research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 1-(4-chloro­phen­yl)-4-(4-methyl­phen­yl)-2,5-dioxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carb­­oxy­lic acid and 4-(4-meth­­oxy­phen­yl)-1-(4-methyl­phen­yl)-2,5-dioxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fFaculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by C. Schulzke, Universität Greifswald, Germany (Received 12 January 2021; accepted 23 February 2021; online 5 March 2021)

In the title compounds C23H21ClN2O3 [I, namely 1-(4-chloro­phen­yl)-4-(4-methyl­phen­yl)-3,8-dioxo-1,2,5,6,7,8-hexa­hydro­quine-3-carb­oxy­lic acid] and C24H22N2O3 [II, namely 4-(4-meth­oxy­phen­yl)-1-(4-methyl­phen­yl)-2,5-dioxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile], each of the cyclo­hexene and di­hydro­pyridine rings of the 1,2,5,6,7,8-hexa­hydro­quinoline moieties adopts a twisted-boat conformation. The asymmetric units of both compounds I and II consist of two independent mol­ecules (A and B). In IIA, three carbon atoms of the cyclo­hexene ring are disordered over two sets of sites in a 0.670 (11):0.330 (11) occupancy ratio. In the crystal of I, mol­ecules are linked through classical N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif and with their mol­ecular planes parallel to the crystallographic (020) plane. Non-classical C—H⋯O hydrogen-bonding inter­actions connect the dimers, resulting in a three-dimensional network. In the crystal of II, mol­ecules are linked by C—H⋯N, C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

1. Chemical context

Quinoline and its derivatives have for some time attracted the attention of both synthetic and biological chemists as a result of their diverse chemical and pharmacological properties (Kumar et al., 2009[Kumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648-1654.]). There are a number of natural products bearing the quinoline skeleton that are used as a medicine or employed as lead mol­ecule for the development of new and potent therapeutics (Venkat Reddy et al., 2009[Venkat Reddy, G., Ravi Kanth, S., Maitraie, D., Narsaiah, B., Shanthan Rao, P., Hara Kishore, K., Murthy, U. S., Ravi, B., Ashok Kumar, B. & Parthasarathy, T. (2009). Eur. J. Med. Chem. 44, 1570-1578.]). Quinoline derivatives fused with various heterocycles have already demonstrated potent anti­cancer activity (Afzal et al., 2015[Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871-910.]). In addition, it has been found that various quinoline compounds show anti-tuberculosis (TB) activity (Muscia et al., 2014[Muscia, G. C., Buldain, G. Y. & Asís, S. E. (2014). Eur. J. Med. Chem. 73, 243-249.]), anti-inflammatory activity (Psomas & Kessissoglou, 2013[Psomas, G. & Kessissoglou, D. P. (2013). Dalton Trans. 42, 6252-6276.]), anti-convulsant effects (Guo et al., 2009[Guo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). Eur. J. Med. Chem. 44, 954-958.]), and anti-malarial parasite effects (Abdel-Gawad et al., 2005[Abdel-Gawad, S. M., El-Gaby, M. S. A., Heiba, H. I., Aly, H. M. & Ghorab, M. M. (2005). Jnl Chin. Chem. Soc. 52, 1227-1236.]). Furthermore, quinolones have been proved to be very effective in many anti­microbial and anti­oxidant investigations (Praveen et al., 2010[Praveen, C., DheenKumar, P., Muralidharan, D. & Perumal, P. T. (2010). Bioorg. Med. Chem. Lett. 20, 7292-7296.]). In this context, we report herein the crystal structures of two derivatives of hexa­hydro­quinoline.

[Scheme 1]

2. Structural commentary

Compound I crystallizes in the ortho­rhom­bic space group Pbca with Z = 16, while compound II crystallizes in the monoclinic space group P21/c with Z = 8. The asymmetric units of both compounds (I and II) each comprise two mol­ecules (A and B). As shown in Figs. 1[link] and 2[link], the cyclo­hexene (C4–C9) and di­hydro­pyridine (N1/C1–C4/C9) rings of the 1,2,5,6,7,8-hexa­hydro­quinoline moieties (N1/C1–C9) each adopt a twisted-boat conformation. The puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of the cyclo­hexene rings are QT = 0.441 (3) Å, θ = 123.3 (3)°, and φ = 1.3 (3)° for IA, QT = 0.450 (2) Å, θ = 122.0 (3)°, and φ = 4.3 (3)° for IB, QT = 0.352 (8) Å, θ = 60.7 (11)°, and φ = 188.1 (13)° for IIA (major component of the disorder), and QT = 0.446 (2) Å, θ = 123.5 (3)°, and φ = 355.2 (3)° for IIB. The puckering parameters of the di­hydro­pyridine rings are QT = 0.4929 (18) Å, θ = 64.2 (2)°, and φ = 150.6 (2)° for IA, QT = 0.4529 (18) Å, θ = 61.1 (2)°, and φ = 139.9 (3)° for IB, QT = 0.422 (2) Å, θ = 58.9 (3)°, and φ = 138.4 (3)° for IIA and QT = 0.437 (2) Å, θ = 62.5 (3)°, and φ = 142.1 (3)° for IIB.

[Figure 1]
Figure 1
The mol­ecular structure of I with the atom-numbering scheme and with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of II with the atom-numbering scheme and with displacement ellipsoids drawn at the 20% probability level.

3. Supra­molecular features

In the crystal of I, two mol­ecules are linked by a pair of inter­molecular N—H⋯O hydrogen bonds with an [R_{2}^{2}](8) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]), forming an inversion dimer (Fig. 3[link]). These assemble into a three-dimensional network via C—H⋯O inter­actions. In the crystal of II, mol­ecules are linked by non-classical C—H⋯O, C—H⋯N and C—H⋯π inter­actions, resulting in a three-dimensional network (Table 2[link] and Figs. 4[link] and 5[link]). In the crystals of the two compounds (I and II) π-π-stacking inter­actions are not observed despite the presence of two aromatic rings in every mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A2⋯O2Ai 0.88 (2) 2.12 (3) 2.979 (2) 164 (2)
N2B—H2B1⋯O2Aii 0.86 (2) 2.26 (2) 3.055 (2) 154 (2)
N2A—H2A1⋯O3B 0.86 (2) 2.06 (2) 2.865 (2) 156 (2)
N2B—H2B2⋯O3A 0.85 (3) 2.04 (3) 2.847 (2) 159 (2)
C8A—H8AB⋯O2Bii 0.97 2.50 3.392 (2) 153
C6B—H6BB⋯O1Biii 0.97 2.57 3.430 (2) 148
C14A—H14A⋯O1Aiv 0.93 2.54 3.393 (3) 153
C17B—H17B⋯O1Bv 0.93 2.52 3.424 (3) 164
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, y-1, z]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg4 and Cg9 are the centroids of the C10A–C15A and C16B–C21B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21A—H21A⋯N2Bi 0.95 2.65 3.258 (4) 123
C14B—H14B⋯O3Aii 0.95 2.65 3.417 (3) 139
C3A—H3A⋯O1B 1.00 2.37 3.171 (2) 136
C23B—H23ECg9iii 0.98 2.93 3.868 (3) 160
C23B—H23FCg4iv 0.98 2.74 3.710 (3) 169
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, y-1, z]; (iii) [-x+2, -y+1, -z+1]; (iv) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
The crystal packing of I viewed down the b axis showing inter­molecular hydrogen bonds as dashed lines.
[Figure 4]
Figure 4
A view of the C—H⋯π inter­actions in II shown as dashed lines. [Symmetry codes: (a) 1 − x, 1 − y, 1 − z; (b) 2 − x, 1 − y, 1 − z].
[Figure 5]
Figure 5
The crystal packing of II viewed down the b axis showing the inter­molecular hydrogen bonds as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-phenyl-2,3,4,6,7,8-hexa­hydro­quinolin-5(1H)-one moiety resulted in six closely related hits, viz. 2-amino-4-(4-chloro­phen­yl)-1-(4-methyl­phen­yl)-5-oxo-1,4,5,6,7,8-hexa­hydro­quin­oline-3-carbo­nitrile (HUYVUU; Mohamed et al., 2015[Mohamed, S. K., Akkurt, M., Jasinski, J. P., Allah, O. A. A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o949-o950.]), methyl-2,7,7-trimethyl-4-(3-nitro­phen­yl)-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (TEJQII; Morales et al., 1996[Morales, A. D., García-Granda, S., Navarro, M. S., Diviú, A. M. & Pérez-Barquero, R. E. (1996). Acta Cryst. C52, 2356-2359.]), 3-acetyl-2,7,7-trimethyl-4-phenyl-1,4,5,6,7,8-hexa­hydro-5-quinolone (TEJQOO; Morales et al., 1996[Morales, A. D., García-Granda, S., Navarro, M. S., Diviú, A. M. & Pérez-Barquero, R. E. (1996). Acta Cryst. C52, 2356-2359.]), 4-(4-chloro­phen­yl)-8-methyl-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile (AZOWAO; Asiri et al., 2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Badahdah, K. O. & Ng, S. W. (2011). Acta Cryst. E67, o2597.]), 8-methyl-2-oxo-4-(thio­phen-2-yl)-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile (XECCAL; Asiri et al., 2012[Asiri, A. M., Faidallah, H. M., Saqer, A. A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2291-o2292.]) and ethyl-2,7,7-trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (XAYVEA; Kurbanova et al., 2012[Kurbanova, M. M., Huseynov, E. Z., Gurbanov, A. V., Maharramov, A. M. & Ng, S. W. (2012). Acta Cryst. E68, o2233.]).

In compounds I and II, the observed bond lengths and bond angles are in good agreement with the reported experimental values as found in the structures of HUYVUU, TEJQII, TEJQOO, AZOWAO, XECCAL and XAYVEA. The metrical parameters are, hence, unremarkable.

The angles between the planes of the two benzene rings in I and II are 52.64 (11)° for IA, 33.78 (12)° for IB, 21.80 (11)° for IIA and 19.39 (11)° for IIB, respectively. These angles are notably distinct, even for the two independent mol­ecules in each structure. They are all also significantly larger than the value of 11.52 (7)° found in HUYVUU (the only other example with two benzene rings amongst the related structures). Inter­molecular inter­actions can be weaker or stronger based on the presence or absence or difference of functional groups and the mol­ecular environment, depending on the crystal system, which all affect the mol­ecular conformation. The observed difference in the angles between the two benzene rings may be attributed to these factors.

5. Synthesis and crystallization

1-(4-Chloro­phen­yl)-4-(4-methyl­phen­yl)-3,8-dioxo-1,2,5,6,7,8-hexa­hydro­quine-3-carboxlic acid, I

A solution of 2-amino-4-(4-chloro­phen­yl)-1-(4-methyl­phen­yl)-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile (2.0 g, 0.0051 mol) in conc. H2SO4 (20 mL) was stirred for 4 h at room temperature. Then the reaction mixture was poured into ice-cold water. The formed precipitate was collected, filtered off, washed with water and recrystallized from ethanol as pale-yellow crystals; yield 73%, m.p. 518 K.

4-(4-Meth­oxy­phen­yl)-1-(4-methyl-phen­yl)-2,5-dioxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile, II

To a solution of 1,3-cyclohexa­nedione (3.36 g, 0.03 mol) and p-toluidine (3.21 g, 0.03 mol) in ethanol (40 ml), a catalytic amount of tri­ethyl­amine was added and the mixture was heated under reflux for 3 h. Ethyl-(2Z)-2-cyano-3-(4-meth­oxy­phen­yl)acrylate (6.93 g, 0.03 mol) was added to the reaction mixture while refluxing for another 3 h. The reaction mixture was then cooled to room temperature. The precipitate that formed was filtered off, dried and recrystallized from ethanol solution as orange crystals; yield 67%, m.p. 525 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For I, the hydrogen atoms of the NH2 group were found in the difference-Fourier map and refined freely. All C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). For II, all H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). For II, twenty reflections (4 15 10, 3 15 13, 3 14 16, 3 16 7, 3 16 8, 1 3 8, 2 3 0, [\overline{2}] 16 3, [\overline{2}] 4 10, 2 15 11, 0 14 8, 10 7 13, 1 16 11, 2 1 5, 3 16 4, [\overline{8}] 13 7, [\overline{1}] 16 4, 0 15 3, 1 16 10, [\overline{2}] 16 11) were omitted as clear outlier data. In IIA, atoms C6A, C7A and C8A of the cyclo­hexane ring are disordered over two sets of sites in a 0.670 (11):0.330 (11) occupancy ratio. The coordinates and the Uij components of the C6A, C7A, C8A and the C6AA, C7AA and C8AA atoms were restrained using SADI and SIMU instructions.

Table 3
Experimental details

  II II
Crystal data
Chemical formula C23H21ClN2O3 C24H22N2O3
Mr 408.87 386.43
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 27.9446 (4), 8.4311 (1), 35.0101 (5) 10.3486 (2), 13.9969 (3), 27.5353 (5)
α, β, γ (°) 90, 90, 90 90, 93.797 (2), 90
V3) 8248.51 (19) 3979.69 (14)
Z 16 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.86 0.69
Crystal size (mm) 0.16 × 0.10 × 0.05 0.12 × 0.08 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos, Gemini Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.614, 1.000 0.945, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 64509, 7983, 6950 15107, 7579, 5380
Rint 0.043 0.027
(sin θ/λ)max−1) 0.615 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.04 0.049, 0.139, 1.04
No. of reflections 7983 7579
No. of parameters 541 555
No. of restraints 0 36
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.55 0.25, −0.16
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

K values, which are large only for weak reflections with an Fc/Fcmax ratio less than 0.005 and less than 0.015 for I and II, respectively, were observed as 2.713 for I and 5.559 for II.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(4-Chlorophenyl)-4-(4-methylphenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylic acid (I) top
Crystal data top
C23H21ClN2O3Dx = 1.317 Mg m3
Mr = 408.87Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 21280 reflections
a = 27.9446 (4) Åθ = 4.0–71.5°
b = 8.4311 (1) ŵ = 1.86 mm1
c = 35.0101 (5) ÅT = 173 K
V = 8248.51 (19) Å3Prism, pale yellow
Z = 160.16 × 0.10 × 0.05 mm
F(000) = 3424
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
7983 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source6950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0416 pixels mm-1θmax = 71.5°, θmin = 4.1°
ω scansh = 2934
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 106
Tmin = 0.614, Tmax = 1.000l = 4242
64509 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0636P)2 + 5.5774P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7983 reflectionsΔρmax = 0.66 e Å3
541 parametersΔρmin = 0.55 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.82611 (2)0.31975 (8)0.40005 (2)0.0615 (2)
O1A0.67114 (5)0.01077 (15)0.52217 (4)0.0322 (3)
O2A0.55412 (5)0.09204 (16)0.52328 (3)0.0296 (3)
O3A0.58223 (5)0.60354 (17)0.44478 (4)0.0410 (3)
N1A0.65291 (5)0.26677 (17)0.53641 (4)0.0243 (3)
N2A0.53741 (6)0.0761 (2)0.46051 (5)0.0317 (4)
C1A0.64987 (6)0.1309 (2)0.51400 (5)0.0238 (3)
C2A0.61843 (6)0.1434 (2)0.47878 (5)0.0226 (3)
H2A0.62940.06410.46030.027*
C3A0.62358 (6)0.3088 (2)0.46017 (5)0.0240 (3)
H3AA0.59980.31940.43970.029*
C4A0.61353 (6)0.4304 (2)0.49046 (5)0.0249 (4)
C5A0.59223 (7)0.5801 (2)0.47852 (6)0.0312 (4)
C6A0.58550 (10)0.7071 (3)0.50809 (7)0.0469 (5)
H6AA0.61190.78130.50650.056*
H6AB0.55630.76490.50250.056*
C7A0.58272 (10)0.6436 (3)0.54805 (7)0.0498 (6)
H7AA0.55260.58790.55130.060*
H7AB0.58320.73160.56590.060*
C8A0.62403 (8)0.5307 (2)0.55737 (5)0.0340 (4)
H8AA0.65350.59050.55960.041*
H8AB0.61800.47900.58170.041*
C9A0.62920 (6)0.4077 (2)0.52666 (5)0.0241 (3)
C10A0.67368 (6)0.3265 (2)0.44312 (5)0.0253 (4)
C11A0.68482 (8)0.2534 (3)0.40888 (6)0.0398 (5)
H11A0.66080.20390.39490.048*
C12A0.73127 (9)0.2530 (3)0.39512 (7)0.0476 (6)
H12A0.73840.20240.37220.057*
C13A0.76677 (7)0.3277 (2)0.41543 (6)0.0368 (4)
C14A0.75649 (8)0.4059 (3)0.44857 (6)0.0434 (5)
H14A0.78050.45790.46210.052*
C15A0.70993 (8)0.4069 (3)0.46177 (6)0.0395 (5)
H15A0.70270.46320.48390.047*
C16A0.68490 (6)0.2579 (2)0.56903 (5)0.0268 (4)
C17A0.67007 (7)0.1859 (2)0.60237 (5)0.0341 (4)
H17A0.63880.14940.60490.041*
C18A0.70240 (8)0.1686 (3)0.63213 (6)0.0440 (5)
H18A0.69230.12190.65480.053*
C19A0.74938 (9)0.2194 (3)0.62881 (6)0.0452 (5)
C20A0.76314 (8)0.2944 (3)0.59536 (7)0.0448 (5)
H20A0.79420.33260.59300.054*
C21A0.73132 (7)0.3134 (3)0.56536 (6)0.0375 (4)
H21A0.74110.36300.54290.045*
C22A0.56659 (6)0.10306 (19)0.48956 (5)0.0228 (3)
C23A0.78526 (12)0.1889 (5)0.66044 (9)0.0773 (10)
H23A0.76910.18900.68460.116*
H23B0.80920.27070.66020.116*
H23C0.80020.08780.65650.116*
Cl1B0.69954 (3)0.51675 (14)0.24096 (2)0.0960 (4)
O1B0.47607 (5)0.76223 (15)0.29218 (4)0.0334 (3)
O2B0.43042 (5)0.68918 (19)0.37411 (4)0.0401 (3)
O3B0.54926 (5)0.18004 (16)0.38319 (4)0.0376 (3)
N1B0.45537 (5)0.50593 (17)0.30323 (4)0.0246 (3)
N2B0.49180 (7)0.7000 (2)0.41537 (5)0.0335 (4)
C1B0.47972 (6)0.6448 (2)0.31185 (5)0.0240 (3)
C2B0.50872 (6)0.64104 (19)0.34849 (5)0.0219 (3)
H2B0.53230.72700.34760.026*
C3B0.53578 (6)0.4824 (2)0.35275 (5)0.0228 (3)
H3BA0.54850.47570.37880.027*
C4B0.50099 (6)0.3490 (2)0.34697 (5)0.0238 (3)
C5B0.51222 (7)0.1969 (2)0.36457 (5)0.0303 (4)
C6B0.47826 (9)0.0613 (2)0.35856 (6)0.0448 (5)
H6BA0.47660.00050.38190.054*
H6BB0.49090.00690.33870.054*
C7B0.42824 (9)0.1114 (3)0.34759 (6)0.0432 (5)
H7BA0.41260.15890.36950.052*
H7BB0.40990.01880.34010.052*
C8B0.42911 (7)0.2300 (2)0.31484 (6)0.0345 (4)
H8BA0.43890.17660.29160.041*
H8BB0.39720.27200.31090.041*
C9B0.46301 (6)0.3640 (2)0.32309 (5)0.0247 (3)
C10B0.57756 (6)0.4789 (2)0.32494 (5)0.0255 (4)
C11B0.62165 (7)0.5355 (3)0.33652 (6)0.0432 (5)
H11B0.62600.56600.36180.052*
C12B0.65946 (9)0.5476 (4)0.31115 (8)0.0608 (8)
H12B0.68900.58620.31920.073*
C13B0.65256 (8)0.5013 (3)0.27362 (7)0.0505 (6)
C14B0.60972 (8)0.4409 (3)0.26148 (6)0.0376 (4)
H14B0.60580.40800.23630.045*
C15B0.57242 (7)0.4297 (2)0.28716 (5)0.0296 (4)
H15B0.54330.38840.27910.035*
C16B0.41761 (6)0.5176 (2)0.27496 (5)0.0280 (4)
C17B0.42624 (8)0.4736 (3)0.23774 (6)0.0410 (5)
H17B0.45610.43570.23050.049*
C18B0.38942 (9)0.4867 (4)0.21121 (6)0.0557 (7)
H18B0.39500.45800.18590.067*
C19B0.34492 (9)0.5414 (4)0.22167 (7)0.0554 (7)
C20B0.33726 (7)0.5846 (3)0.25939 (6)0.0449 (5)
H20B0.30730.62090.26680.054*
C21B0.37358 (7)0.5744 (3)0.28612 (6)0.0344 (4)
H21B0.36830.60550.31130.041*
C22B0.47312 (6)0.6765 (2)0.38092 (5)0.0262 (4)
C23B0.30543 (12)0.5582 (7)0.19237 (10)0.1053 (16)
H23D0.28080.48150.19750.158*
H23E0.31830.54070.16730.158*
H23F0.29210.66300.19380.158*
H2A20.5079 (9)0.045 (3)0.4652 (6)0.031 (6)*
H2B10.4729 (9)0.732 (3)0.4330 (7)0.037 (6)*
H2A10.5470 (9)0.085 (3)0.4374 (7)0.038 (6)*
H2B20.5214 (10)0.689 (3)0.4200 (7)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0364 (3)0.0663 (4)0.0816 (5)0.0009 (3)0.0225 (3)0.0174 (3)
O1A0.0331 (7)0.0261 (7)0.0375 (7)0.0074 (5)0.0058 (5)0.0021 (5)
O2A0.0288 (6)0.0351 (7)0.0251 (6)0.0052 (5)0.0032 (5)0.0055 (5)
O3A0.0462 (8)0.0361 (8)0.0406 (8)0.0084 (6)0.0093 (6)0.0078 (6)
N1A0.0246 (7)0.0238 (7)0.0246 (7)0.0008 (6)0.0018 (6)0.0010 (6)
N2A0.0252 (8)0.0441 (10)0.0259 (8)0.0092 (7)0.0025 (6)0.0044 (7)
C1A0.0209 (8)0.0230 (8)0.0276 (8)0.0008 (7)0.0020 (6)0.0006 (7)
C2A0.0230 (8)0.0207 (8)0.0240 (8)0.0002 (6)0.0005 (6)0.0021 (6)
C3A0.0257 (8)0.0230 (8)0.0233 (8)0.0006 (7)0.0023 (6)0.0007 (6)
C4A0.0243 (8)0.0215 (8)0.0288 (9)0.0019 (7)0.0021 (7)0.0003 (7)
C5A0.0297 (9)0.0249 (9)0.0391 (10)0.0003 (7)0.0009 (8)0.0030 (8)
C6A0.0615 (15)0.0252 (10)0.0542 (13)0.0112 (10)0.0046 (11)0.0017 (9)
C7A0.0705 (16)0.0353 (11)0.0437 (12)0.0156 (11)0.0062 (11)0.0097 (9)
C8A0.0460 (11)0.0265 (9)0.0294 (9)0.0005 (8)0.0033 (8)0.0046 (7)
C9A0.0236 (8)0.0205 (8)0.0283 (8)0.0028 (6)0.0028 (7)0.0003 (7)
C10A0.0281 (9)0.0250 (8)0.0229 (8)0.0013 (7)0.0002 (7)0.0032 (6)
C11A0.0408 (11)0.0482 (12)0.0305 (10)0.0114 (10)0.0021 (8)0.0116 (9)
C12A0.0474 (13)0.0529 (13)0.0423 (12)0.0075 (11)0.0142 (10)0.0205 (10)
C13A0.0316 (10)0.0366 (10)0.0423 (11)0.0015 (8)0.0097 (8)0.0003 (8)
C14A0.0335 (11)0.0631 (14)0.0336 (10)0.0162 (10)0.0034 (8)0.0070 (10)
C15A0.0371 (11)0.0538 (13)0.0275 (9)0.0129 (9)0.0060 (8)0.0105 (9)
C16A0.0271 (9)0.0274 (9)0.0257 (8)0.0025 (7)0.0035 (7)0.0027 (7)
C17A0.0283 (9)0.0425 (11)0.0314 (9)0.0042 (8)0.0018 (7)0.0034 (8)
C18A0.0493 (12)0.0545 (13)0.0282 (10)0.0092 (10)0.0039 (9)0.0052 (9)
C19A0.0477 (12)0.0477 (13)0.0402 (11)0.0084 (10)0.0178 (10)0.0065 (10)
C20A0.0309 (10)0.0487 (13)0.0548 (13)0.0066 (9)0.0126 (9)0.0066 (10)
C21A0.0344 (10)0.0422 (11)0.0360 (10)0.0079 (9)0.0036 (8)0.0021 (9)
C22A0.0242 (8)0.0162 (7)0.0279 (8)0.0010 (6)0.0011 (7)0.0010 (6)
C23A0.0704 (19)0.097 (2)0.0647 (18)0.0068 (17)0.0403 (16)0.0008 (17)
Cl1B0.0615 (4)0.1578 (9)0.0687 (5)0.0455 (5)0.0382 (4)0.0341 (5)
O1B0.0397 (7)0.0276 (7)0.0327 (7)0.0015 (6)0.0062 (6)0.0098 (5)
O2B0.0275 (7)0.0539 (9)0.0388 (7)0.0046 (6)0.0030 (6)0.0066 (7)
O3B0.0484 (8)0.0321 (7)0.0322 (7)0.0089 (6)0.0075 (6)0.0075 (6)
N1B0.0254 (7)0.0244 (7)0.0241 (7)0.0002 (6)0.0039 (6)0.0020 (6)
N2B0.0365 (9)0.0389 (9)0.0251 (8)0.0098 (7)0.0016 (7)0.0039 (7)
C1B0.0247 (8)0.0236 (8)0.0238 (8)0.0017 (7)0.0013 (6)0.0018 (7)
C2B0.0234 (8)0.0186 (8)0.0236 (8)0.0000 (6)0.0015 (6)0.0001 (6)
C3B0.0274 (8)0.0218 (8)0.0192 (7)0.0037 (7)0.0041 (6)0.0011 (6)
C4B0.0306 (9)0.0204 (8)0.0204 (8)0.0023 (7)0.0010 (6)0.0000 (6)
C5B0.0455 (11)0.0231 (9)0.0222 (8)0.0049 (8)0.0009 (8)0.0004 (7)
C6B0.0723 (16)0.0214 (9)0.0407 (11)0.0050 (10)0.0097 (11)0.0064 (8)
C7B0.0568 (14)0.0321 (10)0.0406 (11)0.0195 (10)0.0031 (10)0.0044 (9)
C8B0.0390 (10)0.0299 (10)0.0347 (10)0.0085 (8)0.0055 (8)0.0011 (8)
C9B0.0301 (9)0.0219 (8)0.0220 (8)0.0003 (7)0.0022 (7)0.0001 (6)
C10B0.0260 (8)0.0245 (8)0.0258 (8)0.0036 (7)0.0020 (7)0.0021 (7)
C11B0.0329 (10)0.0629 (14)0.0338 (10)0.0063 (10)0.0015 (8)0.0183 (10)
C12B0.0325 (11)0.093 (2)0.0563 (15)0.0212 (13)0.0061 (10)0.0279 (14)
C13B0.0378 (12)0.0696 (16)0.0441 (12)0.0095 (11)0.0146 (10)0.0107 (11)
C14B0.0399 (11)0.0463 (11)0.0267 (9)0.0032 (9)0.0028 (8)0.0048 (8)
C15B0.0283 (9)0.0348 (10)0.0256 (9)0.0016 (8)0.0032 (7)0.0033 (7)
C16B0.0280 (9)0.0304 (9)0.0257 (9)0.0013 (7)0.0049 (7)0.0034 (7)
C17B0.0364 (11)0.0569 (13)0.0296 (10)0.0075 (10)0.0037 (8)0.0046 (9)
C18B0.0534 (14)0.0867 (19)0.0269 (10)0.0080 (13)0.0111 (10)0.0080 (11)
C19B0.0399 (12)0.089 (2)0.0375 (12)0.0031 (13)0.0149 (10)0.0056 (12)
C20B0.0261 (10)0.0658 (15)0.0429 (12)0.0036 (10)0.0041 (8)0.0047 (10)
C21B0.0305 (10)0.0441 (11)0.0287 (9)0.0003 (8)0.0008 (7)0.0028 (8)
C22B0.0301 (9)0.0193 (8)0.0291 (9)0.0029 (7)0.0021 (7)0.0013 (6)
C23B0.0598 (19)0.202 (5)0.0542 (18)0.023 (3)0.0332 (15)0.004 (2)
Geometric parameters (Å, º) top
Cl1A—C13A1.745 (2)Cl1B—C13B1.746 (2)
O1A—C1A1.209 (2)O1B—C1B1.210 (2)
O2A—C22A1.234 (2)O2B—C22B1.221 (2)
O3A—C5A1.230 (2)O3B—C5B1.232 (2)
N1A—C1A1.391 (2)N1B—C1B1.387 (2)
N1A—C9A1.403 (2)N1B—C9B1.400 (2)
N1A—C16A1.452 (2)N1B—C16B1.450 (2)
N2A—C22A1.323 (2)N2B—C22B1.329 (2)
N2A—H2A20.88 (2)N2B—H2B10.85 (3)
N2A—H2A10.86 (3)N2B—H2B20.85 (3)
C1A—C2A1.518 (2)C1B—C2B1.518 (2)
C2A—C22A1.535 (2)C2B—C22B1.539 (2)
C2A—C3A1.546 (2)C2B—C3B1.544 (2)
C2A—H2A0.9800C2B—H2B0.9800
C3A—C4A1.502 (2)C3B—C4B1.500 (2)
C3A—C10A1.529 (2)C3B—C10B1.521 (2)
C3A—H3AA0.9800C3B—H3BA0.9800
C4A—C9A1.355 (3)C4B—C9B1.357 (2)
C4A—C5A1.456 (3)C4B—C5B1.457 (2)
C5A—C6A1.501 (3)C5B—C6B1.500 (3)
C6A—C7A1.500 (3)C6B—C7B1.510 (3)
C6A—H6AA0.9700C6B—H6BA0.9700
C6A—H6AB0.9700C6B—H6BB0.9700
C7A—C8A1.532 (3)C7B—C8B1.522 (3)
C7A—H7AA0.9700C7B—H7BA0.9700
C7A—H7AB0.9700C7B—H7BB0.9700
C8A—C9A1.500 (2)C8B—C9B1.503 (3)
C8A—H8AA0.9700C8B—H8BA0.9700
C8A—H8AB0.9700C8B—H8BB0.9700
C10A—C15A1.383 (3)C10B—C11B1.382 (3)
C10A—C11A1.383 (3)C10B—C15B1.394 (2)
C11A—C12A1.385 (3)C11B—C12B1.384 (3)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.373 (3)C12B—C13B1.384 (3)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.365 (3)C13B—C14B1.369 (3)
C14A—C15A1.381 (3)C14B—C15B1.380 (3)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.379 (3)C16B—C17B1.376 (3)
C16A—C21A1.385 (3)C16B—C21B1.377 (3)
C17A—C18A1.387 (3)C17B—C18B1.391 (3)
C17A—H17A0.9300C17B—H17B0.9300
C18A—C19A1.386 (4)C18B—C19B1.376 (4)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.385 (3)C19B—C20B1.386 (3)
C19A—C23A1.516 (3)C19B—C23B1.513 (3)
C20A—C21A1.386 (3)C20B—C21B1.383 (3)
C20A—H20A0.9300C20B—H20B0.9300
C21A—H21A0.9300C21B—H21B0.9300
C23A—H23A0.9600C23B—H23D0.9600
C23A—H23B0.9600C23B—H23E0.9600
C23A—H23C0.9600C23B—H23F0.9600
C1A—N1A—C9A122.11 (14)C1B—N1B—C9B122.57 (14)
C1A—N1A—C16A116.03 (14)C1B—N1B—C16B116.61 (14)
C9A—N1A—C16A121.72 (14)C9B—N1B—C16B120.53 (14)
C22A—N2A—H2A2118.9 (14)C22B—N2B—H2B1117.2 (16)
C22A—N2A—H2A1121.2 (16)C22B—N2B—H2B2122.7 (17)
H2A2—N2A—H2A1120 (2)H2B1—N2B—H2B2120 (2)
O1A—C1A—N1A121.78 (16)O1B—C1B—N1B121.69 (16)
O1A—C1A—C2A122.32 (16)O1B—C1B—C2B122.89 (16)
N1A—C1A—C2A115.90 (14)N1B—C1B—C2B115.34 (14)
C1A—C2A—C22A109.34 (14)C1B—C2B—C22B105.92 (14)
C1A—C2A—C3A110.54 (14)C1B—C2B—C3B111.19 (13)
C22A—C2A—C3A113.03 (14)C22B—C2B—C3B114.42 (13)
C1A—C2A—H2A107.9C1B—C2B—H2B108.4
C22A—C2A—H2A107.9C22B—C2B—H2B108.4
C3A—C2A—H2A107.9C3B—C2B—H2B108.4
C4A—C3A—C10A112.35 (14)C4B—C3B—C10B113.37 (14)
C4A—C3A—C2A107.50 (14)C4B—C3B—C2B108.59 (14)
C10A—C3A—C2A109.75 (14)C10B—C3B—C2B109.32 (14)
C4A—C3A—H3AA109.1C4B—C3B—H3BA108.5
C10A—C3A—H3AA109.1C10B—C3B—H3BA108.5
C2A—C3A—H3AA109.1C2B—C3B—H3BA108.5
C9A—C4A—C5A121.53 (16)C9B—C4B—C5B120.72 (16)
C9A—C4A—C3A120.26 (16)C9B—C4B—C3B121.35 (15)
C5A—C4A—C3A117.73 (16)C5B—C4B—C3B117.59 (15)
O3A—C5A—C4A120.51 (18)O3B—C5B—C4B120.41 (17)
O3A—C5A—C6A121.28 (18)O3B—C5B—C6B121.21 (17)
C4A—C5A—C6A118.12 (17)C4B—C5B—C6B118.37 (17)
C7A—C6A—C5A113.28 (18)C5B—C6B—C7B114.10 (17)
C7A—C6A—H6AA108.9C5B—C6B—H6BA108.7
C5A—C6A—H6AA108.9C7B—C6B—H6BA108.7
C7A—C6A—H6AB108.9C5B—C6B—H6BB108.7
C5A—C6A—H6AB108.9C7B—C6B—H6BB108.7
H6AA—C6A—H6AB107.7H6BA—C6B—H6BB107.6
C6A—C7A—C8A112.44 (19)C6B—C7B—C8B111.15 (18)
C6A—C7A—H7AA109.1C6B—C7B—H7BA109.4
C8A—C7A—H7AA109.1C8B—C7B—H7BA109.4
C6A—C7A—H7AB109.1C6B—C7B—H7BB109.4
C8A—C7A—H7AB109.1C8B—C7B—H7BB109.4
H7AA—C7A—H7AB107.8H7BA—C7B—H7BB108.0
C9A—C8A—C7A110.44 (17)C9B—C8B—C7B111.05 (16)
C9A—C8A—H8AA109.6C9B—C8B—H8BA109.4
C7A—C8A—H8AA109.6C7B—C8B—H8BA109.4
C9A—C8A—H8AB109.6C9B—C8B—H8BB109.4
C7A—C8A—H8AB109.6C7B—C8B—H8BB109.4
H8AA—C8A—H8AB108.1H8BA—C8B—H8BB108.0
C4A—C9A—N1A120.00 (15)C4B—C9B—N1B120.31 (16)
C4A—C9A—C8A122.81 (16)C4B—C9B—C8B122.79 (16)
N1A—C9A—C8A117.15 (15)N1B—C9B—C8B116.81 (15)
C15A—C10A—C11A117.57 (17)C11B—C10B—C15B118.23 (17)
C15A—C10A—C3A122.30 (16)C11B—C10B—C3B119.34 (16)
C11A—C10A—C3A120.04 (16)C15B—C10B—C3B122.30 (16)
C10A—C11A—C12A120.90 (19)C10B—C11B—C12B121.18 (19)
C10A—C11A—H11A119.5C10B—C11B—H11B119.4
C12A—C11A—H11A119.5C12B—C11B—H11B119.4
C13A—C12A—C11A119.72 (19)C11B—C12B—C13B118.8 (2)
C13A—C12A—H12A120.1C11B—C12B—H12B120.6
C11A—C12A—H12A120.1C13B—C12B—H12B120.6
C14A—C13A—C12A120.63 (19)C14B—C13B—C12B121.4 (2)
C14A—C13A—Cl1A118.75 (17)C14B—C13B—Cl1B118.84 (18)
C12A—C13A—Cl1A120.60 (16)C12B—C13B—Cl1B119.73 (18)
C13A—C14A—C15A119.05 (19)C13B—C14B—C15B118.95 (19)
C13A—C14A—H14A120.5C13B—C14B—H14B120.5
C15A—C14A—H14A120.5C15B—C14B—H14B120.5
C14A—C15A—C10A121.97 (19)C14B—C15B—C10B121.35 (18)
C14A—C15A—H15A119.0C14B—C15B—H15B119.3
C10A—C15A—H15A119.0C10B—C15B—H15B119.3
C17A—C16A—C21A120.58 (17)C17B—C16B—C21B121.26 (18)
C17A—C16A—N1A120.22 (16)C17B—C16B—N1B120.03 (17)
C21A—C16A—N1A119.08 (16)C21B—C16B—N1B118.71 (16)
C16A—C17A—C18A119.10 (19)C16B—C17B—C18B118.8 (2)
C16A—C17A—H17A120.4C16B—C17B—H17B120.6
C18A—C17A—H17A120.4C18B—C17B—H17B120.6
C19A—C18A—C17A121.4 (2)C19B—C18B—C17B121.2 (2)
C19A—C18A—H18A119.3C19B—C18B—H18B119.4
C17A—C18A—H18A119.3C17B—C18B—H18B119.4
C20A—C19A—C18A118.36 (19)C18B—C19B—C20B118.8 (2)
C20A—C19A—C23A120.7 (2)C18B—C19B—C23B120.7 (3)
C18A—C19A—C23A120.9 (2)C20B—C19B—C23B120.6 (3)
C19A—C20A—C21A121.0 (2)C21B—C20B—C19B121.0 (2)
C19A—C20A—H20A119.5C21B—C20B—H20B119.5
C21A—C20A—H20A119.5C19B—C20B—H20B119.5
C16A—C21A—C20A119.4 (2)C16B—C21B—C20B119.03 (19)
C16A—C21A—H21A120.3C16B—C21B—H21B120.5
C20A—C21A—H21A120.3C20B—C21B—H21B120.5
O2A—C22A—N2A123.25 (16)O2B—C22B—N2B123.20 (17)
O2A—C22A—C2A121.21 (15)O2B—C22B—C2B120.30 (16)
N2A—C22A—C2A115.49 (15)N2B—C22B—C2B116.41 (16)
C19A—C23A—H23A109.5C19B—C23B—H23D109.5
C19A—C23A—H23B109.5C19B—C23B—H23E109.5
H23A—C23A—H23B109.5H23D—C23B—H23E109.5
C19A—C23A—H23C109.5C19B—C23B—H23F109.5
H23A—C23A—H23C109.5H23D—C23B—H23F109.5
H23B—C23A—H23C109.5H23E—C23B—H23F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A2···O2Ai0.88 (2)2.12 (3)2.979 (2)164 (2)
N2B—H2B1···O2Aii0.86 (2)2.26 (2)3.055 (2)154 (2)
N2A—H2A1···O3B0.86 (2)2.06 (2)2.865 (2)156 (2)
N2B—H2B2···O3A0.85 (3)2.04 (3)2.847 (2)159 (2)
C3A—H3AA···O3A0.982.452.793 (2)100
C8A—H8AB···O2Bii0.972.503.392 (2)153
C6B—H6BB···O1Biii0.972.573.430 (2)148
C14A—H14A···O1Aiv0.932.543.393 (3)153
C17A—H17A···O2Bii0.932.483.110 (2)125
C17B—H17B···O1Bv0.932.523.424 (3)164
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+3/2, y+1/2, z; (v) x+1, y1/2, z+1/2.
4-(4-Methoxyphenyl)-1-(4-methylphenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (II) top
Crystal data top
C24H22N2O3F(000) = 1632
Mr = 386.43Dx = 1.290 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.3486 (2) ÅCell parameters from 3849 reflections
b = 13.9969 (3) Åθ = 4.3–70.8°
c = 27.5353 (5) ŵ = 0.69 mm1
β = 93.797 (2)°T = 173 K
V = 3979.69 (14) Å3Irregular, orange
Z = 80.12 × 0.08 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
5380 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.027
ω scansθmax = 71.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 912
Tmin = 0.945, Tmax = 1.000k = 1016
15107 measured reflectionsl = 2633
7579 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.1965P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
7579 reflectionsΔρmax = 0.25 e Å3
555 parametersΔρmin = 0.16 e Å3
36 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.36261 (17)0.53971 (14)0.33466 (6)0.0704 (5)
O2A0.78343 (15)0.78301 (13)0.24000 (6)0.0635 (4)
O3A0.5360 (2)0.99458 (16)0.43140 (8)0.0866 (6)
N1A0.40024 (16)0.60665 (14)0.26190 (6)0.0490 (4)
N2A0.6257 (3)0.56408 (18)0.41665 (8)0.0773 (6)
C1A0.4369 (2)0.57641 (15)0.30847 (7)0.0502 (5)
C2A0.5814 (2)0.58943 (16)0.32306 (7)0.0499 (5)
H2A0.6285540.5375220.3066120.060*
C3A0.63700 (18)0.68516 (15)0.30610 (7)0.0462 (4)
H3A0.7334190.6785570.3079600.055*
C4A0.59327 (19)0.69818 (15)0.25308 (7)0.0440 (4)
C5A0.6773 (2)0.75536 (16)0.22368 (8)0.0509 (5)
C6A0.6240 (7)0.7794 (6)0.1737 (2)0.093 (3)0.670 (11)
H6A10.6475230.8465640.1672950.112*0.670 (11)
H6A20.6698560.7392740.1507220.112*0.670 (11)
C7A0.4928 (5)0.7699 (5)0.16172 (18)0.0727 (19)0.670 (11)
H7A10.4782340.7689700.1258250.087*0.670 (11)
H7A20.4475880.8265670.1738440.087*0.670 (11)
C8A0.4343 (10)0.6823 (10)0.1818 (3)0.058 (3)0.670 (11)
H8A10.4545640.6270350.1612230.070*0.670 (11)
H8A20.3389930.6898140.1801600.070*0.670 (11)
C6AA0.6417 (13)0.7776 (12)0.1706 (4)0.081 (6)0.330 (11)
H6A30.6090060.8439200.1675690.097*0.330 (11)
H6A40.7196920.7723690.1518250.097*0.330 (11)
C7AA0.5411 (9)0.7106 (9)0.1504 (2)0.062 (3)0.330 (11)
H7A30.5878170.6556320.1372690.074*0.330 (11)
H7A40.4966960.7432520.1221310.074*0.330 (11)
C8AA0.4327 (18)0.668 (2)0.1804 (5)0.054 (5)0.330 (11)
H8A30.3547500.7088820.1770770.064*0.330 (11)
H8A40.4088750.6033980.1679900.064*0.330 (11)
C9A0.48142 (19)0.66155 (15)0.23353 (7)0.0454 (4)
C10A0.60548 (19)0.76995 (15)0.33746 (7)0.0453 (4)
C11A0.6939 (2)0.79817 (18)0.37505 (8)0.0580 (5)
H11A0.7735140.7647360.3800890.070*
C12A0.6683 (2)0.8734 (2)0.40504 (9)0.0664 (6)
H12A0.7304900.8917100.4302390.080*
C13A0.5529 (2)0.92254 (17)0.39877 (9)0.0594 (6)
C14A0.4648 (2)0.89723 (17)0.36131 (9)0.0588 (5)
H14A0.3857420.9313870.3562790.071*
C15A0.4919 (2)0.82139 (17)0.33077 (8)0.0528 (5)
H15A0.4309610.8047860.3048330.063*
C16A0.2677 (2)0.58533 (16)0.24393 (7)0.0478 (5)
C17A0.2392 (2)0.50222 (18)0.21912 (10)0.0633 (6)
H17A0.3052540.4569100.2140240.076*
C18A0.1124 (3)0.48517 (19)0.20156 (10)0.0689 (7)
H18A0.0923310.4276780.1843440.083*
C19A0.0151 (2)0.55004 (18)0.20862 (8)0.0574 (5)
C20A0.0455 (2)0.63227 (18)0.23423 (8)0.0568 (5)
H20A0.0207310.6771080.2399080.068*
C21A0.1721 (2)0.65056 (16)0.25189 (7)0.0521 (5)
H21A0.1923710.7077540.2693520.062*
C22A0.6045 (2)0.57437 (17)0.37597 (8)0.0578 (5)
C23A0.4110 (3)1.0295 (3)0.43679 (13)0.0962 (10)
H23A0.3785181.0607520.4065710.144*
H23B0.4133421.0757120.4635580.144*
H23C0.3536680.9763410.4440300.144*
C24A0.1230 (3)0.5333 (2)0.18813 (11)0.0803 (8)
H24A0.1835180.5613160.2100660.120*
H24B0.1391060.4645410.1850860.120*
H24C0.1354580.5634090.1560180.120*
O1B0.88611 (15)0.55891 (11)0.33264 (6)0.0597 (4)
O2B1.17002 (16)0.19933 (11)0.42029 (6)0.0623 (4)
O3B0.61297 (18)0.20781 (13)0.49274 (7)0.0735 (5)
N1B1.05243 (16)0.52114 (12)0.38701 (6)0.0442 (4)
N2B0.7586 (3)0.37087 (19)0.27435 (9)0.0866 (8)
C1B0.96338 (19)0.50067 (15)0.34912 (7)0.0445 (4)
C2B0.9722 (2)0.40016 (16)0.32852 (7)0.0473 (5)
H2B1.0455830.3994470.3066690.057*
C3B0.99990 (19)0.32262 (14)0.36769 (7)0.0445 (4)
H3B1.0284060.2637110.3508480.053*
C4B1.11285 (18)0.35722 (14)0.40066 (6)0.0409 (4)
C5B1.19280 (19)0.28396 (15)0.42658 (7)0.0459 (4)
C6B1.3012 (2)0.31731 (17)0.46160 (8)0.0566 (5)
H6BA1.3724690.2700990.4621050.068*
H6BB1.2695390.3201380.4947250.068*
C7B1.3531 (2)0.41394 (17)0.44876 (8)0.0546 (5)
H7BA1.3988310.4087950.4184020.066*
H7BB1.4164560.4354360.4750170.066*
C8B1.2457 (2)0.48714 (16)0.44186 (7)0.0496 (5)
H8BA1.2137820.5034440.4739270.060*
H8BB1.2806530.5461390.4278280.060*
C9B1.13513 (18)0.45094 (14)0.40896 (6)0.0409 (4)
C10B0.88665 (18)0.29520 (14)0.39738 (7)0.0438 (4)
C11B0.8175 (2)0.36257 (15)0.42189 (8)0.0490 (5)
H11B0.8341480.4285040.4170230.059*
C12B0.7244 (2)0.33612 (16)0.45338 (8)0.0529 (5)
H12B0.6779470.3835290.4697310.064*
C13B0.6998 (2)0.24062 (16)0.46077 (8)0.0524 (5)
C14B0.7626 (2)0.17243 (16)0.43470 (9)0.0596 (6)
H14B0.7421720.1067450.4382780.072*
C15B0.8550 (2)0.19959 (16)0.40346 (8)0.0552 (5)
H15B0.8976390.1520780.3857880.066*
C16B1.05339 (19)0.61852 (14)0.40490 (7)0.0439 (4)
C17B1.0002 (2)0.64075 (17)0.44792 (8)0.0591 (5)
H17B0.9645950.5918220.4668620.071*
C18B0.9988 (3)0.73479 (19)0.46353 (9)0.0659 (6)
H18B0.9631200.7493950.4935610.079*
C19B1.0478 (2)0.80763 (17)0.43663 (9)0.0593 (6)
C20B1.1019 (3)0.78322 (18)0.39393 (10)0.0700 (7)
H20B1.1375130.8319350.3748520.084*
C21B1.1056 (3)0.68946 (17)0.37820 (8)0.0617 (6)
H21B1.1443600.6743360.3488440.074*
C22B0.8523 (2)0.38295 (17)0.29799 (8)0.0599 (6)
C23B0.5890 (3)0.2675 (2)0.53236 (9)0.0676 (6)
H23D0.5417560.3244360.5204840.101*
H23E0.6715320.2867060.5490440.101*
H23F0.5371520.2328360.5551090.101*
C24B1.0432 (3)0.9097 (2)0.45374 (13)0.0892 (9)
H24D0.9895310.9138470.4816710.134*
H24E1.0060300.9500370.4272980.134*
H24F1.1311710.9315360.4633850.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0649 (10)0.0884 (13)0.0588 (9)0.0090 (9)0.0108 (8)0.0254 (9)
O2A0.0504 (9)0.0733 (11)0.0676 (10)0.0076 (8)0.0095 (7)0.0054 (8)
O3A0.0840 (13)0.0771 (13)0.0989 (14)0.0122 (10)0.0082 (11)0.0350 (11)
N1A0.0440 (9)0.0576 (10)0.0458 (9)0.0023 (7)0.0052 (7)0.0081 (7)
N2A0.1003 (18)0.0772 (15)0.0541 (12)0.0104 (13)0.0028 (11)0.0156 (10)
C1A0.0551 (12)0.0493 (11)0.0472 (10)0.0038 (9)0.0099 (9)0.0094 (9)
C2A0.0532 (12)0.0510 (12)0.0457 (10)0.0118 (9)0.0045 (9)0.0089 (9)
C3A0.0378 (9)0.0527 (11)0.0482 (10)0.0077 (8)0.0025 (8)0.0105 (9)
C4A0.0429 (10)0.0475 (11)0.0425 (10)0.0094 (8)0.0077 (8)0.0061 (8)
C5A0.0464 (11)0.0552 (12)0.0522 (11)0.0016 (9)0.0115 (9)0.0026 (9)
C6A0.095 (5)0.129 (6)0.055 (4)0.062 (4)0.002 (3)0.049 (4)
C7A0.069 (3)0.097 (4)0.051 (2)0.014 (3)0.0021 (19)0.029 (2)
C8A0.058 (4)0.069 (5)0.046 (4)0.003 (3)0.009 (3)0.002 (2)
C6AA0.065 (7)0.122 (12)0.058 (8)0.023 (7)0.014 (6)0.023 (7)
C7AA0.066 (5)0.084 (7)0.035 (3)0.013 (5)0.008 (3)0.006 (3)
C8AA0.052 (8)0.075 (9)0.037 (7)0.018 (6)0.024 (6)0.010 (5)
C9A0.0445 (10)0.0503 (11)0.0421 (10)0.0058 (8)0.0088 (8)0.0049 (8)
C10A0.0411 (10)0.0502 (11)0.0445 (10)0.0005 (8)0.0026 (8)0.0100 (8)
C11A0.0454 (11)0.0657 (14)0.0616 (13)0.0010 (10)0.0051 (10)0.0044 (11)
C12A0.0593 (14)0.0718 (16)0.0664 (14)0.0142 (12)0.0085 (11)0.0072 (12)
C13A0.0596 (13)0.0534 (13)0.0660 (13)0.0135 (10)0.0094 (11)0.0063 (10)
C14A0.0508 (12)0.0572 (13)0.0686 (14)0.0063 (10)0.0046 (10)0.0008 (11)
C15A0.0466 (11)0.0570 (12)0.0538 (11)0.0030 (9)0.0048 (9)0.0006 (9)
C16A0.0449 (10)0.0540 (12)0.0451 (10)0.0013 (9)0.0082 (8)0.0076 (9)
C17A0.0542 (13)0.0550 (13)0.0811 (16)0.0032 (10)0.0071 (11)0.0048 (12)
C18A0.0643 (15)0.0568 (14)0.0847 (17)0.0078 (11)0.0007 (13)0.0096 (12)
C19A0.0530 (12)0.0643 (14)0.0552 (12)0.0051 (10)0.0048 (10)0.0117 (10)
C20A0.0523 (12)0.0664 (14)0.0523 (11)0.0096 (10)0.0085 (9)0.0076 (10)
C21A0.0571 (12)0.0535 (12)0.0459 (10)0.0008 (10)0.0055 (9)0.0016 (9)
C22A0.0637 (14)0.0543 (13)0.0555 (13)0.0103 (10)0.0039 (10)0.0096 (10)
C23A0.090 (2)0.094 (2)0.106 (2)0.0119 (18)0.0168 (18)0.0366 (19)
C24A0.0576 (15)0.095 (2)0.0873 (19)0.0087 (14)0.0062 (13)0.0090 (16)
O1B0.0548 (9)0.0560 (9)0.0661 (9)0.0093 (7)0.0118 (7)0.0051 (7)
O2B0.0607 (9)0.0479 (9)0.0773 (10)0.0092 (7)0.0046 (8)0.0018 (7)
O3B0.0720 (11)0.0662 (11)0.0845 (12)0.0222 (9)0.0214 (9)0.0025 (9)
N1B0.0465 (9)0.0438 (9)0.0420 (8)0.0044 (7)0.0004 (7)0.0016 (7)
N2B0.0919 (17)0.0799 (16)0.0825 (15)0.0069 (13)0.0364 (14)0.0028 (12)
C1B0.0426 (10)0.0496 (11)0.0412 (9)0.0033 (8)0.0011 (8)0.0045 (8)
C2B0.0483 (11)0.0565 (12)0.0367 (9)0.0033 (9)0.0003 (8)0.0037 (8)
C3B0.0472 (10)0.0443 (10)0.0418 (9)0.0072 (8)0.0007 (8)0.0078 (8)
C4B0.0386 (9)0.0482 (11)0.0361 (9)0.0049 (8)0.0049 (7)0.0014 (8)
C5B0.0437 (10)0.0489 (12)0.0453 (10)0.0067 (8)0.0062 (8)0.0010 (8)
C6B0.0526 (12)0.0586 (13)0.0572 (12)0.0100 (10)0.0076 (10)0.0048 (10)
C7B0.0434 (11)0.0633 (14)0.0558 (11)0.0018 (9)0.0065 (9)0.0036 (10)
C8B0.0485 (11)0.0517 (12)0.0478 (10)0.0006 (9)0.0023 (9)0.0035 (9)
C9B0.0402 (9)0.0487 (11)0.0342 (8)0.0048 (8)0.0051 (7)0.0017 (7)
C10B0.0409 (9)0.0455 (10)0.0439 (9)0.0006 (8)0.0058 (8)0.0040 (8)
C11B0.0501 (11)0.0409 (10)0.0562 (11)0.0020 (8)0.0052 (9)0.0017 (9)
C12B0.0498 (11)0.0520 (12)0.0575 (12)0.0008 (9)0.0070 (9)0.0061 (9)
C13B0.0458 (11)0.0551 (12)0.0557 (11)0.0101 (9)0.0001 (9)0.0018 (9)
C14B0.0625 (13)0.0432 (11)0.0726 (14)0.0109 (10)0.0000 (11)0.0026 (10)
C15B0.0570 (13)0.0439 (11)0.0641 (13)0.0013 (9)0.0010 (10)0.0111 (9)
C16B0.0420 (10)0.0467 (11)0.0428 (9)0.0054 (8)0.0006 (8)0.0003 (8)
C17B0.0657 (14)0.0561 (13)0.0573 (12)0.0059 (11)0.0186 (10)0.0036 (10)
C18B0.0691 (15)0.0678 (16)0.0625 (14)0.0010 (12)0.0173 (12)0.0212 (12)
C19B0.0551 (12)0.0513 (13)0.0697 (14)0.0069 (10)0.0090 (11)0.0095 (11)
C20B0.0912 (19)0.0468 (13)0.0725 (15)0.0048 (12)0.0084 (14)0.0094 (11)
C21B0.0829 (16)0.0534 (13)0.0507 (12)0.0017 (12)0.0184 (11)0.0030 (10)
C22B0.0708 (15)0.0574 (13)0.0497 (11)0.0034 (11)0.0101 (11)0.0021 (10)
C23B0.0629 (14)0.0806 (17)0.0601 (13)0.0064 (13)0.0093 (11)0.0109 (12)
C24B0.093 (2)0.0580 (16)0.114 (2)0.0077 (15)0.0134 (18)0.0221 (16)
Geometric parameters (Å, º) top
O1A—C1A1.204 (3)C23A—H23B0.9800
O2A—C5A1.222 (3)C23A—H23C0.9800
O3A—C13A1.369 (3)C24A—H24A0.9800
O3A—C23A1.400 (4)C24A—H24B0.9800
N1A—C1A1.380 (3)C24A—H24C0.9800
N1A—C9A1.412 (3)O1B—C1B1.209 (2)
N1A—C16A1.458 (3)O2B—C5B1.218 (3)
N2A—C22A1.136 (3)O3B—C13B1.378 (3)
C1A—C2A1.533 (3)O3B—C23B1.409 (3)
C2A—C22A1.476 (3)N1B—C1B1.376 (3)
C2A—C3A1.543 (3)N1B—C9B1.412 (3)
C2A—H2A1.0000N1B—C16B1.449 (3)
C3A—C4A1.510 (3)N2B—C22B1.145 (3)
C3A—C10A1.516 (3)C1B—C2B1.522 (3)
C3A—H3A1.0000C2B—C22B1.471 (3)
C4A—C9A1.345 (3)C2B—C3B1.544 (3)
C4A—C5A1.465 (3)C2B—H2B1.0000
C5A—C6A1.487 (6)C3B—C4B1.511 (3)
C5A—C6AA1.515 (13)C3B—C10B1.522 (3)
C6A—C7A1.382 (7)C3B—H3B1.0000
C6A—H6A10.9900C4B—C9B1.349 (3)
C6A—H6A20.9900C4B—C5B1.472 (3)
C7A—C8A1.490 (10)C5B—C6B1.504 (3)
C7A—H7A10.9900C6B—C7B1.506 (3)
C7A—H7A20.9900C6B—H6BA0.9900
C8A—C9A1.503 (7)C6B—H6BB0.9900
C8A—H8A10.9900C7B—C8B1.514 (3)
C8A—H8A20.9900C7B—H7BA0.9900
C6AA—C7AA1.481 (13)C7B—H7BB0.9900
C6AA—H6A30.9900C8B—C9B1.500 (3)
C6AA—H6A40.9900C8B—H8BA0.9900
C7AA—C8AA1.556 (13)C8B—H8BB0.9900
C7AA—H7A30.9900C10B—C11B1.386 (3)
C7AA—H7A40.9900C10B—C15B1.391 (3)
C8AA—C9A1.518 (14)C11B—C12B1.388 (3)
C8AA—H8A30.9900C11B—H11B0.9500
C8AA—H8A40.9900C12B—C13B1.378 (3)
C10A—C15A1.380 (3)C12B—H12B0.9500
C10A—C11A1.392 (3)C13B—C14B1.382 (3)
C11A—C12A1.375 (4)C14B—C15B1.381 (3)
C11A—H11A0.9500C14B—H14B0.9500
C12A—C13A1.379 (4)C15B—H15B0.9500
C12A—H12A0.9500C16B—C21B1.368 (3)
C13A—C14A1.377 (3)C16B—C17B1.374 (3)
C14A—C15A1.394 (3)C17B—C18B1.385 (3)
C14A—H14A0.9500C17B—H17B0.9500
C15A—H15A0.9500C18B—C19B1.376 (4)
C16A—C17A1.371 (3)C18B—H18B0.9500
C16A—C21A1.374 (3)C19B—C20B1.378 (4)
C17A—C18A1.388 (4)C19B—C24B1.506 (3)
C17A—H17A0.9500C20B—C21B1.383 (4)
C18A—C19A1.380 (4)C20B—H20B0.9500
C18A—H18A0.9500C21B—H21B0.9500
C19A—C20A1.375 (4)C23B—H23D0.9800
C19A—C24A1.519 (3)C23B—H23E0.9800
C20A—C21A1.391 (3)C23B—H23F0.9800
C20A—H20A0.9500C24B—H24D0.9800
C21A—H21A0.9500C24B—H24E0.9800
C23A—H23A0.9800C24B—H24F0.9800
C13A—O3A—C23A119.0 (2)O3A—C23A—H23B109.5
C1A—N1A—C9A122.95 (18)H23A—C23A—H23B109.5
C1A—N1A—C16A116.59 (17)O3A—C23A—H23C109.5
C9A—N1A—C16A120.30 (16)H23A—C23A—H23C109.5
O1A—C1A—N1A122.7 (2)H23B—C23A—H23C109.5
O1A—C1A—C2A123.00 (19)C19A—C24A—H24A109.5
N1A—C1A—C2A114.25 (17)C19A—C24A—H24B109.5
C22A—C2A—C1A109.44 (18)H24A—C24A—H24B109.5
C22A—C2A—C3A112.57 (19)C19A—C24A—H24C109.5
C1A—C2A—C3A113.61 (16)H24A—C24A—H24C109.5
C22A—C2A—H2A106.9H24B—C24A—H24C109.5
C1A—C2A—H2A106.9C13B—O3B—C23B116.91 (19)
C3A—C2A—H2A106.9C1B—N1B—C9B122.42 (17)
C4A—C3A—C10A113.21 (16)C1B—N1B—C16B116.28 (16)
C4A—C3A—C2A107.67 (17)C9B—N1B—C16B121.24 (15)
C10A—C3A—C2A114.14 (17)O1B—C1B—N1B122.5 (2)
C4A—C3A—H3A107.1O1B—C1B—C2B122.54 (18)
C10A—C3A—H3A107.1N1B—C1B—C2B114.93 (16)
C2A—C3A—H3A107.1C22B—C2B—C1B107.18 (18)
C9A—C4A—C5A120.91 (18)C22B—C2B—C3B113.26 (19)
C9A—C4A—C3A122.37 (18)C1B—C2B—C3B113.74 (15)
C5A—C4A—C3A116.70 (18)C22B—C2B—H2B107.5
O2A—C5A—C4A121.5 (2)C1B—C2B—H2B107.5
O2A—C5A—C6A122.6 (3)C3B—C2B—H2B107.5
C4A—C5A—C6A116.0 (3)C4B—C3B—C10B110.53 (15)
O2A—C5A—C6AA116.4 (6)C4B—C3B—C2B107.16 (17)
C4A—C5A—C6AA122.0 (6)C10B—C3B—C2B116.00 (16)
C7A—C6A—C5A119.8 (5)C4B—C3B—H3B107.6
C7A—C6A—H6A1107.4C10B—C3B—H3B107.6
C5A—C6A—H6A1107.4C2B—C3B—H3B107.6
C7A—C6A—H6A2107.4C9B—C4B—C5B120.73 (17)
C5A—C6A—H6A2107.4C9B—C4B—C3B122.01 (17)
H6A1—C6A—H6A2106.9C5B—C4B—C3B117.10 (18)
C6A—C7A—C8A114.0 (6)O2B—C5B—C4B120.75 (19)
C6A—C7A—H7A1108.7O2B—C5B—C6B121.47 (19)
C8A—C7A—H7A1108.7C4B—C5B—C6B117.77 (18)
C6A—C7A—H7A2108.7C5B—C6B—C7B113.01 (18)
C8A—C7A—H7A2108.7C5B—C6B—H6BA109.0
H7A1—C7A—H7A2107.6C7B—C6B—H6BA109.0
C7A—C8A—C9A113.4 (7)C5B—C6B—H6BB109.0
C7A—C8A—H8A1108.9C7B—C6B—H6BB109.0
C9A—C8A—H8A1108.9H6BA—C6B—H6BB107.8
C7A—C8A—H8A2108.9C6B—C7B—C8B111.51 (18)
C9A—C8A—H8A2108.9C6B—C7B—H7BA109.3
H8A1—C8A—H8A2107.7C8B—C7B—H7BA109.3
C7AA—C6AA—C5A110.6 (11)C6B—C7B—H7BB109.3
C7AA—C6AA—H6A3109.5C8B—C7B—H7BB109.3
C5A—C6AA—H6A3109.5H7BA—C7B—H7BB108.0
C7AA—C6AA—H6A4109.5C9B—C8B—C7B111.81 (18)
C5A—C6AA—H6A4109.5C9B—C8B—H8BA109.3
H6A3—C6AA—H6A4108.1C7B—C8B—H8BA109.3
C6AA—C7AA—C8AA123.9 (12)C9B—C8B—H8BB109.3
C6AA—C7AA—H7A3106.4C7B—C8B—H8BB109.3
C8AA—C7AA—H7A3106.4H8BA—C8B—H8BB107.9
C6AA—C7AA—H7A4106.4C4B—C9B—N1B120.81 (17)
C8AA—C7AA—H7A4106.4C4B—C9B—C8B123.09 (18)
H7A3—C7AA—H7A4106.4N1B—C9B—C8B116.10 (18)
C9A—C8AA—C7AA109.2 (12)C11B—C10B—C15B117.5 (2)
C9A—C8AA—H8A3109.8C11B—C10B—C3B122.08 (18)
C7AA—C8AA—H8A3109.8C15B—C10B—C3B120.23 (19)
C9A—C8AA—H8A4109.8C10B—C11B—C12B121.7 (2)
C7AA—C8AA—H8A4109.8C10B—C11B—H11B119.2
H8A3—C8AA—H8A4108.3C12B—C11B—H11B119.2
C4A—C9A—N1A120.92 (18)C13B—C12B—C11B119.6 (2)
C4A—C9A—C8A121.5 (4)C13B—C12B—H12B120.2
N1A—C9A—C8A117.5 (4)C11B—C12B—H12B120.2
C4A—C9A—C8AA125.8 (7)O3B—C13B—C12B123.5 (2)
N1A—C9A—C8AA113.1 (7)O3B—C13B—C14B116.8 (2)
C15A—C10A—C11A117.6 (2)C12B—C13B—C14B119.7 (2)
C15A—C10A—C3A123.09 (18)C15B—C14B—C13B120.1 (2)
C11A—C10A—C3A119.35 (18)C15B—C14B—H14B119.9
C12A—C11A—C10A121.4 (2)C13B—C14B—H14B119.9
C12A—C11A—H11A119.3C14B—C15B—C10B121.2 (2)
C10A—C11A—H11A119.3C14B—C15B—H15B119.4
C11A—C12A—C13A120.4 (2)C10B—C15B—H15B119.4
C11A—C12A—H12A119.8C21B—C16B—C17B119.6 (2)
C13A—C12A—H12A119.8C21B—C16B—N1B119.62 (19)
O3A—C13A—C14A125.0 (2)C17B—C16B—N1B120.78 (19)
O3A—C13A—C12A115.6 (2)C16B—C17B—C18B119.7 (2)
C14A—C13A—C12A119.4 (2)C16B—C17B—H17B120.1
C13A—C14A—C15A119.9 (2)C18B—C17B—H17B120.1
C13A—C14A—H14A120.1C19B—C18B—C17B121.7 (2)
C15A—C14A—H14A120.1C19B—C18B—H18B119.2
C10A—C15A—C14A121.4 (2)C17B—C18B—H18B119.2
C10A—C15A—H15A119.3C18B—C19B—C20B117.4 (2)
C14A—C15A—H15A119.3C18B—C19B—C24B120.9 (3)
C17A—C16A—C21A120.6 (2)C20B—C19B—C24B121.7 (3)
C17A—C16A—N1A120.6 (2)C19B—C20B—C21B121.6 (2)
C21A—C16A—N1A118.7 (2)C19B—C20B—H20B119.2
C16A—C17A—C18A119.1 (2)C21B—C20B—H20B119.2
C16A—C17A—H17A120.4C16B—C21B—C20B120.0 (2)
C18A—C17A—H17A120.4C16B—C21B—H21B120.0
C19A—C18A—C17A121.3 (2)C20B—C21B—H21B120.0
C19A—C18A—H18A119.3N2B—C22B—C2B179.0 (3)
C17A—C18A—H18A119.3O3B—C23B—H23D109.5
C20A—C19A—C18A118.6 (2)O3B—C23B—H23E109.5
C20A—C19A—C24A119.8 (2)H23D—C23B—H23E109.5
C18A—C19A—C24A121.6 (2)O3B—C23B—H23F109.5
C19A—C20A—C21A120.8 (2)H23D—C23B—H23F109.5
C19A—C20A—H20A119.6H23E—C23B—H23F109.5
C21A—C20A—H20A119.6C19B—C24B—H24D109.5
C16A—C21A—C20A119.5 (2)C19B—C24B—H24E109.5
C16A—C21A—H21A120.2H24D—C24B—H24E109.5
C20A—C21A—H21A120.2C19B—C24B—H24F109.5
N2A—C22A—C2A178.0 (3)H24D—C24B—H24F109.5
O3A—C23A—H23A109.5H24E—C24B—H24F109.5
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg9 are the centroids of the C10A–C15A and C16B–C21B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21A—H21A···N2Bi0.952.653.258 (4)123
C14B—H14B···O3Aii0.952.653.417 (3)139
C3A—H3A···O1B1.002.373.171 (2)136
C23B—H23E···Cg9iii0.982.933.868 (3)160
C23B—H23F···Cg4iv0.982.743.710 (3)169
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.
 

Funding information

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAbdel-Gawad, S. M., El-Gaby, M. S. A., Heiba, H. I., Aly, H. M. & Ghorab, M. M. (2005). Jnl Chin. Chem. Soc. 52, 1227–1236.  CAS Google Scholar
First citationAfzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871–910.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Badahdah, K. O. & Ng, S. W. (2011). Acta Cryst. E67, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Saqer, A. A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2291–o2292.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648–1654.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKurbanova, M. M., Huseynov, E. Z., Gurbanov, A. V., Maharramov, A. M. & Ng, S. W. (2012). Acta Cryst. E68, o2233.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Jasinski, J. P., Allah, O. A. A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o949–o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorales, A. D., García-Granda, S., Navarro, M. S., Diviú, A. M. & Pérez-Barquero, R. E. (1996). Acta Cryst. C52, 2356–2359.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMuscia, G. C., Buldain, G. Y. & Asís, S. E. (2014). Eur. J. Med. Chem. 73, 243–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPraveen, C., DheenKumar, P., Muralidharan, D. & Perumal, P. T. (2010). Bioorg. Med. Chem. Lett. 20, 7292–7296.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPsomas, G. & Kessissoglou, D. P. (2013). Dalton Trans. 42, 6252–6276.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). Eur. J. Med. Chem. 44, 954–958.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVenkat Reddy, G., Ravi Kanth, S., Maitraie, D., Narsaiah, B., Shanthan Rao, P., Hara Kishore, K., Murthy, U. S., Ravi, B., Ashok Kumar, B. & Parthasarathy, T. (2009). Eur. J. Med. Chem. 44, 1570–1578.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds