research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of poly[bis­­[μ2-3-(amino­meth­yl)pyridine]­bis­­(thio­cyanato)­cobalt(II)]

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by M. Zeller, Purdue University, USA (Received 16 March 2021; accepted 22 March 2021; online 26 March 2021)

The reaction of Co(NCS)2 with 3-(amino­meth­yl)pyridine as coligand leads to the formation of crystals of the title compound, [Co(NCS)2(C6H8N2)2]n, that were characterized by single-crystal X-ray analysis. In the crystal structure, the CoII cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions as well as two pyridine and two amino N atoms of four symmetry-equivalent 3-(amino­meth­yl)pyridine coligands with all pairs of equivalent atoms in a trans position. The CoII cations are linked by the 3-(amino­meth­yl)pyridine coligands into layers parallel to the ac plane. These layers are further linked by inter­molecular N—H⋯S hydrogen bonding into a three-dimensional network. The purity of the title compound was determined by X-ray powder diffraction and its thermal behavior was investigated by differential scanning calorimetry and thermogravimetry.

1. Chemical context

Coordination compounds based on thio­cyanate anions show a variety of structures, that can be traced back to the versatile coordination behavior of this ligand (Buckingham, 1994[Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.], Wöhlert et al., 2014[Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.]; Werner et al., 2015a[Werner, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236-3245.]). Even if the majority of compounds contain only terminal N-bonded ligands, there is a large number of compounds in which the metal cations are linked by these anionic ligands into networks of different dimensionality (Đaković et al., 2010[Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910-1917.]; Kozísková et al., 1990[Kozísková, Z., Kozisek, J. & Kabesová, M. (1990). Polyhedron, 9, 1029-1034.]; Kabešová et al., 1990[Kabešová, M., Kožíšková, Z. & Dunaj-Jurčo, M. (1990). Collect. Czech. Chem. Commun. 55, 1184-1192.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Wellm et al., 2018[Wellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.]). In those cases where the metal cations are octa­hedrally coordinated, different isomers can additionally be found, in which the metal cations are either all-trans or ciscistrans coordinated (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]). Which kind of compound is observed depends among other things on the nature of the metal cation, because the synthesis of compounds with bridging anionic ligands is easier with chalcophilic cations such as, for example, CdII, whereas less chalcophilic metal cations such as MnII, FeII and especially CoII and NiII in several cases lead to the formation of compounds with terminal N-bonded thio­cyanate anions. This is of importance because this anionic ligand is able to mediate substantial magnetic exchange (Bassey et al., 2020[Bassey, E. N., Paddison, J. A. M., Keyzer, E. N., Lee, J., Manuel, P., da Silva, I., Dutton, S. E., Grey, C. P. & Cliffe, M. J. (2020). Inorg. Chem. 59, 11627-11639.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mousavi et al., 2020[Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.]), which can lead to compounds that show a variety of magnetic properties. CoII is of special importance because of its high magnetic anisotropy (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Jochim et al., 2020[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971-8982.]; Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]). This led to a renewed inter­est into compounds in which the metal cations are linked by these anionic ligands into chains or layers and an increasing number have been reported in the literature over the last decade (Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Shi et al., 2006[Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909-1913.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]).

[Scheme 1]

In our own investigations we are especially inter­ested in transition-metal thio­cyanate coordination polymers based on cobalt in which the metal cations are linked by μ-1,3-bridging anionic ligands into chains, because these compounds can show single-chain magnet (SCM) behavior. These are compounds in which the spins are ferromagnetically aligned along a chain with strong magnetic exchange within the chain and only weak inter­chain inter­actions to prevent 3D ordering (Sun et al., 2010[Sun, H. L., Wang, Z. M. & Gao, S. (2010). Coord. Chem. Rev. 254, 1081-1100.]; Miyasaka et al., 2005[Miyasaka, H. & Clérac, R. (2005). Bull. Chem. Soc. Jpn, 78, 1725-1748.]). In the course of this project we have prepared a large number of compounds with the general composition M(NCS)2(L)2 where L represents a pyridine derivative substituted at the 4-position (Werner et al., 2015b[Werner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). In principle, SCM behavior can also be observed in 2D compounds if the ferromagnetic chains are linked into layers by bridging ligands that do not mediate strong magnetic exchange. Therefore, we became inter­ested in 3-(amino­meth­yl)pyridine as it can coordinate to metal cations via the pyridine and the amino N atom and for which no cobalt(II) thio­cyanate compounds had been reported. Therefore, we reacted Co(NCS)2 with 3-(amino­meth­yl)pyridine in different molar ratios, which always led to the formation of crystalline powders with the composition Co(NCS)2(3-(amino­methyl­pyridine)2 (see Synthesis and crystallization). This composition indicated that either the organic coligand does not bridge neighboring metal centers or that only terminal-coordinated thio­cyanate anions are present. IR spectroscopic measurements reveal that the CN stretching vibration of the anionic ligand is observed at 2077cm−1, which points to the presence of terminal N-bonded anionic ligands (Fig. S1). To prove these assumptions, single crystals were grown and characterized by single-crystal X-ray diffraction, which proves that this crystalline phase is isotypic to the corresponding Cd compound already reported in the literature, in which the CdII or CoII cations are linked into layers by the 3-(amino­meth­yl)pyridine ligands (see Structural commentary). Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure crystalline phase has been obtained (Fig. S2). For the more chalcophilic CdII cations another compound with the composition Cd(NCS)2(3-(amino­methyl­pyridine) is known, in which the CdII cations are linked by bridging anionic ligands. With Co(NCS)2 we found no access to this compound in solution and, therefore, we tried to prepare a 3-(amino­meth­yl)pyridine-deficient phase by thermal ligand removal from the title compound. Therefore, the title compound was investigated by thermogravimetry coupled to differential scanning calorimetry (TG-DSC). Upon heating at a rate of 8°C min−1 the compound starts to decompose at about 215°C and upon further heating a steady mass loss with no discrete decomposition events is observed (Fig. S3). To increase the resolution a second TG-DSC measurement with 1°C min−1 was performed, which does not improve the resolution significantly (Fig. S4). Based on these measurements, there is no indication for the formation of another currently unknown 3-(amino­meth­yl)pyridine-deficient compound.

2. Structural commentary

The asymmetric unit of the title compound, Co(NCS)2(C6H8N2)2, consists of one CoII cation that is located on a center of inversion as well as one thio­cyanate anion and one 3-(amino­meth­yl)pyridine coligand in general positions (Fig. 1[link]). The CoII cations are sixfold coordinated by two symmetry-equivalent terminal N-bonded anionic ligands as well as four symmetry-equivalent 3-(amino­meth­yl)pyridine coligands, of which two are coordinated through the pyridine N atom and two through the amino N atom to the cations, with each pair of identical atoms in the trans position to each other (Fig. 1[link]). The Co—N bond lengths to the amino N atom are significantly shorter than those to the pyridine N atoms, indicating that this is the stronger inter­action (Table 1[link]). The bond angles around the CoII centers deviate by less than 1.95 (6)° from the ideal values, which indicates that the octa­hedra are only slightly distorted (Table 1[link]). This is also obvious from the octa­hedral angle variance of 1.6 and the mean octa­hedral quadratic elongation of 1.001 calculated using the method of Robinson (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The Co cations are linked by bridging 3-(amino­meth­yl)pyridine ligands into layers that are parallel to the bc plane (Fig. 2[link]). These layers are constructed of large rings that consist of four CoII cations and four 3-(amino­meth­yl)pyridine coligands (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.1038 (16) Co1—N11 2.2107 (15)
Co1—N2i 2.1821 (15)    
       
N1ii—Co1—N1 180.00 (8) N1—Co1—N11 89.41 (6)
N1—Co1—N2iii 91.95 (6) N2iii—Co1—N11 89.67 (6)
N1—Co1—N2i 88.05 (6) N2i—Co1—N11 90.33 (6)
N1ii—Co1—N11 90.59 (6) N11—Co1—N11ii 180.0
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, -y+1, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: A = −x, −y + 1, −z, B = [{1\over 2}] − x, −[{1\over 2}] − y, [{1\over 2}] − z, C = −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z. Color code: Co (red), N (blue) and S (orange).
[Figure 2]
Figure 2
Crystal structure of the title compound viewed along the crystallographic a axis. The H atoms are omitted for clarity.

3. Supra­molecular features

The Co(NCS)2 layers are arranged in stacks that elongate along the crystallographic a-axis direction (Fig. 2[link]). The layers are linked into a three-dimensional network by inter­molecular N—H⋯S hydrogen bonding between the thio­cyanate S atoms and the amino H atoms, in which the S atoms act as acceptors for two of these hydrogen bonds (Fig. 3[link] and Table 2[link]). The N—H⋯S angles are close to linear, which indicates that this is a strong inter­action. There are additional C—H⋯S and C—H⋯N intra- and inter­molecular inter­actions, but their geometrical parameters indicate that these are not strong inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1ii 0.95 2.69 3.207 (3) 115
C12—H12⋯S1i 0.95 2.93 3.696 (2) 138
C15—H15⋯N1 0.95 2.66 3.163 (2) 114
N2—H1N2⋯S1iv 0.91 2.87 3.7430 (17) 162
N2—H2N2⋯S1v 0.91 2.65 3.5044 (17) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, -y+1, -z]; (iv) x, y, z+1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal structure of the title compound viewed along the crystallographic b axis. Inter­molecular N—H⋯S hydrogen bonds are shown as dashed lines.

4. Database survey

In the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) no cobalt thio­cyanate compounds with 3-(amino­meth­yl)pyridine as coligand are reported. However, some compounds based on Zn(NCS)2 and Cd(NCS)2 are published, in which the cations are always octa­hedrally coordinated (Neumann et al., 2017[Neumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904-1912.]). This includes Cd(NCS)2[3-(amino­meth­yl)pyridine]2-tris­[3-(amino­meth­yl)]pyridine solvate (QEKYOX), in which the CdII cations are also linked into layers, that contain large pores, in which additional 3-(amino­meth­yl)pyridine solvate mol­ecules are embedded. The same report also describes M(NCS)2[3-(amino­meth­yl)pyridine]2 [M = Cd (QEKZEO), Zn (QEKYUD)], which is isotypic to the title compound. Finally, two compounds with the composition M(NCS)2[3-(amino­meth­yl)pyridine] [M = Cd (QEKZIS), Zn (QEKZAK)] are reported. The Zn compound consists of dimers, in which each two ZnII cations are linked by each two 3-(amino­meth­yl)pyridine ligands. In contrast, in the crystal structure of the Cd compound, the CdII cations are linked into chains by the 3-(amino­meth­yl)pyridine ligands that are further connected into layers by μ-1,3-bridging thio­cyanate anions. This compound is the only one which shows an ciscistrans coordination of the metal cations.

5. Synthesis and crystallization

Experimental details

Elemental analysis was performed using a EURO EA elemental analyzer fabricated by EURO VECTOR Instruments. The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson. The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) that is equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator. Thermogravimetry and differential scanning calorimetry (TG-DSC) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1600 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

Synthesis

3-(Amino­meth­yl)pyridine and Co(NCS)2 were purchased from Alfa Aesar. All chemicals were used without further purification. Single crystals were obtained by reacting 1 mmol Co(NCS)2 (175.1 mg) with 0.2 mmol 3-(amino­meth­yl)pyridine (216.3 mg) in 3 mL of ethanol. After approximately one week blue-colored crystals were obtained, which were suitable for single crystal X-ray analysis. For the synthesis of crystalline powders the same amounts of reactants were stirred in 1 mL of ethanol for 3 d. The blue-colored precipitate was filtered and dried in air. Yield: 70%. Elemental analysis calculated for C14H16N6CoS2 (391.4 g mol−1) C 42.96%, H 4.12%, N 21.47%, S 16.39%, found: C 42.82%, H 4.01%, N 21.32%, S 16.29%. IR: ν = 3282 (m), 3245 (m), 3161 (w), 3058 (w), 3049 (w), 2979 (w), 2955 (sh), 2946 (w), 2874 (vw), 2862 (sh), 2077 (vs), 2033 (w), 1603 (sh), 1595 (m), 1582 (m), 1480 (m), 1447 (w), 1429 (m), 1361 (w), 1344 (w), 1333 (w), 1248 (w), 1229 (w), 1191 (m), 1150 (m), 1136 (s), 1103 (m), 1053 (m), 1039 (w), 990 (s), 965 (m), 943 (w), 933 (m), 895 (w), 852 (m), 841 (sh), 807 (s), 785 (m), 715 (s), 646 (m), 628 (m), 568 (s), 509 (w) cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. C—H and N—H H atoms were located in difference maps but positioned with idealized geometry and refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for amino H atoms) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H8N2)2]
Mr 391.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 8.2442 (4), 11.9186 (4), 8.9204 (4)
β (°) 100.807 (4)
V3) 860.97 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.25
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer STOE IPDS2
Absorption correction Numerical (X-AREA; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.709, 0.886
No. of measured, independent and observed [I > 2σ(I)] reflections 13295, 1871, 1702
Rint 0.029
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.15
No. of reflections 1871
No. of parameters 106
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.23
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis[µ2-3-(aminomethyl)pyridine]bis(thiocyanato)cobalt(II)] top
Crystal data top
[Co(NCS)2(C6H8N2)2]F(000) = 402
Mr = 391.38Dx = 1.510 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2442 (4) ÅCell parameters from 13295 reflections
b = 11.9186 (4) Åθ = 2.9–27.0°
c = 8.9204 (4) ŵ = 1.25 mm1
β = 100.807 (4)°T = 200 K
V = 860.97 (6) Å3Block, light blue
Z = 20.20 × 0.15 × 0.12 mm
Data collection top
STOE IPDS-2
diffractometer
1702 reflections with I > 2σ(I)
ω scansRint = 0.029
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2002)
θmax = 27.0°, θmin = 2.9°
Tmin = 0.709, Tmax = 0.886h = 1010
13295 measured reflectionsk = 1515
1871 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.3351P]
where P = (Fo2 + 2Fc2)/3
1871 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.0000000.5000000.0000000.02255 (11)
N10.2001 (2)0.56371 (13)0.08934 (18)0.0295 (3)
C10.3105 (2)0.62263 (15)0.0971 (2)0.0267 (4)
S10.46298 (6)0.70951 (4)0.10573 (7)0.03779 (14)
N110.14044 (19)0.52941 (12)0.23318 (17)0.0259 (3)
C110.1228 (2)0.46286 (15)0.3504 (2)0.0293 (4)
H110.0442250.4037680.3320430.035*
C120.2131 (3)0.47585 (16)0.4966 (2)0.0314 (4)
H120.1986370.4255220.5756140.038*
C130.3246 (2)0.56334 (16)0.5256 (2)0.0304 (4)
H130.3882940.5738050.6250180.036*
C140.3425 (2)0.63566 (14)0.4080 (2)0.0260 (4)
C150.2496 (2)0.61412 (14)0.2644 (2)0.0266 (4)
H150.2639110.6622170.1830030.032*
C160.4576 (2)0.73543 (15)0.4332 (2)0.0296 (4)
H16A0.5617740.7124350.5004650.035*
H16B0.4844900.7580460.3338970.035*
N20.38938 (19)0.83381 (12)0.50202 (18)0.0271 (3)
H1N20.3894700.8163640.6013450.032*
H2N20.2817580.8403690.4553590.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02203 (18)0.01854 (17)0.02615 (17)0.00132 (12)0.00208 (12)0.00035 (12)
N10.0261 (8)0.0300 (8)0.0322 (8)0.0025 (6)0.0051 (6)0.0014 (6)
C10.0269 (9)0.0261 (8)0.0271 (9)0.0034 (7)0.0047 (7)0.0018 (7)
S10.0301 (3)0.0337 (3)0.0503 (3)0.0084 (2)0.0094 (2)0.0046 (2)
N110.0263 (8)0.0229 (7)0.0275 (7)0.0014 (6)0.0021 (6)0.0015 (6)
C110.0305 (10)0.0230 (8)0.0345 (10)0.0039 (7)0.0063 (8)0.0023 (7)
C120.0375 (11)0.0277 (9)0.0289 (9)0.0021 (7)0.0065 (8)0.0028 (7)
C130.0348 (10)0.0289 (9)0.0263 (9)0.0005 (8)0.0031 (7)0.0027 (7)
C140.0260 (9)0.0212 (8)0.0307 (9)0.0004 (7)0.0052 (7)0.0038 (7)
C150.0289 (9)0.0210 (8)0.0289 (9)0.0008 (7)0.0033 (7)0.0004 (6)
C160.0282 (9)0.0248 (9)0.0350 (9)0.0028 (7)0.0042 (8)0.0045 (7)
N20.0270 (8)0.0208 (7)0.0326 (8)0.0016 (6)0.0036 (6)0.0010 (6)
Geometric parameters (Å, º) top
Co1—N1i2.1038 (16)C12—C131.382 (3)
Co1—N12.1038 (16)C12—H120.9500
Co1—N2ii2.1821 (15)C13—C141.387 (3)
Co1—N2iii2.1821 (15)C13—H130.9500
Co1—N112.2107 (15)C14—C151.388 (3)
Co1—N11i2.2107 (15)C14—C161.511 (2)
N1—C11.162 (2)C15—H150.9500
C1—S11.6415 (19)C16—N21.482 (2)
N11—C111.342 (2)C16—H16A0.9900
N11—C151.346 (2)C16—H16B0.9900
C11—C121.384 (3)N2—H1N20.9100
C11—H110.9500N2—H2N20.9100
N1i—Co1—N1180.00 (8)C13—C12—H12120.6
N1i—Co1—N2ii88.05 (6)C11—C12—H12120.6
N1—Co1—N2ii91.95 (6)C12—C13—C14119.24 (18)
N1i—Co1—N2iii91.95 (6)C12—C13—H13120.4
N1—Co1—N2iii88.05 (6)C14—C13—H13120.4
N2ii—Co1—N2iii180.0C13—C14—C15117.69 (17)
N1i—Co1—N1190.59 (6)C13—C14—C16121.98 (17)
N1—Co1—N1189.41 (6)C15—C14—C16120.33 (16)
N2ii—Co1—N1189.67 (6)N11—C15—C14124.18 (17)
N2iii—Co1—N1190.33 (6)N11—C15—H15117.9
N1i—Co1—N11i89.41 (6)C14—C15—H15117.9
N1—Co1—N11i90.59 (6)N2—C16—C14114.06 (15)
N2ii—Co1—N11i90.33 (6)N2—C16—H16A108.7
N2iii—Co1—N11i89.67 (6)C14—C16—H16A108.7
N11—Co1—N11i180.0N2—C16—H16B108.7
C1—N1—Co1156.84 (15)C14—C16—H16B108.7
N1—C1—S1177.97 (17)H16A—C16—H16B107.6
C11—N11—C15116.60 (16)C16—N2—Co1iv121.54 (11)
C11—N11—Co1121.68 (12)C16—N2—H1N2106.9
C15—N11—Co1121.71 (12)Co1iv—N2—H1N2106.9
N11—C11—C12123.39 (17)C16—N2—H2N2106.9
N11—C11—H11118.3Co1iv—N2—H2N2106.9
C12—C11—H11118.3H1N2—N2—H2N2106.7
C13—C12—C11118.85 (17)
C15—N11—C11—C121.8 (3)Co1—N11—C15—C14179.17 (13)
Co1—N11—C11—C12177.39 (15)C13—C14—C15—N111.8 (3)
N11—C11—C12—C131.7 (3)C16—C14—C15—N11177.78 (17)
C11—C12—C13—C140.2 (3)C13—C14—C16—N279.6 (2)
C12—C13—C14—C151.8 (3)C15—C14—C16—N2100.0 (2)
C12—C13—C14—C16177.72 (17)C14—C16—N2—Co1iv164.90 (12)
C11—N11—C15—C140.0 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.952.693.207 (3)115
C12—H12···S1iii0.952.933.696 (2)138
C15—H15···N10.952.663.163 (2)114
N2—H1N2···S1v0.912.873.7430 (17)162
N2—H2N2···S1vi0.912.653.5044 (17)157
Symmetry codes: (i) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x1/2, y+3/2, z+1/2.
 

Funding information

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (grant No. NA 720/5-2).

References

First citationBassey, E. N., Paddison, J. A. M., Keyzer, E. N., Lee, J., Manuel, P., da Silva, I., Dutton, S. E., Grey, C. P. & Cliffe, M. J. (2020). Inorg. Chem. 59, 11627–11639.  CSD CrossRef CAS PubMed Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, D. A. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Web of Science Google Scholar
First citationĐaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971–8982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKabešová, M., Kožíšková, Z. & Dunaj-Jurčo, M. (1990). Collect. Czech. Chem. Commun. 55, 1184–1192.  Google Scholar
First citationKozísková, Z., Kozisek, J. & Kabesová, M. (1990). Polyhedron, 9, 1029–1034.  Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMiyasaka, H. & Clérac, R. (2005). Bull. Chem. Soc. Jpn, 78, 1725–1748.  CrossRef CAS Google Scholar
First citationMousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603–7613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904–1912.  CSD CrossRef CAS Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909–1913.  CAS Google Scholar
First citationStoe & Cie (2002). X-AREA, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSun, H. L., Wang, Z. M. & Gao, S. (2010). Coord. Chem. Rev. 254, 1081–1100.  Web of Science CrossRef CAS Google Scholar
First citationWellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117–3123.  Web of Science CrossRef CAS Google Scholar
First citationWerner, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236–3245.  CSD CrossRef Google Scholar
First citationWerner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902–1913.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds