research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aGraduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA, and bDepartment of Chemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA
*Correspondence e-mail: wildfongp@duq.edu

Edited by M. Zeller, Purdue University, USA (Received 9 February 2021; accepted 1 March 2021; online 5 March 2021)

The title sterically congested piperazine derivative, C20H27FN2O2, was prepared using a modified Bruylants approach. A search of the Cambridge Structural Database identified 51 compounds possessing an N-tert-butyl piperazine substructure. Of these only 14 were asymmetrically substituted on the piperazine ring and none with a synthetically useful second nitro­gen. Given the novel chemistry generating a pharmacologically useful core, determination of the crystal structure for this compound was necessary. The piperazine ring is present in a chair conformation with di-equatorial substitution. Of the two N atoms, one is sp3 hybridized while the other is sp2 hybridized. Inter­molecular inter­actions resulting from the crystal packing patterns were investigated using Hirshfeld surface analysis and fingerprint analysis. Directional weak hydrogen-bond-like inter­actions (C—H⋯O) and C—H⋯π inter­actions with the dispersion inter­actions as the major source of attraction are present in the crystal packing.

1. Chemical context

In the course of designing novel sigma-2 ligands, it was necessary to synthesize 1-(2-methyl-4-phenyl­butan-2-yl)pip­erazines. These could be prepared in several steps from the corresponding alkyne 1 shown in Fig. 1[link]. The challenge of synthesizing quaternary carbons (Wei et al., 2020[Wei, Q., Cai, J., Hu, X.-D., Zhao, J., Cong, H., Zheng, C. & Liu, W.-B. (2020). ACS Catal. 10, 216-224.]; Liu et al., 2015[Liu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. (2015). Acc. Chem. Res. 48, 740-751.]; Volla et al., 2014[Volla, C. M. R., Atodiresei, I. & Rueping, M. (2014). Chem. Rev. 114, 2390-2431.]; Fuji, 1993[Fuji, K. (1993). Chem. Rev. 93, 2037-2066.]; Martin, 1980[Martin, S. F. (1980). Tetrahedron, 36, 419-460.]), particularly amine-bearing quaternary carbons (Zhu et al., 2019[Zhu, Q., Meng, B., Gu, C., Xu, Y., Chen, J., Lei, C. & Wu, X. (2019). Org. Lett. 21, 9985-9989.]; Yeung et al., 2019[Yeung, K., Talbot, F. J. T., Howell, G. P., Pulis, A. P. & Procter, D. J. (2019). ACS Catal. 9, 1655-1661.]; Xu et al., 2019[Xu, H., Huang, H., Zhao, C., Song, C. & Chang, J. (2019). Org. Lett. 21, 6457-6460.]; Velasco-Rubio et al., 2019[Velasco-Rubio, A., Alexy, E. J., Yoritate, M., Wright, A. C. & Stoltz, B. M. (2019). Org. Lett. 21, 8962-8965.]; Vasu et al., 2019[Vasu, D., Fuentes de Arriba, A. L., Leitch, J. A., de Gombert, A. & Dixon, D. J. (2019). Chem. Sci. 10, 3401-3407.]; Trost et al., 2019[Trost, B. M., Tracy, J. S. & Lin, E. Y. (2019). ACS Catal. 9, 11082-11087.]; Ling & Rivas, 2016[Ling, T. & Rivas, F. (2016). Tetrahedron, 72, 6729-6777.]; Hager et al., 2016[Hager, A., Vrielink, N., Hager, D., Lefranc, J. & Trauner, D. (2016). Nat. Prod. Rep. 33, 491-522.]; Clayden et al., 2011[Clayden, J., Donnard, M., Lefranc, J. & Tetlow, D. J. (2011). Chem. Commun. 47, 4624-4639.]; Fu et al., 2008[Fu, P., Snapper, M. L. & Hoveyda, A. H. (2008). J. Am. Chem. Soc. 130, 5530-5541.]; Riant & Hannedouche, 2007[Riant, O. & Hannedouche, J. (2007). Org. Biomol. Chem. 5, 873-888.]), is well established. The presence of the N-gem-dimethyl group of 1 presented a significant synthetic challenge arising from steric congestion. Nucleophilic attack by an organometallic reagent into a transient 1-N-ethyl­idenepiperazinium has a literature precedent, but nucleophilic attack into the more sterically congested 1-N-propyl­idenepiperazinium inter­mediate by an alkynyl Grignard reagent is presented here for the first time. Four potential synthetic routes were identified including Katritzky benzotriazole trapping of an iminium (Monbaliu et al., 2013[Monbaliu, J. M., Beagle, L. K., Hansen, F. K., Stevens, C. V., McArdle, C. & Katritzky, A. R. (2013). RSC Adv. 3, 4152-4155.]; Ingram et al., 2006[Ingram, A. M., Stirling, K., Faulds, K., Moore, B. D. & Graham, D. (2006). Org. Biomol. Chem. 4, 2869-2873.]; Katritzky, 1998[Katritzky, A. R. (1998). Synthesis, pp. 1421-1423.]; Katritzky et al., 1989[Katritzky, A. R., Najzarek, Z. & Dega-Szafran, Z. (1989). Synthesis, pp. 66-69.], 1991[Katritzky, A. R., Rachwal, S. & Hitchings, G. J. (1991). Tetrahedron, 47, 2683-2732.], 2005[Katritzky, A. R., Yang, H. & Singh, S. K. (2005). J. Org. Chem. 70, 286-290.]; Katritzky & Rogovoy, 2003[Katritzky, A. R. & Rogovoy, B. V. (2003). Chem. Eur. J. 9, 4586-4593.]; Katritzky & Saczewski, 1990[Katritzky, A. R. & Saczewski, F. (1990). Gazz. Chim. Ital. 120, 375-378.]), a Bruylants (Bruylants, 1924[Bruylants, P. (1924). Bull. Soc. Chim. Belg. 33, 467-478.]) trapping of an iminium, sequential addition of two methyl groups into an amide, and rearrangement to the gem-dimethyl group. All in-house attempts at the Katritzky benzotriazole (Tang et al., 2013[Tang, X., Kuang, J. & Ma, S. (2013). Chem. Commun. 49, 8976-8978.]; Pierce et al., 2012[Pierce, C. J., Nguyen, M. & Larsen, C. H. (2012). Angew. Chem. Int. Ed. 51, 12289-12292.]; Albaladejo et al., 2012[Albaladejo, M. J., Alonso, F., Moglie, Y. & Yus, M. (2012). Eur. J. Org. Chem. pp. 3093-3104.]) or triazole (Prashad et al., 2005[Prashad, M., Liu, Y., Har, D., Repič, O. & Blacklock, T. J. (2005). Tetrahedron Lett. 46, 5455-5458.]) reactions failed. A variation on the Bruylants reaction (Liu et al., 2014[Liu, Y., Prashad, M. & Shieh, W.-C. (2014). Org. Process Res. Dev. 18, 239-245.]; Beaufort-Droal et al., 2006[Beaufort-Droal, V., Pereira, E., Théry, V. & Aitken, D. J. (2006). Tetrahedron, 62, 11948-11954.]; Prashad et al., 2005[Prashad, M., Liu, Y., Har, D., Repič, O. & Blacklock, T. J. (2005). Tetrahedron Lett. 46, 5455-5458.]; Kudzma et al., 1988[Kudzma, L. V., Spencer, H. K. & Severnak, S. A. (1988). Tetrahedron Lett. 29, 6827-6830.]; Bernardi et al., 2003[Bernardi, L., Bonini, B. F., Capitò, E., Dessole, G., Fochi, M., Comes-Franchini, M. & Ricci, A. (2003). Synlett, pp. 1778-1782.]) described herein was successful. The traditional Bruylants reaction captures a trapped iminium as the corres­ponding α-amino nitrile. In a subsequent reaction, the α-amino nitrile transiently forms an iminium that is then trapped with excess Grignard reagent. Conversion of the terminal alkyne 4 to the corresponding magnesiobromide acetyl­ide proceeded under established conditions. Attack of an alkynyl magnesium bromide into the transient iminium is precedented to yield tertiary carbon products. Generation of a quaternary carbon product in an analogous manner has not been described. A single paper details addition of a copper acetyl­ide into a Brulyants adduct (Tang et al., 2013[Tang, X., Kuang, J. & Ma, S. (2013). Chem. Commun. 49, 8976-8978.]). Given the pharmacological importance of this compound and its tractable synthesis with novel chemistry, careful structural characterization by X-ray crystallographic analysis was necessary. Optimization of this reaction, subsequent structural elaboration, and specific pharmacological relevance will be detailed in later publications.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate (1) via Bruylants reaction (Firth et al., 2016[Firth, J. D., O'Brien, P. & Ferris, L. (2016). J. Am. Chem. Soc. 138, 651-659.]).

2. Structural commentary

The title compound, prepared from achiral reagents as a racemic mixture, crystallizes in the chiral monoclinic space group P21 with one mol­ecule in the asymmetric unit as shown in the Scheme and Fig. 2[link]. No heavy atoms are present in the structure and data were collected using Mo Kα radiation. Thus, the absolute structure of the randomly chosen crystals could not be determined reliably (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]; Zhou et al., 2015[Zhou, S., Huang, H. & Huang, R. (2015). Acta Cryst. E71, o146-o147.]). In the mol­ecule, the NC(=O)O group of the carbamate exists in resonance. The bond lengths between carbon and other atoms (Table 1[link]) are in the expected ranges with the bond length between O1—C16 [1.211 (3) Å] being the shortest, followed by N2—C16 [1.336 (3) Å], O2—C16 [1.345 (3) Å], and F1—C1 [1.359 (3) Å] owing to the presence of the more electronegative atoms oxygen, nitro­gen and fluorine. The bond length between C1—C6 [1.351 (4) Å] is the shortest among all the bond lengths in the phenyl group, possibly due to the inductive effect of fluorine. The spatial distance between the extreme atoms of propargyl­amine groups (C7⋯N1) was observed to be 3.508 (3) Å, which is slightly longer than for the other reported propargyl­amines (3.372–3.478 Å; Marvelli et al., 2004[Marvelli, L., Mantovani, N., Marchi, A., Rossi, R., Brugnati, M., Peruzzini, M., Barbaro, P., de los Rios, I. & Bertolasi, V. (2004). Dalton Trans. pp. 713-722.]; Sidorov et al., 1999[Sidorov, A. A., Ponina, M. O., Deomidov, S. A., Nefedov, S. E., Fomina, I. G., Danilov, P. V., Novotortsev, V. M., Volkov, O. G., Ikorskii, V. N. & Eremenko, I. L. (1999). Russ. J. Inorg. Chem. 3, 345-359.], 2000[Sidorov, A. A., Ponina, M. O., Deomidov, S. M., Novotortsev, V. M., Nefedov, S. E., Eremenko, I. L., Moiseev, I. I. & Demonceau, A. (2000). Chem. Commun. p. 1383.]), and possibly due to the open L-shaped structure of the mol­ecule. Also, the piperazine ring is shown in its most stable chair form conformation in Fig. 3[link], as evidenced by the bond angles (Table 1[link]) between N1—C12—C13 [110.77 (19)°] and N2—C15—C14 [110.1 (2)°], which are close to the ideal bond angle of 109.5° for a chair conformation. The sum of the bond angles around N1 (335.73°) indicate sp3 hybridization, while the sum of the bond angles around N2 (360°) indicates sp2 hybridization. This is also evidenced by the tetra­gonal mol­ecular geometry of C12—N1—C9 [113.89 (18)°], C14—N1—C9 [113.48 (16)°], and C12—N1—C14 [108.36 (16)°] and the trigonal planar mol­ecular geometry of C16—N2—C15 [126.30 (19)°], C16—N2—C13 [120.9 (2)°], and C15—N2—C13 [112.8 (2)°]. The delocalization of the lone pair of N2 into the π bond of carbonyl group causes sp2 hybridization of N2.

Table 1
Selected geometric parameters (Å, °)

F1—C1 1.359 (3) N2—C16 1.336 (3)
O1—C16 1.211 (3) C1—C6 1.351 (4)
O2—C16 1.345 (3) C7⋯N1 3.508 (3)
       
C12—N1—C14 108.36 (16) C16—N2—C13 120.9 (2)
C12—N1—C9 113.89 (18) C15—N2—C13 112.8 (2)
C14—N1—C9 113.48 (16) N1—C12—C13 110.77 (19)
C16—N2—C15 126.30 (19) N2—C15—C14 110.1 (2)
[Figure 2]
Figure 2
30% probability ellipsoid plot for the crystal structure solution of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate. Hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
40% probability plot of the mol­ecular crystal structure solution of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate showing the L-shaped structure and the chair conformation of the piperazine ring.

3. Supra­molecular features

Hirshfeld surface analysis and fingerprint analysis were performed using CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.], Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.], McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). In the absence of acidic hydrogen atoms, there cannot be any conventional hydrogen bonds; however, there are directional inter­actions present between C2—H2⋯O1 and C—H⋯π inter­actions between C19—H19⋯C1, as shown in the crystal packing along the a-axis (Fig. 4[link]). These inter­actions are represented by the faint red spots between C2—H2⋯O1 and C19—H19⋯C1 on the Hirshfeld surface mapped over dnorm in Fig. 5[link]. The directional C2—H2⋯O1 [d(H⋯O) = 2.595 Å] present in the crystal packing could be weak C—H⋯O hydrogen-bond-like inter­actions (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]) and the C19—H19⋯C1 [d(C⋯H) = 2.804 Å] inter­actions could be C—H⋯π inter­actions with dispersion inter­actions as the major source of attraction. Fingerprint analysis (Fig. 6[link]) complemented the Hirshfeld analysis by showing a minimal contact surface between O⋯H (3.1%) and F⋯H (5.4%), as shown in Fig. 6[link]b and Fig. 6[link]c. These could be the directional C—H⋯O inter­actions mentioned previously, and C—H⋯F close contacts attributed to the proximity of the F atom to the C—H⋯π inter­actions. Please see Table 2[link] for the inter­atomic contact distances. These data also suggested the absence of ππ stacking as C⋯C contacts contribute 0% of the Hirshfeld surfaces (Fig. 6[link]d).

Table 2
Short inter­atomic contact distances (Å)

Contact Distance
C2—H2⋯O1 2.595
C19—H19⋯C1 2.804
C19—H19⋯F1 3.163
[Figure 4]
Figure 4
30% probability plot of crystal packing of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate viewed down the a axis showing weak hydrogen-bond-like inter­actions between C2—H2⋯O1 and C—H⋯π inter­actions between C19—H19⋯C1 due to dispersion inter­actions. Hydrogen atoms not involved in inter­molecular inter­actions are omitted for clarity.
[Figure 5]
Figure 5
Hirshfeld surface for tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate mapped over dnorm showing weak hydrogen-bond-like inter­actions between C2—H2⋯O1 and C—H⋯π inter­actions between C19—H19⋯C1.
[Figure 6]
Figure 6
The two-dimensional fingerprint plots of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate showing contributions from different contacts.

4. Database survey

A search in the Cambridge Structural Database (Version 5.41 update of March 2020; (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])) for compounds possessing an N-tert-butyl piperazine substructure identified 51 compounds. These compounds were several variations of BuckyBall adducts, diketopiperazine derivatives, and ligands. There were only 14 compounds viz. DIYWAK (McDermott et al., 2008[McDermott, B. P., Campbell, A. D. & Ertan, A. (2008). Synlett, 2008, 875-879.]), HEHZOL (Legnani et al., 2012[Legnani, L., Colombo, D., Villa, S., Meneghetti, F., Castellano, C., Gelain, A., Marinone Albini, F. & Toma, L. (2012). Eur. J. Org. Chem. pp. 5069-5074.]), HICYID, HICYOJ (Sinha et al., 2013b[Sinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013b). Org. & Biomol. Chem. 11, 4792-4796.]), JIFHEO (Zhong et al., 2018[Zhong, W., Wang, J., Wei, X., Chen, Y., Fu, T., Xiang, Y., Huang, X., Tian, X., Xiao, Z., Zhang, W., Zhang, S., Long, L. & Wang, F. (2018). Org. Lett. 20, 4593-4596.]), OFUDAW (Korotaev et al., 2012[Korotaev, V. Y., Barkov, A. Y., Slepukhin, P. A. & Sosnovskikh, V. Y. (2012). Russ. Chem. Bull. 61, 1750-1760.]), PUYNUS (Jin & Liebscher, 2002[Jin, S. & Liebscher, J. (2002). Z. Naturforsch. Teil B, 57, 377-382.]), RIPWUJ (Bobeck et al., 2007[Bobeck, D. R., Warner, D. L. & Vedejs, E. (2007). J. Org. Chem. 72, 8506-8518.]), TILJIJ (Sinha et al., 2013a[Sinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013a). Chem. Eur. J. 19, 8048-8052.]), UPIBIF, UPIBOL (Wiedner & Vedejs, 2010[Wiedner, S. D. & Vedejs, E. (2010). Org. Lett. 12, 4030-4033.]), UYIHOB (Chen & Cao, 2017[Chen, L. Z. & Cao, X. X. (2017). Chin. Chem. Lett. 28, 400-406.]), WANTAJ (Golubev & Krasavin, 2017[Golubev, P. & Krasavin, M. (2017). Eur. J. Org. Chem. pp. 1740-1744.]), and WINMAH (Brouant & Giorgi, 1995[Brouant, P. & Giorgi, M. (1995). Acta Cryst. C51, 434-436.]) that were asymmetrically substituted on the piperazine ring, and none with a synthetically useful second nitro­gen. All were effectively `non-inter­mediate' compounds that could not reasonably serve for additional substitution at the second nitro­gen and none had alkyne substitutions. The quaternary carbon piperazines were explored by Sinha et al. (2013a[Sinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013a). Chem. Eur. J. 19, 8048-8052.],b[Sinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013b). Org. & Biomol. Chem. 11, 4792-4796.]) using an Ugi reaction; however, the present structure is the only compound containing an α,α-dimethyl carbon attached to an alkyne and an amine. This new methodology required the X-ray studies to confirm the generated structure. In summary, to the best of the authors' knowledge, there is no published crystal structure like the title compound, for a mol­ecule containing asymmetrical substitutions on the piperazine ring, having a synthetically useful second nitro­gen, and an α,α-dimethyl carbon attached to an alkyne and an amine.

5. Synthesis and crystallization

tert-Butyl 4-(2-cyano­propan-2-yl)piperazine-1-carboxyl­ate (3): Ethereal HCl (40.3 mL of a 2.0 M in Et2O, 80.6 mmol, 1.5 eq. titrated against standardized 1 N NaOH to a phenolphthalein pink end-point) was added dropwise to a stirred solution of tert-butyl piperazine-1-carboxyl­ate 2 (12.6 g, 53.7 mmol, 1.0 eq.) in MeOH (60 mL) and CH2Cl2 (60 mL) at 273 K under Argon. The resulting mixture was stirred at 273 K for 1 h, after which the solvent and excess HCl were removed under reduced pressure and the white residual solid was dissolved in water (150 mL). In a well-ventilated fume hood, solid NaCN (2.63 g, 53.7 mmol, 1.0 eq.) and then a solution of acetone (9.4 g, 11.8 mL, 161.2 mmol, 3.0 eq.) in water (20 mL) were added sequentially at room temperature (296 K). The resulting mixture was stirred at room temperature under air for an additional 48 h. Water (100 mL) was added and the mixture was extracted with EtOAc (3 × 100 mL) then NaCl (sat, aq.). The combined organic extracts were dried (MgSO4) and the solvent was removed under reduced pressure to give tert-butyl 4-(2-cyano­propan-2-yl)piperazine-1-carboxyl­ate 3 as a white crystalline solid, 11 g (64%). MP: 381.2 K (reported 381–383 K) matching the literature (Firth et al., 2016[Firth, J. D., O'Brien, P. & Ferris, L. (2016). J. Am. Chem. Soc. 138, 651-659.]). 1H NMR (400 MHz, CDCl3: δ3.50 (dd, J = 4.8 Hz, 4H), 2.62 (dd, J = 4.8 Hz, 4H), 1.54 (s, 6H), 1.49 (s, 9H) matches literature (Firth et al., 2016[Firth, J. D., O'Brien, P. & Ferris, L. (2016). J. Am. Chem. Soc. 138, 651-659.]).

Note: the aqueous extracts (pH > 10) were collected and the residual cyanide was oxidized to cyanate with sodium hypochlorite (Gerritsen & Margerum, 1990[Gerritsen, C. M. & Margerum, D. W. (1990). Inorg. Chem. 29, 2757-2762.]) and absence of a cyanide ion was confirmed with an MQuant™ Koening Cyanide test indicator from EM sciences.

tert-Butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate (1):

A 250 mL flame-dried, round-bottom flask was cooled under argon and then charged with 1-ethynyl-4-fluoro­benzene 4 (1.98 g, 16.5mmol) in 50 mL of anhydrous THF. This solution was cooled with an external ice-bath. A commercial solution of methyl magnesium bromide (5.25 mL, 16.5 mmol) (Acros, ∼3.2 M in THF, assayed against anhydrous diphenyl acetic acid with 2 mg 1,10-phenanthroline as an indicator) was added with slow dropwise addition over 10 minutes. The inter­nal temperature was maintained between 274–275 K. This mixture was stirred at ice-bath temperature for an additional 20 minutes, which resulted in a pale-yellow solution. A solution of tert-butyl 4-(2-cyano­propan-2-yl)piperazine-1-carboxyl­ate 3 (Firth et al., 2016[Firth, J. D., O'Brien, P. & Ferris, L. (2016). J. Am. Chem. Soc. 138, 651-659.]) (2.33 g, 9.2 mmol) in 25 mL THF was added dropwise to this mixture over 10 minutes; the inter­nal temperature was maintained between 274–275.3 K. This deep-yellow solution was permitted to stir with the external ice-bath slowly melting and rising to room temperature, while progress was monitored by TLC (Rf of product at 0.6 1:1 H:EA, SiO2 plates, SWUV and I2 visualization). Following stirring for 12 h at 296 K, the crude reaction mixture was cooled to ice-bath temperature and the reaction was quenched with the addition of 10 mL of ice-cold water at a rate of addition that maintained the inter­nal temperature below 278 K. After quenching the organo-base, an additional 50 mL of water were added. Small aliquots of brine and ethanol were used, as required, to break the emulsion in the following extraction. This mixture was extracted with 3 × 20 mL of ethyl acetate, washed (3 × 10 mL H2O, 3 × 10 mL brine) dried (Na2SO4), deca­nted, and the solvent removed under reduced pressure to afford 30.6 g of a yellow solid. This was separated on 50 g of SiO2 with hexa­ne/ethyl acetate (1/1) as the eluent to yield tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carbox­yl­ate 1 as a white powder, 2.74 g (86.3%). This compound was recrystallized from ethyl acetate as colorless plates, having a melting point of 388.1 K. 1H NMR (400 MHz, chloro­form-d) δ 7.36 (dd, J = 8.2, 5.6 Hz, 2H), 6.96 (t, J = 8.5 Hz, 2H), 3.46 (s, 5H), 2.63 (s, 4H), 1.45 (s, 16H). HRMS: (C20H27FN2O2) calculated for [M + H]+ 347.2129, found 347.2127.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. H atoms were localized in a difference-Fourier map. C-bound H atoms were treated as riding, with C—H = 0.93, 0.96 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl groups.

Table 3
Experimental details

Crystal data
Chemical formula C20H27FN2O2
Mr 346.43
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.2576 (11), 9.5127 (10), 10.5318 (11)
β (°) 104.691 (2)
V3) 994.07 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.65 × 0.50 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.704, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10640, 5058, 3662
Rint 0.017
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.04
No. of reflections 5058
No. of parameters 231
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.11
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.]).

Supporting information


Computing details top

Data collection: SMART and SAINT (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SMART and SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

tert-Butyl 4-[4-(4-fluorophenyl)-2-methylbut-3-yn-2-yl]piperazine-1-carboxylate top
Crystal data top
C20H27FN2O2F(000) = 372
Mr = 346.43Dx = 1.157 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.2576 (11) ÅCell parameters from 3739 reflections
b = 9.5127 (10) Åθ = 2.9–23.9°
c = 10.5318 (11) ŵ = 0.08 mm1
β = 104.691 (2)°T = 293 K
V = 994.07 (18) Å3Plate, colorless
Z = 20.65 × 0.50 × 0.17 mm
Data collection top
Bruker SMART APEXII
diffractometer
3662 reflections with I > 2σ(I)
φ and ω Scans scansRint = 0.017
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
θmax = 28.7°, θmin = 2.0°
Tmin = 0.704, Tmax = 0.746h = 1313
10640 measured reflectionsk = 1212
5058 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0286P]
where P = (Fo2 + 2Fc2)/3
5058 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.11 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.18988 (19)0.1239 (2)0.11543 (15)0.1037 (6)
O10.36605 (17)0.51912 (19)0.18415 (19)0.0806 (5)
O20.51029 (17)0.70053 (17)0.25327 (19)0.0744 (5)
N10.75069 (16)0.3139 (2)0.49328 (17)0.0532 (4)
N20.54352 (19)0.4993 (2)0.3602 (3)0.0786 (7)
C11.1321 (3)0.1417 (3)0.0138 (2)0.0675 (6)
C21.1908 (2)0.2311 (3)0.0845 (2)0.0657 (6)
H21.2675130.2817570.0814850.079*
C31.1337 (2)0.2446 (3)0.1888 (2)0.0607 (5)
H31.1731830.3046220.2575040.073*
C41.0186 (2)0.1709 (2)0.1937 (2)0.0551 (5)
C50.9617 (3)0.0830 (3)0.0901 (3)0.0760 (7)
H50.8840110.0328920.0908380.091*
C61.0188 (3)0.0687 (4)0.0148 (3)0.0830 (8)
H60.9800550.0100080.0847520.100*
C70.9619 (2)0.1869 (3)0.3042 (2)0.0623 (5)
C80.9197 (2)0.1996 (3)0.3994 (2)0.0614 (5)
C90.8686 (2)0.2172 (3)0.5184 (2)0.0594 (5)
C100.8289 (3)0.0738 (3)0.5623 (3)0.0761 (7)
H10A0.9079160.0165500.5911290.114*
H10B0.7669130.0286700.4900450.114*
H10C0.7867790.0861160.6332050.114*
C110.9824 (3)0.2766 (3)0.6290 (2)0.0766 (7)
H11A1.0538870.2089280.6524550.115*
H11B0.9484190.2964610.7040740.115*
H11C1.0160140.3615550.5997560.115*
C120.6330 (2)0.2618 (2)0.3960 (3)0.0623 (5)
H12A0.6124750.1671430.4191190.075*
H12B0.6526380.2583520.3106850.075*
C130.5133 (2)0.3551 (2)0.3890 (3)0.0758 (7)
H13A0.4372710.3211300.3211520.091*
H13B0.4887580.3520410.4720690.091*
C140.7810 (2)0.4556 (2)0.4548 (2)0.0629 (6)
H14A0.7996130.4522680.3690240.075*
H14B0.8608210.4908980.5171270.075*
C150.6649 (2)0.5530 (3)0.4505 (3)0.0753 (7)
H15A0.6502420.5616730.5375840.090*
H15B0.6856110.6455710.4222370.090*
C160.4649 (2)0.5686 (2)0.2590 (2)0.0613 (5)
C170.4383 (3)0.8005 (3)0.1535 (2)0.0719 (6)
C180.4377 (4)0.7509 (5)0.0174 (3)0.1233 (14)
H18A0.4117310.8270310.0435850.185*
H18B0.3747090.6749360.0072620.185*
H18C0.5262380.7190430.0163990.185*
C190.2976 (3)0.8232 (4)0.1690 (3)0.0933 (9)
H19A0.2558820.8992760.1134290.140*
H19B0.3017970.8457730.2587490.140*
H19C0.2456330.7390920.1445160.140*
C200.5234 (5)0.9306 (4)0.1912 (4)0.1246 (14)
H20A0.4871111.0054370.1314850.187*
H20B0.6141430.9112290.1872090.187*
H20C0.5231670.9580520.2788510.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1100 (12)0.1444 (17)0.0629 (8)0.0197 (12)0.0335 (8)0.0031 (9)
O10.0619 (9)0.0604 (10)0.1066 (13)0.0065 (8)0.0025 (9)0.0007 (9)
O20.0717 (10)0.0445 (8)0.0986 (12)0.0040 (8)0.0064 (9)0.0062 (8)
N10.0502 (9)0.0478 (9)0.0611 (9)0.0025 (7)0.0132 (7)0.0059 (8)
N20.0513 (10)0.0470 (11)0.1223 (17)0.0065 (8)0.0061 (11)0.0149 (11)
C10.0731 (15)0.0785 (16)0.0515 (12)0.0157 (13)0.0170 (11)0.0065 (11)
C20.0561 (12)0.0724 (16)0.0695 (14)0.0003 (11)0.0173 (11)0.0018 (12)
C30.0586 (12)0.0612 (13)0.0615 (13)0.0023 (10)0.0136 (10)0.0077 (10)
C40.0534 (11)0.0551 (12)0.0558 (11)0.0101 (9)0.0119 (9)0.0081 (9)
C50.0692 (14)0.0772 (17)0.0781 (16)0.0132 (13)0.0125 (12)0.0043 (13)
C60.0916 (19)0.0891 (19)0.0612 (14)0.0063 (16)0.0063 (13)0.0167 (13)
C70.0591 (12)0.0619 (13)0.0654 (13)0.0095 (10)0.0151 (10)0.0103 (10)
C80.0592 (12)0.0600 (13)0.0664 (13)0.0088 (10)0.0181 (10)0.0108 (11)
C90.0569 (11)0.0610 (13)0.0618 (12)0.0105 (10)0.0176 (9)0.0125 (10)
C100.0811 (16)0.0624 (15)0.0913 (18)0.0187 (13)0.0337 (14)0.0265 (13)
C110.0660 (14)0.095 (2)0.0641 (14)0.0166 (13)0.0075 (11)0.0112 (13)
C120.0601 (12)0.0428 (10)0.0788 (14)0.0063 (9)0.0080 (10)0.0050 (10)
C130.0522 (12)0.0513 (14)0.115 (2)0.0074 (10)0.0041 (13)0.0170 (13)
C140.0513 (11)0.0507 (12)0.0793 (14)0.0079 (9)0.0028 (10)0.0037 (11)
C150.0606 (13)0.0452 (12)0.1076 (19)0.0031 (10)0.0019 (13)0.0023 (12)
C160.0480 (11)0.0445 (11)0.0910 (16)0.0004 (9)0.0165 (11)0.0030 (11)
C170.0970 (17)0.0551 (13)0.0653 (13)0.0022 (13)0.0237 (12)0.0101 (11)
C180.165 (4)0.137 (3)0.084 (2)0.021 (3)0.063 (2)0.012 (2)
C190.103 (2)0.0772 (18)0.098 (2)0.0310 (18)0.0233 (17)0.0133 (16)
C200.168 (4)0.0650 (19)0.130 (3)0.031 (2)0.018 (3)0.0250 (19)
Geometric parameters (Å, º) top
F1—C11.359 (3)C10—H10C0.9600
O1—C161.211 (3)C11—H11A0.9600
O2—C161.345 (3)C11—H11B0.9600
O2—C171.470 (3)C11—H11C0.9600
N1—C121.457 (3)C12—C131.502 (3)
N1—C141.463 (3)C12—H12A0.9700
N1—C91.489 (3)C12—H12B0.9700
N2—C161.336 (3)C13—H13A0.9700
N2—C151.454 (3)C13—H13B0.9700
N2—C131.456 (3)C14—C151.501 (4)
C1—C61.351 (4)C14—H14A0.9700
C1—C21.357 (4)C14—H14B0.9700
C2—C31.376 (3)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.385 (3)C17—C181.508 (4)
C3—H30.9300C17—C191.508 (4)
C4—C51.381 (3)C17—C201.509 (4)
C4—C71.434 (3)C18—H18A0.9600
C5—C61.382 (4)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—H60.9300C19—H19A0.9600
C7—C81.195 (3)C19—H19B0.9600
C8—C91.486 (3)C19—H19C0.9600
C9—C101.528 (4)C20—H20A0.9600
C9—C111.532 (3)C20—H20B0.9600
C10—H10A0.9600C20—H20C0.9600
C10—H10B0.9600
C16—O2—C17121.26 (19)N1—C12—H12B109.5
C12—N1—C14108.36 (16)C13—C12—H12B109.5
C12—N1—C9113.89 (18)H12A—C12—H12B108.1
C14—N1—C9113.48 (16)N2—C13—C12110.6 (2)
C16—N2—C15126.30 (19)N2—C13—H13A109.5
C16—N2—C13120.9 (2)C12—C13—H13A109.5
C15—N2—C13112.8 (2)N2—C13—H13B109.5
C6—C1—C2122.8 (2)C12—C13—H13B109.5
C6—C1—F1118.4 (2)H13A—C13—H13B108.1
C2—C1—F1118.8 (2)N1—C14—C15110.74 (18)
C1—C2—C3118.1 (2)N1—C14—H14A109.5
C1—C2—H2120.9C15—C14—H14A109.5
C3—C2—H2120.9N1—C14—H14B109.5
C2—C3—C4121.5 (2)C15—C14—H14B109.5
C2—C3—H3119.3H14A—C14—H14B108.1
C4—C3—H3119.3N2—C15—C14110.1 (2)
C5—C4—C3118.0 (2)N2—C15—H15A109.6
C5—C4—C7121.9 (2)C14—C15—H15A109.6
C3—C4—C7120.1 (2)N2—C15—H15B109.6
C4—C5—C6120.7 (2)C14—C15—H15B109.6
C4—C5—H5119.6H15A—C15—H15B108.1
C6—C5—H5119.6O1—C16—N2124.3 (2)
C1—C6—C5118.8 (2)O1—C16—O2125.2 (2)
C1—C6—H6120.6N2—C16—O2110.50 (19)
C5—C6—H6120.6O2—C17—C18110.9 (3)
C8—C7—C4177.4 (2)O2—C17—C19109.7 (2)
C7—C8—C9179.2 (3)C18—C17—C19112.0 (3)
C8—C9—N1111.34 (17)O2—C17—C20101.0 (2)
C8—C9—C10109.5 (2)C18—C17—C20111.7 (3)
N1—C9—C10109.80 (17)C19—C17—C20111.1 (3)
C8—C9—C11108.59 (18)C17—C18—H18A109.5
N1—C9—C11109.55 (19)C17—C18—H18B109.5
C10—C9—C11108.0 (2)H18A—C18—H18B109.5
C9—C10—H10A109.5C17—C18—H18C109.5
C9—C10—H10B109.5H18A—C18—H18C109.5
H10A—C10—H10B109.5H18B—C18—H18C109.5
C9—C10—H10C109.5C17—C19—H19A109.5
H10A—C10—H10C109.5C17—C19—H19B109.5
H10B—C10—H10C109.5H19A—C19—H19B109.5
C9—C11—H11A109.5C17—C19—H19C109.5
C9—C11—H11B109.5H19A—C19—H19C109.5
H11A—C11—H11B109.5H19B—C19—H19C109.5
C9—C11—H11C109.5C17—C20—H20A109.5
H11A—C11—H11C109.5C17—C20—H20B109.5
H11B—C11—H11C109.5H20A—C20—H20B109.5
N1—C12—C13110.77 (19)C17—C20—H20C109.5
N1—C12—H12A109.5H20A—C20—H20C109.5
C13—C12—H12A109.5H20B—C20—H20C109.5
C6—C1—C2—C31.7 (4)C16—N2—C13—C12125.9 (3)
F1—C1—C2—C3177.9 (2)C15—N2—C13—C1253.4 (3)
C1—C2—C3—C40.7 (3)N1—C12—C13—N256.6 (3)
C2—C3—C4—C50.3 (3)C12—N1—C14—C1560.9 (2)
C2—C3—C4—C7179.7 (2)C9—N1—C14—C15171.60 (19)
C3—C4—C5—C60.5 (4)C16—N2—C15—C14125.5 (3)
C7—C4—C5—C6179.6 (2)C13—N2—C15—C1453.7 (3)
C2—C1—C6—C51.5 (4)N1—C14—C15—N257.5 (3)
F1—C1—C6—C5178.1 (2)C15—N2—C16—O1178.3 (3)
C4—C5—C6—C10.4 (4)C13—N2—C16—O10.9 (4)
C12—N1—C9—C864.1 (2)C15—N2—C16—O22.3 (4)
C14—N1—C9—C860.5 (2)C13—N2—C16—O2178.6 (2)
C12—N1—C9—C1057.3 (2)C17—O2—C16—O11.8 (4)
C14—N1—C9—C10178.12 (19)C17—O2—C16—N2177.7 (2)
C12—N1—C9—C11175.76 (19)C16—O2—C17—C1863.8 (3)
C14—N1—C9—C1159.6 (2)C16—O2—C17—C1960.4 (3)
C14—N1—C12—C1360.2 (2)C16—O2—C17—C20177.7 (3)
C9—N1—C12—C13172.46 (18)
Short interatomic contact distances (Å) top
ContactDistance
C2—H2···O12.595
C19—H19···C12.804
C19—H19···F13.163
Selected bond lengths (Å) and bond angles (°) top
F1—C11.359 (3)
O1—C161.211 (3)
O2—C161.345 (3)
N2—C161.336 (3)
C1—C61.351 (4)
C7—N23.508
N1—C12—C13110.77 (19)
N2—C15—C14110.1 (2)
C12—N1—C9113.89 (18)
C14—N1—C9113.48 (16)
C12—N1—C14108.36 (16)
C16—N2—C15126.30 (19)
C16—N2—C13120.9 (2)
C15—N2—C13112.8 (2)

Acknowledgements

We wish to acknowledge Gary Look, Nicholas J Izzo, and Gilbert Rishton for their useful suggestions and discussions on the chemistry portion of this work.

Funding information

Funding for this research was provided by: Cognition Therapeutics (grant No. 1R41AG052252-01 to Dr. Patrick T. Flaherty).

References

First citationAlbaladejo, M. J., Alonso, F., Moglie, Y. & Yus, M. (2012). Eur. J. Org. Chem. pp. 3093–3104.  Web of Science CrossRef Google Scholar
First citationBeaufort-Droal, V., Pereira, E., Théry, V. & Aitken, D. J. (2006). Tetrahedron, 62, 11948–11954.  CAS Google Scholar
First citationBernardi, L., Bonini, B. F., Capitò, E., Dessole, G., Fochi, M., Comes-Franchini, M. & Ricci, A. (2003). Synlett, pp. 1778–1782.  Web of Science CrossRef Google Scholar
First citationBobeck, D. R., Warner, D. L. & Vedejs, E. (2007). J. Org. Chem. 72, 8506–8518.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrouant, P. & Giorgi, M. (1995). Acta Cryst. C51, 434–436.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USAGoogle Scholar
First citationBruylants, P. (1924). Bull. Soc. Chim. Belg. 33, 467–478.  CAS Google Scholar
First citationChen, L. Z. & Cao, X. X. (2017). Chin. Chem. Lett. 28, 400–406.  Web of Science CSD CrossRef CAS Google Scholar
First citationClayden, J., Donnard, M., Lefranc, J. & Tetlow, D. J. (2011). Chem. Commun. 47, 4624–4639.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFirth, J. D., O'Brien, P. & Ferris, L. (2016). J. Am. Chem. Soc. 138, 651–659.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, P., Snapper, M. L. & Hoveyda, A. H. (2008). J. Am. Chem. Soc. 130, 5530–5541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFuji, K. (1993). Chem. Rev. 93, 2037–2066.  CrossRef CAS Web of Science Google Scholar
First citationGerritsen, C. M. & Margerum, D. W. (1990). Inorg. Chem. 29, 2757–2762.  CrossRef CAS Web of Science Google Scholar
First citationGolubev, P. & Krasavin, M. (2017). Eur. J. Org. Chem. pp. 1740–1744.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHager, A., Vrielink, N., Hager, D., Lefranc, J. & Trauner, D. (2016). Nat. Prod. Rep. 33, 491–522.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIngram, A. M., Stirling, K., Faulds, K., Moore, B. D. & Graham, D. (2006). Org. Biomol. Chem. 4, 2869–2873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, S. & Liebscher, J. (2002). Z. Naturforsch. Teil B, 57, 377–382.  CrossRef CAS Google Scholar
First citationKatritzky, A. R. (1998). Synthesis, pp. 1421–1423.  CrossRef Google Scholar
First citationKatritzky, A. R., Najzarek, Z. & Dega-Szafran, Z. (1989). Synthesis, pp. 66–69.  CrossRef Google Scholar
First citationKatritzky, A. R., Rachwal, S. & Hitchings, G. J. (1991). Tetrahedron, 47, 2683–2732.  CrossRef CAS Web of Science Google Scholar
First citationKatritzky, A. R. & Rogovoy, B. V. (2003). Chem. Eur. J. 9, 4586–4593.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKatritzky, A. R. & Saczewski, F. (1990). Gazz. Chim. Ital. 120, 375–378.  CAS Google Scholar
First citationKatritzky, A. R., Yang, H. & Singh, S. K. (2005). J. Org. Chem. 70, 286–290.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKorotaev, V. Y., Barkov, A. Y., Slepukhin, P. A. & Sosnovskikh, V. Y. (2012). Russ. Chem. Bull. 61, 1750–1760.  Web of Science CrossRef CAS Google Scholar
First citationKudzma, L. V., Spencer, H. K. & Severnak, S. A. (1988). Tetrahedron Lett. 29, 6827–6830.  CrossRef CAS Web of Science Google Scholar
First citationLegnani, L., Colombo, D., Villa, S., Meneghetti, F., Castellano, C., Gelain, A., Marinone Albini, F. & Toma, L. (2012). Eur. J. Org. Chem. pp. 5069–5074.  Web of Science CSD CrossRef Google Scholar
First citationLing, T. & Rivas, F. (2016). Tetrahedron, 72, 6729–6777.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. (2015). Acc. Chem. Res. 48, 740–751.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Y., Prashad, M. & Shieh, W.-C. (2014). Org. Process Res. Dev. 18, 239–245.  Web of Science CrossRef CAS Google Scholar
First citationMartin, S. F. (1980). Tetrahedron, 36, 419–460.  CrossRef CAS Web of Science Google Scholar
First citationMarvelli, L., Mantovani, N., Marchi, A., Rossi, R., Brugnati, M., Peruzzini, M., Barbaro, P., de los Rios, I. & Bertolasi, V. (2004). Dalton Trans. pp. 713–722.  Web of Science CSD CrossRef Google Scholar
First citationMcDermott, B. P., Campbell, A. D. & Ertan, A. (2008). Synlett, 2008, 875–879.  Web of Science CSD CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMonbaliu, J. M., Beagle, L. K., Hansen, F. K., Stevens, C. V., McArdle, C. & Katritzky, A. R. (2013). RSC Adv. 3, 4152–4155.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPierce, C. J., Nguyen, M. & Larsen, C. H. (2012). Angew. Chem. Int. Ed. 51, 12289–12292.  Web of Science CrossRef CAS Google Scholar
First citationPrashad, M., Liu, Y., Har, D., Repič, O. & Blacklock, T. J. (2005). Tetrahedron Lett. 46, 5455–5458.  Web of Science CrossRef CAS Google Scholar
First citationRiant, O. & Hannedouche, J. (2007). Org. Biomol. Chem. 5, 873–888.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSidorov, A. A., Ponina, M. O., Deomidov, S. A., Nefedov, S. E., Fomina, I. G., Danilov, P. V., Novotortsev, V. M., Volkov, O. G., Ikorskii, V. N. & Eremenko, I. L. (1999). Russ. J. Inorg. Chem. 3, 345–359.  Google Scholar
First citationSidorov, A. A., Ponina, M. O., Deomidov, S. M., Novotortsev, V. M., Nefedov, S. E., Eremenko, I. L., Moiseev, I. I. & Demonceau, A. (2000). Chem. Commun. p. 1383.  Web of Science CSD CrossRef Google Scholar
First citationSinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013a). Chem. Eur. J. 19, 8048–8052.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013b). Org. & Biomol. Chem. 11, 4792–4796.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTang, X., Kuang, J. & Ma, S. (2013). Chem. Commun. 49, 8976–8978.  Web of Science CrossRef CAS Google Scholar
First citationTrost, B. M., Tracy, J. S. & Lin, E. Y. (2019). ACS Catal. 9, 11082–11087.  Web of Science CrossRef CAS Google Scholar
First citationVasu, D., Fuentes de Arriba, A. L., Leitch, J. A., de Gombert, A. & Dixon, D. J. (2019). Chem. Sci. 10, 3401–3407.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVelasco-Rubio, A., Alexy, E. J., Yoritate, M., Wright, A. C. & Stoltz, B. M. (2019). Org. Lett. 21, 8962–8965.  Web of Science CAS PubMed Google Scholar
First citationVolla, C. M. R., Atodiresei, I. & Rueping, M. (2014). Chem. Rev. 114, 2390–2431.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWei, Q., Cai, J., Hu, X.-D., Zhao, J., Cong, H., Zheng, C. & Liu, W.-B. (2020). ACS Catal. 10, 216–224.  Web of Science CrossRef CAS Google Scholar
First citationWiedner, S. D. & Vedejs, E. (2010). Org. Lett. 12, 4030–4033.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, H., Huang, H., Zhao, C., Song, C. & Chang, J. (2019). Org. Lett. 21, 6457–6460.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYeung, K., Talbot, F. J. T., Howell, G. P., Pulis, A. P. & Procter, D. J. (2019). ACS Catal. 9, 1655–1661.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, W., Wang, J., Wei, X., Chen, Y., Fu, T., Xiang, Y., Huang, X., Tian, X., Xiao, Z., Zhang, W., Zhang, S., Long, L. & Wang, F. (2018). Org. Lett. 20, 4593–4596.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhou, S., Huang, H. & Huang, R. (2015). Acta Cryst. E71, o146–o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Q., Meng, B., Gu, C., Xu, Y., Chen, J., Lei, C. & Wu, X. (2019). Org. Lett. 21, 9985–9989.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds