research communications
and Hirshfeld surface analysis of 4-(4-chlorophenyl)-5-methyl-3-{4-[(2-methylphenyl)methoxy]phenyl}-1,2-oxazole
aDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Aksaray University, 68100 Aksaray, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr
In the title compound, C24H20ClNO2, the mean planes of 4-chlorophenyl, 2-methylphenyl and phenylene rings make dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with the 5-methyl-1,2-oxazole ring. In the crystal, molecules are linked by intermolecular C—H⋯N, C—H⋯Cl, C—H⋯π contacts and π–π stacking interactions between the phenylene groups. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%), H⋯C/C⋯H (22.2%), Cl⋯H/H⋯Cl (8.8%), H⋯O/O⋯H (8.2%) and H⋯N/N⋯H (5.1%) interactions.
Keywords: crystal structure; vicinal diaryl isoxazole; C—H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 2067449
1. Chemical context
Azoles are five-membered heterocycles that have been widely used as promising scaffolds in designing novel therapeutics, in particular anticancer agents (Ahmad et al., 2018). Among them, isoxazole, a five-membered heterocycle with consecutive nitrogen and oxygen atoms in the ring, is found to be a key structural component of many commercial drugs or drug candidates in clinical development (Barmade et al., 2016). Moreover, a number of vicinal diaryl isoxazoles reported in the literature exhibit anticancer and COX-2 inhibitory activities, such as luminesbip and valdexocib, respectively (Murumkar & Ghuge, 2018). One of the critical steps in rational drug design is obtaining knowledge of the structure of the new drug candidates, and single-crystal X-ray diffraction (SCXD) is one of the most powerful methods for gaining this fundamental information, which can be used to guide the drug-design studies in connection with other technologies such as pharmacophore model elaborations, 3D QSAR, docking, and de novo design. SCXD has thus become an essential tool for drug development to unambiguously determine the three-dimensional structures of molecules, which eventually paves the way for rapid development of new molecules (Wouters & Ooms, 2001). Moreover, during the drug-development process, another important issue lies in understanding the crystal packing of the active pharmaceutical ingredient (drug substance) for suitable formulation development. Since most drug molecules comprise solid dosage forms in the crystalline state, it is imperative to truly understand the relationships between the crystal structures and the solid properties of pharmaceutically active substances, which helps the best form of an active pharmaceutical ingredient to be chosen for development into a drug product (Aitipamula & Vangala, 2017). Based on the above and our continuing interest in structural studies and biological applications of diaryl heterocycles (Banoglu et al., 2016; Çalışkan et al., 2011; Dündar et al., 2009; Eren et al., 2010; Ergun et al., 2010; Garscha et al., 2016; Levent et al., 2013; Pirol et al., 2014; Ünlü et al., 2007), we report herein the and Hirshfeld surface analysis of the title compound.
2. Structural commentary
In the molecule of the title compound (Fig. 1), the mean planes of 4-chlorophenyl, 2-methylphenyl and phenylene rings form dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with respect to the 5-methyl-1,2-oxazole ring. The 4-chlorophenyl ring makes dihedral angles of 77.4 (3) and 66.38 (19)°, respectively, with the 2-methylphenyl and phenylene rings, while the dihedral angle between the 2-methylphenyl and phenylene rings is 80.0 (3)°. The C14—O2—C17—C18 torsion angle is 166.7 (4)°. The terminal 2-methylphenyl group is involved in intense thermal motion.
3. Supramolecular features
In the crystal, molecules are linked by intermolecular C—H⋯N, C—H⋯Cl and C—H⋯π contacts (Table 1, Fig. 2) and π–π interactions between inversion-related phenylene rings [intercentroid separation Cg3⋯Cg3(1 − x, 1 − y, 1 − z) = 3.958 (2) Å] (Fig. 3).
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) of the title compound was carried out to investigate the location of atoms with potential to form hydrogen bonds and other intermolecular contacts, and the quantitative ratio of these interactions. Crystal Explorer17.5 (Turner et al., 2017) was used to generate the Hirshfeld surfaces and two-dimensional fingerprint plots (Rohl et al., 2008). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.0800 (red) to 1.5787 Å (blue) (Fig. 4).
The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯N (C17—H17A⋯N1), C—H⋯Cl (C8—Cl1⋯H1C—C1) and C—H⋯π (C6—H6⋯phenylene) interactions (Table 2). Except for the red spots, the overall surface mapped over dnorm is white and blue, indicating that the distances between the contact atoms in intermolecular contacts are nearly the same as the sum of their van der Waals radii or longer.
|
The shape-index of the Hirshfeld surface is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles; if there are no such triangles, then there are no π–π interactions. The plot of the Hirshfeld surface mapped over shape-index clearly suggests that there are π–π interactions in the title compound (Fig. 5).
Fig. 6(a) shows the total two-dimensional fingerprint plot providing information on the major and minor percentage contributions of the interatomic contacts to the Hirshfeld surface of the title compound. The blue colour refers to the frequency of occurrence of the (di, de) pair and the grey colour is the outline of the full fingerprint (Zaini et al., 2019). The fingerprint plots (Fig. 6b) show that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (48.7%). The H⋯C/C⋯H, Cl⋯H/H⋯Cl, H⋯O/O⋯H and H⋯N/N⋯H contacts contribute 22.2, 8.8, 8.2 and 5.1%, respectively (Fig. 6c–f). The remaining weaker contacts are listed in Table 3.
|
The large number of H⋯H, H⋯C/C⋯H, Cl⋯H/H⋯Cl, H⋯O/O⋯H and H⋯N/N⋯H interactions suggest that van der Waals interactions play the major roles in the crystal packing (Hathwar et al., 2015).
5. Database survey
The closest related 1,2-oxazole compounds containing a halogen atom, but with different substituents at the aromatic rings are: ethyl 3-(4-chlorophenyl)-5-[(E)-2- (dimethylamino)ethenyl]-1,2-oxazole-4- carboxylate [(I); Efimov et al., 2015], N-(2,4-difluorophenyl)-5-methyl-1,2-oxazole-4-carboxamide hemihydrate [(II); Yu et al., 2012] and N-(2,6-dichlorophenyl)-5-methyl-1,2-oxazole-4-carboxamide monohydrate [(III); Wang et al., 2011].
In compound (I), the contains two molecules, A and B, with different conformations. In molecule A, the C=O group of the ester points away from the benzene ring [C—C—C=O = −170.8 (3)°], whereas in molecule B, it points back towards the benzene ring [C—C—C=O = 17.9 (4)°]. The dihedral angles between the oxazole and benzene rings are also somewhat different [46.26 (13) and 41.59 (13)° for molecules A and B, respectively]. Each molecule features an intramolecular C—H⋯O interaction, which closes an S(6) ring. In the crystal, the B molecules are linked into C(12) chains along the c-axis direction by weak C—H⋯Cl interactions. In the crystal of (II), the components are linked by O—H⋯N and N—H⋯O hydrogen bonds, where the water molecule acts as both an H-atom donor and an acceptor, into a tape along the a-axis direction with an R44(16) graph-set motif. The water molecule is located on a twofold rotation axis. In (III), the dihedral angle between the benzene and isoxazole rings is 59.10 (7)°. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. The is further stabilized by π-stacking interactions [intercentroid distance = 3.804 (2) Å].
6. Synthesis and crystallization
Step 1: To a solution of N-hydroxy-4-[(2-methylbenzyl)oxy]benzimidoyl chloride (275 mg, 1 mmol) in diethyl ether (6 ml) was added Et3N (139.4 µL, 1 mmol). The resulting mixture was stirred for 2 h in an ice bath, and the precipitate formed was filtered off. The filtrate was evaporated under vacuum to obtain the arylnitriloxide intermediate.
Step 2: To a solution of NaH (60% in mineral oil, 64 mg, 1.6 mmol) in dry THF (4 ml), 4-chlorophenylacetone (168,6 mg, 1.0 mmol) was added dropwise, and stirred for 1 h under a nitrogen atmosphere in an ice bath. At the end of the period, the arylnitriloxide intermediate was dissolved in dry THF (4 ml), and was added to the reaction mixture, then stirred at room temperature overnight. Upon completion of the reaction, aqueous ammonium chloride solution was added, and the product was extracted with EtOAc (2 × 50 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated to dryness. The crude product was purified by automated-flash on silica gel (12 g) eluting with a gradient of 0 to 40% EtOAc in hexane. The obtained pure product was recrystallized from methanol. Crystals for structural study were obtained by slow cooling of the solution, yield 77%, m.p. 387.2–388.6 K.
1H NMR (400 MHz, CDCl3): δ 2.29 (3H, s), 2.39 (3H, s), 5.07 (2H, s), 7.05 (2H, d, J = 8.4 Hz), 7.15–7.25 (5H, m), 7.27 (2H, d, J = 8.8 Hz), 7.38 (1H, d, J = 7.6 Hz), 7.47 (2H, d, J = 8.4 Hz).
13C NMR (100 MHz, CDCl3): δ 11.21, 18.42, 67.98, 113.96, 114.97, 120.84, 125.77, 128.15, 128.59, 128.86, 129.43, 130.12, 131.44, 132.57, 134.58, 136.64, 159.49, 160.09, 166.93. HRMS (m/z): [M + H]+ calculated for C24H21ClNO2: 390.1261; found: 390.1263.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). In the final three outliers (1 11 9, 2 16 7, 19 6) were omitted.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2067449
https://doi.org/10.1107/S2056989021002383/yk2147sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021002383/yk2147Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002383/yk2147Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020) and WinGX (Farrugia, 2012).C24H20ClNO2 | F(000) = 816 |
Mr = 389.86 | Dx = 1.255 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5733 (10) Å | Cell parameters from 9984 reflections |
b = 22.848 (2) Å | θ = 2.9–26.1° |
c = 8.7151 (9) Å | µ = 0.20 mm−1 |
β = 101.477 (4)° | T = 296 K |
V = 2063.3 (4) Å3 | Block, colourless |
Z = 4 | 0.17 × 0.13 × 0.11 mm |
Bruker SMART BREEZE CCD diffractometer | 3030 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.064 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | θmax = 25.5°, θmin = 2.9° |
Tmin = 0.598, Tmax = 0.745 | h = −12→12 |
45630 measured reflections | k = −27→27 |
3840 independent reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.099 | H-atom parameters constrained |
wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.0303P)2 + 3.1816P] where P = (Fo2 + 2Fc2)/3 |
S = 1.25 | (Δ/σ)max < 0.001 |
3840 reflections | Δρmax = 0.29 e Å−3 |
255 parameters | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9916 (5) | 0.3972 (2) | 0.0798 (6) | 0.0786 (15) | |
H1A | 1.073792 | 0.414990 | 0.079720 | 0.118* | |
H1B | 0.949677 | 0.388351 | −0.025762 | 0.118* | |
H1C | 1.003929 | 0.361730 | 0.140061 | 0.118* | |
C2 | 0.9100 (4) | 0.43821 (19) | 0.1503 (5) | 0.0575 (11) | |
C3 | 0.8681 (4) | 0.43905 (16) | 0.2861 (4) | 0.0445 (9) | |
C4 | 0.7911 (4) | 0.49060 (16) | 0.2788 (4) | 0.0477 (9) | |
C5 | 0.8951 (3) | 0.39390 (15) | 0.4106 (4) | 0.0399 (8) | |
C6 | 1.0198 (4) | 0.38314 (18) | 0.4902 (5) | 0.0559 (11) | |
H6 | 1.087573 | 0.404533 | 0.464626 | 0.067* | |
C7 | 1.0458 (4) | 0.34153 (19) | 0.6061 (5) | 0.0601 (11) | |
H7 | 1.129976 | 0.334858 | 0.658977 | 0.072* | |
C8 | 0.9461 (4) | 0.31025 (16) | 0.6423 (4) | 0.0505 (10) | |
C9 | 0.8221 (4) | 0.31897 (17) | 0.5654 (4) | 0.0513 (10) | |
H9 | 0.755403 | 0.296826 | 0.590784 | 0.062* | |
C10 | 0.7965 (4) | 0.36096 (17) | 0.4494 (4) | 0.0474 (9) | |
H10 | 0.712000 | 0.367117 | 0.396865 | 0.057* | |
C11 | 0.7223 (4) | 0.51653 (15) | 0.3940 (4) | 0.0434 (9) | |
C12 | 0.7465 (4) | 0.50001 (17) | 0.5498 (5) | 0.0534 (10) | |
H12 | 0.804645 | 0.469849 | 0.582691 | 0.064* | |
C13 | 0.6866 (4) | 0.52715 (17) | 0.6581 (5) | 0.0560 (11) | |
H13 | 0.703823 | 0.515063 | 0.762061 | 0.067* | |
C14 | 0.6014 (4) | 0.57204 (18) | 0.6108 (4) | 0.0511 (10) | |
C15 | 0.5757 (4) | 0.5890 (2) | 0.4563 (5) | 0.0638 (12) | |
H15 | 0.517749 | 0.619299 | 0.423717 | 0.077* | |
C16 | 0.6351 (4) | 0.5615 (2) | 0.3503 (5) | 0.0604 (11) | |
H16 | 0.616425 | 0.573436 | 0.246158 | 0.072* | |
C17 | 0.5646 (5) | 0.5876 (2) | 0.8714 (5) | 0.0726 (14) | |
H17A | 0.656655 | 0.583009 | 0.909755 | 0.087* | |
H17B | 0.522468 | 0.550907 | 0.885738 | 0.087* | |
C18 | 0.5135 (4) | 0.6354 (2) | 0.9591 (4) | 0.0599 (12) | |
C19 | 0.4002 (5) | 0.6258 (3) | 1.0119 (6) | 0.0900 (17) | |
H19 | 0.356626 | 0.590511 | 0.988715 | 0.108* | |
C20 | 0.3513 (7) | 0.6669 (5) | 1.0973 (8) | 0.130 (3) | |
H20 | 0.275977 | 0.659313 | 1.133673 | 0.156* | |
C21 | 0.4116 (11) | 0.7181 (4) | 1.1287 (9) | 0.136 (4) | |
H21 | 0.377369 | 0.746428 | 1.185453 | 0.163* | |
C22 | 0.5229 (9) | 0.7290 (3) | 1.0780 (8) | 0.117 (3) | |
H22 | 0.563766 | 0.764957 | 1.100443 | 0.140* | |
C23 | 0.5775 (6) | 0.6873 (3) | 0.9926 (6) | 0.0797 (15) | |
C24 | 0.7025 (7) | 0.6991 (3) | 0.9434 (8) | 0.134 (3) | |
H24A | 0.769778 | 0.676652 | 1.007418 | 0.200* | |
H24B | 0.722625 | 0.739980 | 0.955410 | 0.200* | |
H24C | 0.695494 | 0.688090 | 0.835677 | 0.200* | |
Cl1 | 0.97763 (16) | 0.25691 (6) | 0.78820 (15) | 0.0889 (5) | |
N1 | 0.7874 (4) | 0.51849 (16) | 0.1458 (4) | 0.0666 (10) | |
O1 | 0.8631 (3) | 0.48497 (14) | 0.0621 (3) | 0.0709 (9) | |
O2 | 0.5395 (3) | 0.60330 (14) | 0.7082 (3) | 0.0668 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.092 (4) | 0.084 (4) | 0.071 (3) | 0.014 (3) | 0.042 (3) | 0.013 (3) |
C2 | 0.066 (3) | 0.054 (2) | 0.055 (2) | 0.000 (2) | 0.019 (2) | 0.012 (2) |
C3 | 0.049 (2) | 0.043 (2) | 0.041 (2) | −0.0046 (17) | 0.0083 (17) | 0.0078 (17) |
C4 | 0.058 (2) | 0.045 (2) | 0.040 (2) | −0.0057 (18) | 0.0081 (17) | 0.0113 (17) |
C5 | 0.049 (2) | 0.0339 (18) | 0.0374 (19) | −0.0043 (16) | 0.0101 (16) | −0.0036 (15) |
C6 | 0.051 (2) | 0.058 (3) | 0.057 (2) | −0.014 (2) | 0.0059 (19) | 0.010 (2) |
C7 | 0.056 (3) | 0.062 (3) | 0.056 (3) | −0.002 (2) | −0.005 (2) | 0.010 (2) |
C8 | 0.078 (3) | 0.034 (2) | 0.040 (2) | 0.001 (2) | 0.014 (2) | 0.0018 (16) |
C9 | 0.059 (3) | 0.050 (2) | 0.049 (2) | −0.018 (2) | 0.020 (2) | 0.0019 (19) |
C10 | 0.042 (2) | 0.052 (2) | 0.049 (2) | −0.0019 (18) | 0.0104 (17) | 0.0035 (18) |
C11 | 0.049 (2) | 0.038 (2) | 0.040 (2) | −0.0029 (17) | 0.0022 (16) | 0.0068 (16) |
C12 | 0.068 (3) | 0.041 (2) | 0.051 (2) | 0.0125 (19) | 0.011 (2) | 0.0115 (18) |
C13 | 0.078 (3) | 0.049 (2) | 0.040 (2) | 0.012 (2) | 0.009 (2) | 0.0093 (18) |
C14 | 0.051 (2) | 0.056 (2) | 0.043 (2) | 0.0058 (19) | −0.0006 (18) | −0.0016 (19) |
C15 | 0.064 (3) | 0.072 (3) | 0.048 (2) | 0.028 (2) | −0.006 (2) | 0.006 (2) |
C16 | 0.071 (3) | 0.072 (3) | 0.034 (2) | 0.013 (2) | −0.0016 (19) | 0.009 (2) |
C17 | 0.092 (4) | 0.073 (3) | 0.052 (3) | 0.026 (3) | 0.012 (2) | 0.003 (2) |
C18 | 0.058 (3) | 0.080 (3) | 0.037 (2) | 0.022 (2) | −0.0031 (19) | 0.006 (2) |
C19 | 0.074 (3) | 0.134 (5) | 0.059 (3) | 0.015 (3) | 0.004 (3) | −0.013 (3) |
C20 | 0.093 (5) | 0.231 (10) | 0.067 (4) | 0.062 (6) | 0.018 (4) | −0.017 (6) |
C21 | 0.174 (9) | 0.150 (8) | 0.073 (5) | 0.103 (8) | −0.004 (5) | −0.019 (5) |
C22 | 0.172 (8) | 0.086 (4) | 0.071 (4) | 0.023 (5) | −0.024 (5) | −0.013 (3) |
C23 | 0.088 (4) | 0.085 (4) | 0.055 (3) | 0.011 (3) | −0.011 (3) | 0.000 (3) |
C24 | 0.116 (6) | 0.157 (7) | 0.118 (6) | −0.049 (5) | 0.000 (4) | 0.011 (5) |
Cl1 | 0.1332 (12) | 0.0644 (8) | 0.0662 (8) | 0.0031 (8) | 0.0132 (8) | 0.0303 (6) |
N1 | 0.086 (3) | 0.061 (2) | 0.057 (2) | 0.015 (2) | 0.024 (2) | 0.0205 (18) |
O1 | 0.095 (2) | 0.072 (2) | 0.0546 (18) | 0.0134 (18) | 0.0346 (17) | 0.0237 (16) |
O2 | 0.073 (2) | 0.083 (2) | 0.0402 (16) | 0.0342 (17) | 0.0011 (14) | 0.0025 (15) |
C1—C2 | 1.487 (6) | C13—H13 | 0.9300 |
C1—H1A | 0.9600 | C14—O2 | 1.371 (5) |
C1—H1B | 0.9600 | C14—C15 | 1.376 (5) |
C1—H1C | 0.9600 | C15—C16 | 1.369 (6) |
C2—C3 | 1.344 (5) | C15—H15 | 0.9300 |
C2—O1 | 1.351 (5) | C16—H16 | 0.9300 |
C3—C4 | 1.426 (5) | C17—O2 | 1.439 (5) |
C3—C5 | 1.483 (5) | C17—C18 | 1.494 (6) |
C4—N1 | 1.317 (5) | C17—H17A | 0.9700 |
C4—C11 | 1.476 (5) | C17—H17B | 0.9700 |
C5—C10 | 1.381 (5) | C18—C23 | 1.368 (7) |
C5—C6 | 1.384 (5) | C18—C19 | 1.383 (7) |
C6—C7 | 1.375 (5) | C19—C20 | 1.364 (9) |
C6—H6 | 0.9300 | C19—H19 | 0.9300 |
C7—C8 | 1.361 (6) | C20—C21 | 1.334 (12) |
C7—H7 | 0.9300 | C20—H20 | 0.9300 |
C8—C9 | 1.363 (6) | C21—C22 | 1.361 (11) |
C8—Cl1 | 1.745 (4) | C21—H21 | 0.9300 |
C9—C10 | 1.381 (5) | C22—C23 | 1.402 (9) |
C9—H9 | 0.9300 | C22—H22 | 0.9300 |
C10—H10 | 0.9300 | C23—C24 | 1.493 (8) |
C11—C16 | 1.383 (5) | C24—H24A | 0.9600 |
C11—C12 | 1.383 (5) | C24—H24B | 0.9600 |
C12—C13 | 1.384 (5) | C24—H24C | 0.9600 |
C12—H12 | 0.9300 | N1—O1 | 1.411 (4) |
C13—C14 | 1.373 (5) | ||
C2—C1—H1A | 109.5 | O2—C14—C13 | 124.7 (3) |
C2—C1—H1B | 109.5 | O2—C14—C15 | 115.7 (3) |
H1A—C1—H1B | 109.5 | C13—C14—C15 | 119.6 (4) |
C2—C1—H1C | 109.5 | C16—C15—C14 | 120.2 (4) |
H1A—C1—H1C | 109.5 | C16—C15—H15 | 119.9 |
H1B—C1—H1C | 109.5 | C14—C15—H15 | 119.9 |
C3—C2—O1 | 110.0 (4) | C15—C16—C11 | 121.7 (4) |
C3—C2—C1 | 133.8 (4) | C15—C16—H16 | 119.1 |
O1—C2—C1 | 116.2 (4) | C11—C16—H16 | 119.1 |
C2—C3—C4 | 104.9 (3) | O2—C17—C18 | 108.0 (3) |
C2—C3—C5 | 125.8 (4) | O2—C17—H17A | 110.1 |
C4—C3—C5 | 129.2 (3) | C18—C17—H17A | 110.1 |
N1—C4—C3 | 110.8 (3) | O2—C17—H17B | 110.1 |
N1—C4—C11 | 118.2 (3) | C18—C17—H17B | 110.1 |
C3—C4—C11 | 131.0 (3) | H17A—C17—H17B | 108.4 |
C10—C5—C6 | 118.1 (3) | C23—C18—C19 | 119.4 (5) |
C10—C5—C3 | 120.9 (3) | C23—C18—C17 | 121.9 (5) |
C6—C5—C3 | 121.0 (3) | C19—C18—C17 | 118.6 (5) |
C7—C6—C5 | 121.4 (4) | C20—C19—C18 | 121.3 (7) |
C7—C6—H6 | 119.3 | C20—C19—H19 | 119.4 |
C5—C6—H6 | 119.3 | C18—C19—H19 | 119.4 |
C8—C7—C6 | 118.9 (4) | C21—C20—C19 | 119.9 (8) |
C8—C7—H7 | 120.6 | C21—C20—H20 | 120.0 |
C6—C7—H7 | 120.6 | C19—C20—H20 | 120.0 |
C7—C8—C9 | 121.5 (4) | C20—C21—C22 | 120.2 (8) |
C7—C8—Cl1 | 119.4 (3) | C20—C21—H21 | 119.9 |
C9—C8—Cl1 | 119.1 (3) | C22—C21—H21 | 119.9 |
C8—C9—C10 | 119.4 (3) | C21—C22—C23 | 121.5 (8) |
C8—C9—H9 | 120.3 | C21—C22—H22 | 119.3 |
C10—C9—H9 | 120.3 | C23—C22—H22 | 119.3 |
C9—C10—C5 | 120.7 (4) | C18—C23—C22 | 117.7 (6) |
C9—C10—H10 | 119.7 | C18—C23—C24 | 121.5 (6) |
C5—C10—H10 | 119.7 | C22—C23—C24 | 120.8 (7) |
C16—C11—C12 | 117.1 (4) | C23—C24—H24A | 109.5 |
C16—C11—C4 | 120.2 (3) | C23—C24—H24B | 109.5 |
C12—C11—C4 | 122.6 (3) | H24A—C24—H24B | 109.5 |
C11—C12—C13 | 121.8 (4) | C23—C24—H24C | 109.5 |
C11—C12—H12 | 119.1 | H24A—C24—H24C | 109.5 |
C13—C12—H12 | 119.1 | H24B—C24—H24C | 109.5 |
C14—C13—C12 | 119.5 (4) | C4—N1—O1 | 105.8 (3) |
C14—C13—H13 | 120.3 | C2—O1—N1 | 108.5 (3) |
C12—C13—H13 | 120.3 | C14—O2—C17 | 117.7 (3) |
O1—C2—C3—C4 | −0.5 (5) | C12—C13—C14—O2 | −177.9 (4) |
C1—C2—C3—C4 | −179.0 (5) | C12—C13—C14—C15 | 0.7 (7) |
O1—C2—C3—C5 | 177.6 (3) | O2—C14—C15—C16 | 178.4 (4) |
C1—C2—C3—C5 | −0.9 (8) | C13—C14—C15—C16 | −0.3 (7) |
C2—C3—C4—N1 | 0.2 (5) | C14—C15—C16—C11 | −0.3 (7) |
C5—C3—C4—N1 | −177.8 (4) | C12—C11—C16—C15 | 0.5 (6) |
C2—C3—C4—C11 | −177.8 (4) | C4—C11—C16—C15 | −175.9 (4) |
C5—C3—C4—C11 | 4.2 (7) | O2—C17—C18—C23 | −77.0 (5) |
C2—C3—C5—C10 | −115.9 (5) | O2—C17—C18—C19 | 105.2 (5) |
C4—C3—C5—C10 | 61.7 (5) | C23—C18—C19—C20 | −0.3 (8) |
C2—C3—C5—C6 | 63.4 (6) | C17—C18—C19—C20 | 177.7 (5) |
C4—C3—C5—C6 | −119.0 (5) | C18—C19—C20—C21 | 1.3 (10) |
C10—C5—C6—C7 | −0.9 (6) | C19—C20—C21—C22 | −1.1 (12) |
C3—C5—C6—C7 | 179.8 (4) | C20—C21—C22—C23 | −0.2 (11) |
C5—C6—C7—C8 | 0.3 (7) | C19—C18—C23—C22 | −1.0 (7) |
C6—C7—C8—C9 | 0.6 (6) | C17—C18—C23—C22 | −178.8 (4) |
C6—C7—C8—Cl1 | 179.5 (3) | C19—C18—C23—C24 | 177.7 (5) |
C7—C8—C9—C10 | −0.8 (6) | C17—C18—C23—C24 | −0.1 (7) |
Cl1—C8—C9—C10 | −179.8 (3) | C21—C22—C23—C18 | 1.2 (9) |
C8—C9—C10—C5 | 0.2 (6) | C21—C22—C23—C24 | −177.5 (6) |
C6—C5—C10—C9 | 0.6 (6) | C3—C4—N1—O1 | 0.2 (5) |
C3—C5—C10—C9 | 180.0 (3) | C11—C4—N1—O1 | 178.4 (3) |
N1—C4—C11—C16 | 13.4 (6) | C3—C2—O1—N1 | 0.6 (5) |
C3—C4—C11—C16 | −168.7 (4) | C1—C2—O1—N1 | 179.4 (4) |
N1—C4—C11—C12 | −162.7 (4) | C4—N1—O1—C2 | −0.5 (5) |
C3—C4—C11—C12 | 15.1 (6) | C13—C14—O2—C17 | −0.5 (6) |
C16—C11—C12—C13 | 0.0 (6) | C15—C14—O2—C17 | −179.2 (4) |
C4—C11—C12—C13 | 176.2 (4) | C18—C17—O2—C14 | 166.7 (4) |
C11—C12—C13—C14 | −0.5 (7) |
Cg1, Cg2 and Cg3 are the centroids of the O1/N1/C2–C4, C5–C10 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···N1i | 0.97 | 2.68 | 3.395 (6) | 131 |
C6—H6···Cg3ii | 0.93 | 2.86 | 3.747 (5) | 159 |
C19—H19···Cg1iii | 0.93 | 2.77 | 3.614 (6) | 151 |
C8—Cl1···Cg2iv | 1.75 (1) | 3.37 (1) | 5.034 (4) | 159 (1) |
Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y−1/2, z−1/2. |
Contact | Distance | Symmetry operation |
Cl1···H1C | 3.04 | x, 1/2 - y, 1/2 + z |
N1···H17A | 2.68 | x, y, -1 + z |
H1A···O1 | 2.74 | 2 - x, 1 - y, -z |
H10···O2 | 2.72 | 1 - x, 1 - y, 1 - z |
H6···C11 | 2.80 | 2 - x, 1 - y, 1 - z |
H9···C21 | 2.94 | 1 - x, -1/2 + y, 3/2 - z |
H20···C9 | 3.05 | 1 - x, 1 - y, 2 - z |
H22···H24C | 2.48 | x, 1/2 - y, - 1/2 + z |
Contact | Percentage contribution |
H···H | 48.7 |
H···C/C···H | 22.2 |
Cl···H/H···Cl | 8.8 |
H···O/O···H | 8.2 |
H···N/N···H | 5.1 |
Cl···C/C···Cl | 3.9 |
C···C | 2.1 |
C···N/N···C | 0.4 |
O···O | 0.4 |
C···O/O···C | 0.2 |
Acknowledgements
The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization). The title compound was produced within the context of a research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK #215S015).
References
Ahmad, K., Khan, M. K., Baig, M. H., Imran, M. & Gupta, G. K. (2018). Anticancer Agents Med. Chem. 18, 46–56. Web of Science CrossRef CAS PubMed Google Scholar
Aitipamula, S. & Vangala, V. R. (2017). J. Indian Inst. Sci. 97, 227–243. Web of Science CrossRef Google Scholar
Banoglu, E., Çelikoğlu, E., Völker, S., Olgaç, A., Gerstmeier, J., Garscha, U., Çalışkan, B., Schubert, U. S., Carotti, A., Macchiarulo, A. & Werz, O. (2016). Eur. J. Med. Chem. 113, 1–10. Web of Science CrossRef CAS PubMed Google Scholar
Barmade, M. A., Murumkar, P. R., Sharma, M. K. & Yadav, M. R. (2016). Curr. Top. Med. Chem. 16, 2863–2883. Web of Science CAS PubMed Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çalışkan, B., Luderer, S., Özkan, Y., Werz, O. & Banoglu, E. (2011). Eur. J. Med. Chem. 46, 5021–5033. Web of Science PubMed Google Scholar
Dündar, Y., Ünlü, S., Banoğlu, E., Entrena, A., Costantino, G., Nunez, M. T., Ledo, F., Şahin, M. F. & Noyanalpan, N. (2009). Eur. J. Med. Chem. 44, 4785–4785. Google Scholar
Efimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eren, G., Ünlü, S., Nuñez, M., Labeaga, L., Ledo, F., Entrena, A., Banoğlu, E., Costantino, G. & Şahin, M. F. (2010). Bioorg. Med. Chem. 18, 6367–6376. Web of Science CrossRef CAS PubMed Google Scholar
Ergun, B. C., Nunez, M. T., Labeaga, L., Ledo, F., Darlington, J., Bain, G., Cakir, B. & Banoglu, E. (2010). Arzneim. Forsch. 60, 497–505. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garscha, U., Voelker, S., Pace, S., Gerstmeier, J., Emini, B., Liening, S., Rossi, A., Weinigel, C., Rummler, S., Schubert, U. S., Scriba, G. K., Çelikoğlu, E., Çalışkan, B., Banoglu, E., Sautebin, L. & Werz, O. (2016). Biochem. Pharmacol. 119, 17–26. Web of Science CrossRef CAS PubMed Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Levent, S., Çalışkan, B., Çiftçi, M., Özkan, Y., Yenicesu, I., Ünver, H. & Banoglu, E. (2013). Eur. J. Med. Chem. 64, 42–53. Web of Science CrossRef CAS PubMed Google Scholar
Murumkar, P. R. & Ghuge, R. B. (2018). Vicinal Diaryl Oxadiazoles, Oxazoles and Isoxazoles, In Vicinal Diaryl Substituted Heterocycles, edited by M. R. Yadav, P. R. Murumkar & R. B. Ghuge, pp. 277–303. Oxford: Elsevier. Google Scholar
Pirol, Ş. C., Çalışkan, B., Durmaz, I., Atalay, R. & Banoglu, E. (2014). Eur. J. Med. Chem. 87, 140–149. Web of Science PubMed Google Scholar
Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. Google Scholar
Ünlü, S., Banoglu, E., Ito, S., Niiya, T., Eren, G., Ökçelik, B. & Şahin, M. F. (2007). J. Enzyme Inhib. Med. Chem. 22, 351–361. Web of Science PubMed Google Scholar
Wang, D.-C., Huang, L.-C., Liu, H.-Q., Peng, Y.-R. & Song, J.-S. (2011). Acta Cryst. E67, o3207. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wouters, C. & Ooms, F. (2001). Curr. Pharm. Des. 7, 529–545. Web of Science CrossRef PubMed CAS Google Scholar
Yu, J.-G., Zhu, H.-X., Qiu, J.-K., Wang, D.-C. & Xu, H. (2012). Acta Cryst. E68, o2325. CSD CrossRef IUCr Journals Google Scholar
Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.