 17–25.  CrossRef CAS Google Scholar
First citationGilli, P., Bertolasi, V., Pretto, L., Antonov, L. & Gilli, G. (2005). J. Am. Chem. Soc. 127, 638–640.  CSD CrossRef Google Scholar
First citationHunger, K. & Schmidt, M. U. (2018). Industrial Organic Pigments: Production, Properties, Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationKennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606–4615.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638–640.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchmidt, M. U., Brüning, J., Wirth, D. & Bolte, M. (2008). Acta Cryst. C64, o474–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). Acta Cryst. C76, 716–722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, S.-F., Huang, L.-Q., Zhong, L., Lai, B.-L., Yang, M., Chen, W.-B., Zhang, Y.-Q. & Dong, W. (2019). Inorg. Chem. 58, 5914–5921.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds