research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-(4-chloro­phen­yl)-5-methyl-3-{4-[(2-methyl­phen­yl)meth­­oxy]phen­yl}-1,2-oxazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Aksaray University, 68100 Aksaray, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 17 February 2021; accepted 2 March 2021; online 5 March 2021)

In the title compound, C24H20ClNO2, the mean planes of 4-chloro­phenyl, 2-methyl­phenyl and phenyl­ene rings make dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with the 5-methyl-1,2-oxazole ring. In the crystal, mol­ecules are linked by inter­molecular C—H⋯N, C—H⋯Cl, C—H⋯π contacts and ππ stacking inter­actions between the phenyl­ene groups. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%), H⋯C/C⋯H (22.2%), Cl⋯H/H⋯Cl (8.8%), H⋯O/O⋯H (8.2%) and H⋯N/N⋯H (5.1%) inter­actions.

1. Chemical context

Azoles are five-membered heterocycles that have been widely used as promising scaffolds in designing novel therapeutics, in particular anti­cancer agents (Ahmad et al., 2018[Ahmad, K., Khan, M. K., Baig, M. H., Imran, M. & Gupta, G. K. (2018). Anticancer Agents Med. Chem. 18, 46-56.]). Among them, isoxazole, a five-membered heterocycle with consecutive nitro­gen and oxygen atoms in the ring, is found to be a key structural component of many commercial drugs or drug candidates in clinical development (Barmade et al., 2016[Barmade, M. A., Murumkar, P. R., Sharma, M. K. & Yadav, M. R. (2016). Curr. Top. Med. Chem. 16, 2863-2883.]). Moreover, a number of vicinal diaryl isoxazoles reported in the literature exhibit anti­cancer and COX-2 inhibitory activities, such as luminesbip and valdexocib, respectively (Murumkar & Ghuge, 2018[Murumkar, P. R. & Ghuge, R. B. (2018). Vicinal Diaryl Oxadiazoles, Oxazoles and Isoxazoles, In Vicinal Diaryl Substituted Heterocycles, edited by M. R. Yadav, P. R. Murumkar & R. B. Ghuge, pp. 277-303. Oxford: Elsevier.]). One of the critical steps in rational drug design is obtaining knowledge of the structure of the new drug candidates, and single-crystal X-ray diffraction (SCXD) is one of the most powerful methods for gaining this fundamental information, which can be used to guide the drug-design studies in connection with other technologies such as pharmacophore model elaborations, 3D QSAR, docking, and de novo design. SCXD has thus become an essential tool for drug development to unambiguously determine the three-dimensional structures of mol­ecules, which eventually paves the way for rapid development of new mol­ecules (Wouters & Ooms, 2001[Wouters, C. & Ooms, F. (2001). Curr. Pharm. Des. 7, 529-545.]). Moreover, during the drug-development process, another important issue lies in understanding the crystal packing of the active pharmaceutical ingredient (drug substance) for suitable formulation development. Since most drug mol­ecules comprise solid dosage forms in the crystalline state, it is imperative to truly understand the relationships between the crystal structures and the solid properties of pharmaceutically active substances, which helps the best form of an active pharmaceutical ingredient to be chosen for development into a drug product (Aitipamula & Vangala, 2017[Aitipamula, S. & Vangala, V. R. (2017). J. Indian Inst. Sci. 97, 227-243.]). Based on the above and our continuing inter­est in structural studies and biological applications of diaryl heterocycles (Banoglu et al., 2016[Banoglu, E., Çelikoğlu, E., Völker, S., Olgaç, A., Gerstmeier, J., Garscha, U., Çalışkan, B., Schubert, U. S., Carotti, A., Macchiarulo, A. & Werz, O. (2016). Eur. J. Med. Chem. 113, 1-10.]; Çalışkan et al., 2011[Çalışkan, B., Luderer, S., Özkan, Y., Werz, O. & Banoglu, E. (2011). Eur. J. Med. Chem. 46, 5021-5033.]; Dündar et al., 2009[Dündar, Y., Ünlü, S., Banoğlu, E., Entrena, A., Costantino, G., Nunez, M. T., Ledo, F., Şahin, M. F. & Noyanalpan, N. (2009). Eur. J. Med. Chem. 44, 4785-4785.]; Eren et al., 2010[Eren, G., Ünlü, S., Nuñez, M., Labeaga, L., Ledo, F., Entrena, A., Banoğlu, E., Costantino, G. & Şahin, M. F. (2010). Bioorg. Med. Chem. 18, 6367-6376.]; Ergun et al., 2010[Ergun, B. C., Nunez, M. T., Labeaga, L., Ledo, F., Darlington, J., Bain, G., Cakir, B. & Banoglu, E. (2010). Arzneim. Forsch. 60, 497-505.]; Garscha et al., 2016[Garscha, U., Voelker, S., Pace, S., Gerstmeier, J., Emini, B., Liening, S., Rossi, A., Weinigel, C., Rummler, S., Schubert, U. S., Scriba, G. K., Çelikoğlu, E., Çalışkan, B., Banoglu, E., Sautebin, L. & Werz, O. (2016). Biochem. Pharmacol. 119, 17-26.]; Levent et al., 2013[Levent, S., Çalışkan, B., Çiftçi, M., Özkan, Y., Yenicesu, I., Ünver, H. & Banoglu, E. (2013). Eur. J. Med. Chem. 64, 42-53.]; Pirol et al., 2014[Pirol, Ş. C., Çalışkan, B., Durmaz, I., Atalay, R. & Banoglu, E. (2014). Eur. J. Med. Chem. 87, 140-149.]; Ünlü et al., 2007[Ünlü, S., Banoglu, E., Ito, S., Niiya, T., Eren, G., Ökçelik, B. & Şahin, M. F. (2007). J. Enzyme Inhib. Med. Chem. 22, 351-361.]), we report herein the crystal structure and Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the mean planes of 4-chloro­phenyl, 2-methyl­phenyl and phenyl­ene rings form dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with respect to the 5-methyl-1,2-oxazole ring. The 4-chloro­phenyl ring makes dihedral angles of 77.4 (3) and 66.38 (19)°, respectively, with the 2-methyl­phenyl and phenyl­ene rings, while the dihedral angle between the 2-methyl­phenyl and phenyl­ene rings is 80.0 (3)°. The C14—O2—C17—C18 torsion angle is 166.7 (4)°. The terminal 2-methyl­phenyl group is involved in intense thermal motion.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by inter­molecular C—H⋯N, C—H⋯Cl and C—H⋯π contacts (Table 1[link], Fig. 2[link]) and ππ inter­actions between inversion-related phenyl­ene rings [inter­centroid separation Cg3⋯Cg3(1 − x, 1 − y, 1 − z) = 3.958 (2) Å] (Fig. 3[link]).

Table 1
Intermolecular contacts (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the O1/N1/C2–C4, C5–C10 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯N1i 0.97 2.68 3.395 (6) 131
C6—H6⋯Cg3ii 0.93 2.86 3.747 (5) 159
C19—H19⋯Cg1iii 0.93 2.77 3.614 (6) 151
C8—Cl1⋯Cg2iv 1.75 (1) 3.37 (1) 5.034 (4) 159 (1)
Symmetry codes: (i) x, y, z+1; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the C—H⋯N and C—H⋯π inter­actions in the unit cell of the title compound. Dashed lines show short inter­molecular contacts.
[Figure 3]
Figure 3
A view of the C—H⋯N and C—H⋯π and ππ inter­actions in the unit cell of the title compound. Dashed lines show short inter­molecular contacts.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title compound was carried out to investigate the location of atoms with potential to form hydrogen bonds and other inter­molecular contacts, and the qu­anti­tative ratio of these inter­actions. Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.]) was used to generate the Hirshfeld surfaces and two-dimensional fingerprint plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.0800 (red) to 1.5787 Å (blue) (Fig. 4[link]).

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped with dnorm.

The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯N (C17—H17A⋯N1), C—H⋯Cl (C8—Cl1⋯H1C—C1) and C—H⋯π (C6—H6⋯phenyl­ene) inter­actions (Table 2[link]). Except for the red spots, the overall surface mapped over dnorm is white and blue, indicating that the distances between the contact atoms in inter­molecular contacts are nearly the same as the sum of their van der Waals radii or longer.

Table 2
Summary of selected van der Waals contacts (Å) involving H atoms in the title compound

Contact Distance Symmetry operation
Cl1⋯H1C 3.04 x, [{1\over 2}] − y, [{1\over 2}] + z
N1⋯H17A 2.68 x, y, −1 + z
H1A⋯O1 2.74 2 − x, 1 − y, −z
H10⋯O2 2.72 1 − x, 1 − y, 1 − z
H6⋯C11 2.80 2 − x, 1 − y, 1 − z
H9⋯C21 2.94 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H20⋯C9 3.05 1 − x, 1 − y, 2 − z
H22⋯H24C 2.48 x, [{1\over 2}] − y, − [{1\over 2}] + z

The shape-index of the Hirshfeld surface is a tool for visualizing the ππ stacking by the presence of adjacent red and blue triangles; if there are no such triangles, then there are no ππ inter­actions. The plot of the Hirshfeld surface mapped over shape-index clearly suggests that there are ππ inter­actions in the title compound (Fig. 5[link]).

[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.

Fig. 6[link](a) shows the total two-dimensional fingerprint plot providing information on the major and minor percentage contributions of the inter­atomic contacts to the Hirshfeld surface of the title compound. The blue colour refers to the frequency of occurrence of the (di, de) pair and the grey colour is the outline of the full fingerprint (Zaini et al., 2019[Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58-63.]). The fingerprint plots (Fig. 6[link]b) show that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (48.7%). The H⋯C/C⋯H, Cl⋯H/H⋯Cl, H⋯O/O⋯H and H⋯N/N⋯H contacts contribute 22.2, 8.8, 8.2 and 5.1%, respectively (Fig. 6[link]c–f). The remaining weaker contacts are listed in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title compound

Contact Percentage contribution
H⋯H 48.7
H⋯C/C⋯H 22.2
Cl⋯H/H⋯Cl 8.8
H⋯O/O⋯H 8.2
H⋯N/N⋯H 5.1
Cl⋯C/C⋯Cl 3.9
C⋯C 2.1
C⋯N/N⋯C 0.4
O⋯O 0.4
C⋯O/O⋯C 0.2
[Figure 6]
Figure 6
The total two-dimensional fingerprint plot (a) and the relative contributions of various inter­actions to the Hirshfeld surface: (b) H⋯H, (c) H⋯C/C⋯H, (d) Cl⋯H/H⋯Cl, (e) H⋯O/O⋯H and (f) H⋯N/N⋯H.

The large number of H⋯H, H⋯C/C⋯H, Cl⋯H/H⋯Cl, H⋯O/O⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

The closest related 1,2-oxazole compounds containing a halogen atom, but with different substituents at the aromatic rings are: ethyl 3-(4-chloro­phen­yl)-5-[(E)-2- (di­methyl­amino)­ethen­yl]-1,2-oxazole-4- carboxyl­ate [(I); Efimov et al., 2015[Efimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028.]], N-(2,4-di­fluoro­phen­yl)-5-methyl-1,2-oxazole-4-carboxamide hemihydrate [(II); Yu et al., 2012[Yu, J.-G., Zhu, H.-X., Qiu, J.-K., Wang, D.-C. & Xu, H. (2012). Acta Cryst. E68, o2325.]] and N-(2,6-di­chloro­phen­yl)-5-methyl-1,2-oxazole-4-carboxamide monohydrate [(III); Wang et al., 2011[Wang, D.-C., Huang, L.-C., Liu, H.-Q., Peng, Y.-R. & Song, J.-S. (2011). Acta Cryst. E67, o3207.]].

In compound (I)[link], the asymmetric unit contains two mol­ecules, A and B, with different conformations. In mol­ecule A, the C=O group of the ester points away from the benzene ring [C—C—C=O = −170.8 (3)°], whereas in mol­ecule B, it points back towards the benzene ring [C—C—C=O = 17.9 (4)°]. The dihedral angles between the oxazole and benzene rings are also somewhat different [46.26 (13) and 41.59 (13)° for mol­ecules A and B, respectively]. Each mol­ecule features an intra­molecular C—H⋯O inter­action, which closes an S(6) ring. In the crystal, the B mol­ecules are linked into C(12) chains along the c-axis direction by weak C—H⋯Cl inter­actions. In the crystal of (II), the components are linked by O—H⋯N and N—H⋯O hydrogen bonds, where the water mol­ecule acts as both an H-atom donor and an acceptor, into a tape along the a-axis direction with an R44(16) graph-set motif. The water mol­ecule is located on a twofold rotation axis. In (III), the dihedral angle between the benzene and isoxazole rings is 59.10 (7)°. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. The crystal structure is further stabilized by π-stacking inter­actions [inter­centroid distance = 3.804 (2) Å].

6. Synthesis and crystallization

Step 1: To a solution of N-hy­droxy-4-[(2-methyl­benz­yl)­oxy]benzimidoyl chloride (275 mg, 1 mmol) in diethyl ether (6 ml) was added Et3N (139.4 µL, 1 mmol). The resulting mixture was stirred for 2 h in an ice bath, and the precipitate formed was filtered off. The filtrate was evaporated under vacuum to obtain the aryl­nitriloxide inter­mediate.

Step 2: To a solution of NaH (60% in mineral oil, 64 mg, 1.6 mmol) in dry THF (4 ml), 4-chloro­phenyl­acetone (168,6 mg, 1.0 mmol) was added dropwise, and stirred for 1 h under a nitro­gen atmosphere in an ice bath. At the end of the period, the aryl­nitriloxide inter­mediate was dissolved in dry THF (4 ml), and was added to the reaction mixture, then stirred at room temperature overnight. Upon completion of the reaction, aqueous ammonium chloride solution was added, and the product was extracted with EtOAc (2 × 50 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated to dryness. The crude product was purified by automated-flash chromatography on silica gel (12 g) eluting with a gradient of 0 to 40% EtOAc in hexane. The obtained pure product was recrystallized from methanol. Crystals for structural study were obtained by slow cooling of the solution, yield 77%, m.p. 387.2–388.6 K.

1H NMR (400 MHz, CDCl3): δ 2.29 (3H, s), 2.39 (3H, s), 5.07 (2H, s), 7.05 (2H, d, J = 8.4 Hz), 7.15–7.25 (5H, m), 7.27 (2H, d, J = 8.8 Hz), 7.38 (1H, d, J = 7.6 Hz), 7.47 (2H, d, J = 8.4 Hz).

13C NMR (100 MHz, CDCl3): δ 11.21, 18.42, 67.98, 113.96, 114.97, 120.84, 125.77, 128.15, 128.59, 128.86, 129.43, 130.12, 131.44, 132.57, 134.58, 136.64, 159.49, 160.09, 166.93. HRMS (m/z): [M + H]+ calculated for C24H21ClNO2: 390.1261; found: 390.1263.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). In the final refinement, three outliers (1 11 9, 2 16 7, [\overline{1}] 19 6) were omitted.

Table 4
Experimental details

Crystal data
Chemical formula C24H20ClNO2
Mr 389.86
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.5733 (10), 22.848 (2), 8.7151 (9)
β (°) 101.477 (4)
V3) 2063.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.17 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.598, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 45630, 3840, 3030
Rint 0.064
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.187, 1.25
No. of reflections 3840
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020) and WinGX (Farrugia, 2012).

4-(4-Chlorophenyl)-5-methyl-3-{4-[(2-methylphenyl)methoxy]phenyl}-1,2-oxazole top
Crystal data top
C24H20ClNO2F(000) = 816
Mr = 389.86Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5733 (10) ÅCell parameters from 9984 reflections
b = 22.848 (2) Åθ = 2.9–26.1°
c = 8.7151 (9) ŵ = 0.20 mm1
β = 101.477 (4)°T = 296 K
V = 2063.3 (4) Å3Block, colourless
Z = 40.17 × 0.13 × 0.11 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3030 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 25.5°, θmin = 2.9°
Tmin = 0.598, Tmax = 0.745h = 1212
45630 measured reflectionsk = 2727
3840 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.099H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0303P)2 + 3.1816P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
3840 reflectionsΔρmax = 0.29 e Å3
255 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9916 (5)0.3972 (2)0.0798 (6)0.0786 (15)
H1A1.0737920.4149900.0797200.118*
H1B0.9496770.3883510.0257620.118*
H1C1.0039290.3617300.1400610.118*
C20.9100 (4)0.43821 (19)0.1503 (5)0.0575 (11)
C30.8681 (4)0.43905 (16)0.2861 (4)0.0445 (9)
C40.7911 (4)0.49060 (16)0.2788 (4)0.0477 (9)
C50.8951 (3)0.39390 (15)0.4106 (4)0.0399 (8)
C61.0198 (4)0.38314 (18)0.4902 (5)0.0559 (11)
H61.0875730.4045330.4646260.067*
C71.0458 (4)0.34153 (19)0.6061 (5)0.0601 (11)
H71.1299760.3348580.6589770.072*
C80.9461 (4)0.31025 (16)0.6423 (4)0.0505 (10)
C90.8221 (4)0.31897 (17)0.5654 (4)0.0513 (10)
H90.7554030.2968260.5907840.062*
C100.7965 (4)0.36096 (17)0.4494 (4)0.0474 (9)
H100.7120000.3671170.3968650.057*
C110.7223 (4)0.51653 (15)0.3940 (4)0.0434 (9)
C120.7465 (4)0.50001 (17)0.5498 (5)0.0534 (10)
H120.8046450.4698490.5826910.064*
C130.6866 (4)0.52715 (17)0.6581 (5)0.0560 (11)
H130.7038230.5150630.7620610.067*
C140.6014 (4)0.57204 (18)0.6108 (4)0.0511 (10)
C150.5757 (4)0.5890 (2)0.4563 (5)0.0638 (12)
H150.5177490.6192990.4237170.077*
C160.6351 (4)0.5615 (2)0.3503 (5)0.0604 (11)
H160.6164250.5734360.2461580.072*
C170.5646 (5)0.5876 (2)0.8714 (5)0.0726 (14)
H17A0.6566550.5830090.9097550.087*
H17B0.5224680.5509070.8857380.087*
C180.5135 (4)0.6354 (2)0.9591 (4)0.0599 (12)
C190.4002 (5)0.6258 (3)1.0119 (6)0.0900 (17)
H190.3566260.5905110.9887150.108*
C200.3513 (7)0.6669 (5)1.0973 (8)0.130 (3)
H200.2759770.6593131.1336730.156*
C210.4116 (11)0.7181 (4)1.1287 (9)0.136 (4)
H210.3773690.7464281.1854530.163*
C220.5229 (9)0.7290 (3)1.0780 (8)0.117 (3)
H220.5637660.7649571.1004430.140*
C230.5775 (6)0.6873 (3)0.9926 (6)0.0797 (15)
C240.7025 (7)0.6991 (3)0.9434 (8)0.134 (3)
H24A0.7697780.6766521.0074180.200*
H24B0.7226250.7399800.9554100.200*
H24C0.6954940.6880900.8356770.200*
Cl10.97763 (16)0.25691 (6)0.78820 (15)0.0889 (5)
N10.7874 (4)0.51849 (16)0.1458 (4)0.0666 (10)
O10.8631 (3)0.48497 (14)0.0621 (3)0.0709 (9)
O20.5395 (3)0.60330 (14)0.7082 (3)0.0668 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.092 (4)0.084 (4)0.071 (3)0.014 (3)0.042 (3)0.013 (3)
C20.066 (3)0.054 (2)0.055 (2)0.000 (2)0.019 (2)0.012 (2)
C30.049 (2)0.043 (2)0.041 (2)0.0046 (17)0.0083 (17)0.0078 (17)
C40.058 (2)0.045 (2)0.040 (2)0.0057 (18)0.0081 (17)0.0113 (17)
C50.049 (2)0.0339 (18)0.0374 (19)0.0043 (16)0.0101 (16)0.0036 (15)
C60.051 (2)0.058 (3)0.057 (2)0.014 (2)0.0059 (19)0.010 (2)
C70.056 (3)0.062 (3)0.056 (3)0.002 (2)0.005 (2)0.010 (2)
C80.078 (3)0.034 (2)0.040 (2)0.001 (2)0.014 (2)0.0018 (16)
C90.059 (3)0.050 (2)0.049 (2)0.018 (2)0.020 (2)0.0019 (19)
C100.042 (2)0.052 (2)0.049 (2)0.0019 (18)0.0104 (17)0.0035 (18)
C110.049 (2)0.038 (2)0.040 (2)0.0029 (17)0.0022 (16)0.0068 (16)
C120.068 (3)0.041 (2)0.051 (2)0.0125 (19)0.011 (2)0.0115 (18)
C130.078 (3)0.049 (2)0.040 (2)0.012 (2)0.009 (2)0.0093 (18)
C140.051 (2)0.056 (2)0.043 (2)0.0058 (19)0.0006 (18)0.0016 (19)
C150.064 (3)0.072 (3)0.048 (2)0.028 (2)0.006 (2)0.006 (2)
C160.071 (3)0.072 (3)0.034 (2)0.013 (2)0.0016 (19)0.009 (2)
C170.092 (4)0.073 (3)0.052 (3)0.026 (3)0.012 (2)0.003 (2)
C180.058 (3)0.080 (3)0.037 (2)0.022 (2)0.0031 (19)0.006 (2)
C190.074 (3)0.134 (5)0.059 (3)0.015 (3)0.004 (3)0.013 (3)
C200.093 (5)0.231 (10)0.067 (4)0.062 (6)0.018 (4)0.017 (6)
C210.174 (9)0.150 (8)0.073 (5)0.103 (8)0.004 (5)0.019 (5)
C220.172 (8)0.086 (4)0.071 (4)0.023 (5)0.024 (5)0.013 (3)
C230.088 (4)0.085 (4)0.055 (3)0.011 (3)0.011 (3)0.000 (3)
C240.116 (6)0.157 (7)0.118 (6)0.049 (5)0.000 (4)0.011 (5)
Cl10.1332 (12)0.0644 (8)0.0662 (8)0.0031 (8)0.0132 (8)0.0303 (6)
N10.086 (3)0.061 (2)0.057 (2)0.015 (2)0.024 (2)0.0205 (18)
O10.095 (2)0.072 (2)0.0546 (18)0.0134 (18)0.0346 (17)0.0237 (16)
O20.073 (2)0.083 (2)0.0402 (16)0.0342 (17)0.0011 (14)0.0025 (15)
Geometric parameters (Å, º) top
C1—C21.487 (6)C13—H130.9300
C1—H1A0.9600C14—O21.371 (5)
C1—H1B0.9600C14—C151.376 (5)
C1—H1C0.9600C15—C161.369 (6)
C2—C31.344 (5)C15—H150.9300
C2—O11.351 (5)C16—H160.9300
C3—C41.426 (5)C17—O21.439 (5)
C3—C51.483 (5)C17—C181.494 (6)
C4—N11.317 (5)C17—H17A0.9700
C4—C111.476 (5)C17—H17B0.9700
C5—C101.381 (5)C18—C231.368 (7)
C5—C61.384 (5)C18—C191.383 (7)
C6—C71.375 (5)C19—C201.364 (9)
C6—H60.9300C19—H190.9300
C7—C81.361 (6)C20—C211.334 (12)
C7—H70.9300C20—H200.9300
C8—C91.363 (6)C21—C221.361 (11)
C8—Cl11.745 (4)C21—H210.9300
C9—C101.381 (5)C22—C231.402 (9)
C9—H90.9300C22—H220.9300
C10—H100.9300C23—C241.493 (8)
C11—C161.383 (5)C24—H24A0.9600
C11—C121.383 (5)C24—H24B0.9600
C12—C131.384 (5)C24—H24C0.9600
C12—H120.9300N1—O11.411 (4)
C13—C141.373 (5)
C2—C1—H1A109.5O2—C14—C13124.7 (3)
C2—C1—H1B109.5O2—C14—C15115.7 (3)
H1A—C1—H1B109.5C13—C14—C15119.6 (4)
C2—C1—H1C109.5C16—C15—C14120.2 (4)
H1A—C1—H1C109.5C16—C15—H15119.9
H1B—C1—H1C109.5C14—C15—H15119.9
C3—C2—O1110.0 (4)C15—C16—C11121.7 (4)
C3—C2—C1133.8 (4)C15—C16—H16119.1
O1—C2—C1116.2 (4)C11—C16—H16119.1
C2—C3—C4104.9 (3)O2—C17—C18108.0 (3)
C2—C3—C5125.8 (4)O2—C17—H17A110.1
C4—C3—C5129.2 (3)C18—C17—H17A110.1
N1—C4—C3110.8 (3)O2—C17—H17B110.1
N1—C4—C11118.2 (3)C18—C17—H17B110.1
C3—C4—C11131.0 (3)H17A—C17—H17B108.4
C10—C5—C6118.1 (3)C23—C18—C19119.4 (5)
C10—C5—C3120.9 (3)C23—C18—C17121.9 (5)
C6—C5—C3121.0 (3)C19—C18—C17118.6 (5)
C7—C6—C5121.4 (4)C20—C19—C18121.3 (7)
C7—C6—H6119.3C20—C19—H19119.4
C5—C6—H6119.3C18—C19—H19119.4
C8—C7—C6118.9 (4)C21—C20—C19119.9 (8)
C8—C7—H7120.6C21—C20—H20120.0
C6—C7—H7120.6C19—C20—H20120.0
C7—C8—C9121.5 (4)C20—C21—C22120.2 (8)
C7—C8—Cl1119.4 (3)C20—C21—H21119.9
C9—C8—Cl1119.1 (3)C22—C21—H21119.9
C8—C9—C10119.4 (3)C21—C22—C23121.5 (8)
C8—C9—H9120.3C21—C22—H22119.3
C10—C9—H9120.3C23—C22—H22119.3
C9—C10—C5120.7 (4)C18—C23—C22117.7 (6)
C9—C10—H10119.7C18—C23—C24121.5 (6)
C5—C10—H10119.7C22—C23—C24120.8 (7)
C16—C11—C12117.1 (4)C23—C24—H24A109.5
C16—C11—C4120.2 (3)C23—C24—H24B109.5
C12—C11—C4122.6 (3)H24A—C24—H24B109.5
C11—C12—C13121.8 (4)C23—C24—H24C109.5
C11—C12—H12119.1H24A—C24—H24C109.5
C13—C12—H12119.1H24B—C24—H24C109.5
C14—C13—C12119.5 (4)C4—N1—O1105.8 (3)
C14—C13—H13120.3C2—O1—N1108.5 (3)
C12—C13—H13120.3C14—O2—C17117.7 (3)
O1—C2—C3—C40.5 (5)C12—C13—C14—O2177.9 (4)
C1—C2—C3—C4179.0 (5)C12—C13—C14—C150.7 (7)
O1—C2—C3—C5177.6 (3)O2—C14—C15—C16178.4 (4)
C1—C2—C3—C50.9 (8)C13—C14—C15—C160.3 (7)
C2—C3—C4—N10.2 (5)C14—C15—C16—C110.3 (7)
C5—C3—C4—N1177.8 (4)C12—C11—C16—C150.5 (6)
C2—C3—C4—C11177.8 (4)C4—C11—C16—C15175.9 (4)
C5—C3—C4—C114.2 (7)O2—C17—C18—C2377.0 (5)
C2—C3—C5—C10115.9 (5)O2—C17—C18—C19105.2 (5)
C4—C3—C5—C1061.7 (5)C23—C18—C19—C200.3 (8)
C2—C3—C5—C663.4 (6)C17—C18—C19—C20177.7 (5)
C4—C3—C5—C6119.0 (5)C18—C19—C20—C211.3 (10)
C10—C5—C6—C70.9 (6)C19—C20—C21—C221.1 (12)
C3—C5—C6—C7179.8 (4)C20—C21—C22—C230.2 (11)
C5—C6—C7—C80.3 (7)C19—C18—C23—C221.0 (7)
C6—C7—C8—C90.6 (6)C17—C18—C23—C22178.8 (4)
C6—C7—C8—Cl1179.5 (3)C19—C18—C23—C24177.7 (5)
C7—C8—C9—C100.8 (6)C17—C18—C23—C240.1 (7)
Cl1—C8—C9—C10179.8 (3)C21—C22—C23—C181.2 (9)
C8—C9—C10—C50.2 (6)C21—C22—C23—C24177.5 (6)
C6—C5—C10—C90.6 (6)C3—C4—N1—O10.2 (5)
C3—C5—C10—C9180.0 (3)C11—C4—N1—O1178.4 (3)
N1—C4—C11—C1613.4 (6)C3—C2—O1—N10.6 (5)
C3—C4—C11—C16168.7 (4)C1—C2—O1—N1179.4 (4)
N1—C4—C11—C12162.7 (4)C4—N1—O1—C20.5 (5)
C3—C4—C11—C1215.1 (6)C13—C14—O2—C170.5 (6)
C16—C11—C12—C130.0 (6)C15—C14—O2—C17179.2 (4)
C4—C11—C12—C13176.2 (4)C18—C17—O2—C14166.7 (4)
C11—C12—C13—C140.5 (7)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the O1/N1/C2–C4, C5–C10 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17A···N1i0.972.683.395 (6)131
C6—H6···Cg3ii0.932.863.747 (5)159
C19—H19···Cg1iii0.932.773.614 (6)151
C8—Cl1···Cg2iv1.75 (1)3.37 (1)5.034 (4)159 (1)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1/2, z1/2.
Summary of selected van der Waals contacts (Å) involving H atoms in the title compound top
ContactDistanceSymmetry operation
Cl1···H1C3.04x, 1/2 - y, 1/2 + z
N1···H17A2.68x, y, -1 + z
H1A···O12.742 - x, 1 - y, -z
H10···O22.721 - x, 1 - y, 1 - z
H6···C112.802 - x, 1 - y, 1 - z
H9···C212.941 - x, -1/2 + y, 3/2 - z
H20···C93.051 - x, 1 - y, 2 - z
H22···H24C2.48x, 1/2 - y, - 1/2 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface of the title compound top
ContactPercentage contribution
H···H48.7
H···C/C···H22.2
Cl···H/H···Cl8.8
H···O/O···H8.2
H···N/N···H5.1
Cl···C/C···Cl3.9
C···C2.1
C···N/N···C0.4
O···O0.4
C···O/O···C0.2
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization). The title compound was produced within the context of a research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK #215S015).

References

First citationAhmad, K., Khan, M. K., Baig, M. H., Imran, M. & Gupta, G. K. (2018). Anticancer Agents Med. Chem. 18, 46–56.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAitipamula, S. & Vangala, V. R. (2017). J. Indian Inst. Sci. 97, 227–243.  Web of Science CrossRef Google Scholar
First citationBanoglu, E., Çelikoğlu, E., Völker, S., Olgaç, A., Gerstmeier, J., Garscha, U., Çalışkan, B., Schubert, U. S., Carotti, A., Macchiarulo, A. & Werz, O. (2016). Eur. J. Med. Chem. 113, 1–10.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBarmade, M. A., Murumkar, P. R., Sharma, M. K. & Yadav, M. R. (2016). Curr. Top. Med. Chem. 16, 2863–2883.  Web of Science CAS PubMed Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇalışkan, B., Luderer, S., Özkan, Y., Werz, O. & Banoglu, E. (2011). Eur. J. Med. Chem. 46, 5021–5033.  Web of Science PubMed Google Scholar
First citationDündar, Y., Ünlü, S., Banoğlu, E., Entrena, A., Costantino, G., Nunez, M. T., Ledo, F., Şahin, M. F. & Noyanalpan, N. (2009). Eur. J. Med. Chem. 44, 4785–4785.  Google Scholar
First citationEfimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEren, G., Ünlü, S., Nuñez, M., Labeaga, L., Ledo, F., Entrena, A., Banoğlu, E., Costantino, G. & Şahin, M. F. (2010). Bioorg. Med. Chem. 18, 6367–6376.  Web of Science CrossRef CAS PubMed Google Scholar
First citationErgun, B. C., Nunez, M. T., Labeaga, L., Ledo, F., Darlington, J., Bain, G., Cakir, B. & Banoglu, E. (2010). Arzneim. Forsch. 60, 497–505.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarscha, U., Voelker, S., Pace, S., Gerstmeier, J., Emini, B., Liening, S., Rossi, A., Weinigel, C., Rummler, S., Schubert, U. S., Scriba, G. K., Çelikoğlu, E., Çalışkan, B., Banoglu, E., Sautebin, L. & Werz, O. (2016). Biochem. Pharmacol. 119, 17–26.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationLevent, S., Çalışkan, B., Çiftçi, M., Özkan, Y., Yenicesu, I., Ünver, H. & Banoglu, E. (2013). Eur. J. Med. Chem. 64, 42–53.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMurumkar, P. R. & Ghuge, R. B. (2018). Vicinal Diaryl Oxadiazoles, Oxazoles and Isoxazoles, In Vicinal Diaryl Substituted Heterocycles, edited by M. R. Yadav, P. R. Murumkar & R. B. Ghuge, pp. 277–303. Oxford: Elsevier.  Google Scholar
First citationPirol, Ş. C., Çalışkan, B., Durmaz, I., Atalay, R. & Banoglu, E. (2014). Eur. J. Med. Chem. 87, 140–149.  Web of Science PubMed Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.  Google Scholar
First citationÜnlü, S., Banoglu, E., Ito, S., Niiya, T., Eren, G., Ökçelik, B. & Şahin, M. F. (2007). J. Enzyme Inhib. Med. Chem. 22, 351–361.  Web of Science PubMed Google Scholar
First citationWang, D.-C., Huang, L.-C., Liu, H.-Q., Peng, Y.-R. & Song, J.-S. (2011). Acta Cryst. E67, o3207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWouters, C. & Ooms, F. (2001). Curr. Pharm. Des. 7, 529–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, J.-G., Zhu, H.-X., Qiu, J.-K., Wang, D.-C. & Xu, H. (2012). Acta Cryst. E68, o2325.  CSD CrossRef IUCr Journals Google Scholar
First citationZaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds