research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-3-methyl-4-(thio­phen-2-yl­methyl­­idene)isoxazol-5(4H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Synthèse de Molécules d'Intérêts Biologiques, Département de Chimie, Université Mentouri Constantine, 25000, Algeria, and bLaboratoire de Cristallographie, Département de Physique, Université Mentouri Constantine, 25000, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 27 October 2020; accepted 9 March 2021; online 12 March 2021)

The title compound, C9H7NO2S crystallizes with two independent mol­ecules (A and B) in the asymmetric unit with Z = 8. Both mol­ecules are almost planar with a dihedral angle between the isoxazole and thio­phen rings of 3.67 (2)° in mol­ecule A and 10.00 (1) ° in mol­ecule B. The packing of mol­ecules A and B is of an ABAB⋯ type along the b-axis direction, the configuration about the C=C bond is Z. In the crystal, the presence of C—H⋯O, C—H⋯ N and ππ inter­actions [centroid–centroid distances of 3.701 (2) and 3.766 (2) Å] link the mol­ecules into a three-dimensional architecture. An analysis of Hirshfeld surfaces shows the importance of C—H⋯O and C—H⋯N hydrogen bonds in the packing mechanism of the crystalline structure.

1. Chemical context

Isoxazolones show some inter­esting biological properties. They are inhibitors of the factorization of tumor necrosis alpha (TNF-α) (Laughlin et al., 2005[Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399-2403.]) and anti­microbial (Mazimba et al., 2014[Mazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564-6569.]). They are used for the treatment of cerebrovascular disorders and as muscle relaxants. They are also herbicides (Tomita et al., 1977[Tomita, K., Murakami, T. & Yamazaki, Y. (1977). US patent 4044018 A.]) and fungicides (Miyake et al., 2012[Miyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89-94.]). On other hand, isoxazolone derivatives constitute excellent inter­mediates for the synthesis of various heterocycles such as pyrido­pyrimidines (Tu et al., 2006[Tu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem. 5, 1450-1453.]), quinolines (Abbiati et al., 2003[Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887-9893.]) and undergo various chemical transformations (Batra & Bhaduri, 1994[Batra, S. & Bhaduri, A. P. (1994). Indian Inst. Sci. 74, 213-226.]). Some cyclo­addition reactions are also described and provide access to several types of polycycles (Badrey & Gomha, 2014[Badrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Sci. 6, 236-239.]). For these reasons, these compounds have been the subject of several investigations. The present method for their synthesis is a three-component polycondensation between an aromatic aldehyde, ethyl aceto­acetate and hydroxyl­amine hydro­chloride under different conditions and for our part we propose here the use of K2CO3, a food additive, tolerated in organic agriculture, very inexpensive, highly available and a safe catalyst, in an aqueous medium. In the present study, we report on the synthesis, mol­ecular and crystal structure together with a Hirshfeld surface analysis of the title isoxazole derivative.

2. Structural commentary

The mol­ecular structure of the title compound is shown in (Fig. 1[link]). It crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The mol­ecular structure adopts a Z-configuration about the C=C [1.354 (3) Å in mol­ecule A and 1.357 (3) Å in mol­ecule B] double bonds.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level.

The bond lengths in the two mol­ecules are practically equal, while there are slight differences in bond angles; with for example C2—C3—C4 (mol­ecule A) and C11—C12—C13 (mol­ecule B) differing by 0.8 (2)°. Also, a slight difference of 0.3 (2)° is observed between the angles C2—C5—C6 and C11—C14—C15. In mol­ecule A, the angle between the normal of the mol­ecular plane (O2A/N1A/C1A–C3A) and the normal of the (S1A/C6A–C9A) plane is 3.67 (2)°. An important difference is observed in mol­ecule B, where the angle between the normal of the mol­ecular plane (O3B/N2B/C10B–C12B) and the normal of the (S2B/C15B–C18B) plane is 10.00 (1)°. In the mol­ecular skeleton, the angle between the mean planes of the mol­ecules A and B is 4.09 (1)°. Each of the two methyl groups, C4 and C13, has a C—H bond lying in the mean plane of the mol­ecular skeleton, and they are oriented toward the thio­phene group.

3. Supra­molecular features

In the crystal, the structure consists of wavy layers containing mol­ecules of the same type, forming an alternated packing described by an ABAB⋯ sequence (Fig. 2[link]). The mol­ecules form infinite chains along the b-axis direction. They are linked by offset ππ inter­actions: [Cg1⋯Cg2i = 3.701 (2) Å and Cg3⋯Cg4ii = 3.766 (2) Å where Cg1, Cg2, Cg3 and Cg4 are the centroids of the O2A/N1A/C1A–C3A, S2B/C15B–C18B, S1A/C6A–C9A and O3B/N2B/C10B–C12B rings, respectively; symmetry codes: (i) −x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) −x, [{1\over 2}] − y, [{1\over 2}] + z]. The two mol­ecules A and B are involved in inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.51 3.387 (3) 156
C8—H8⋯N1ii 0.93 2.58 3.491 (5) 166
C13—H13c⋯N1iii 0.96 2.57 3.487 (4) 160
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound (mol­ecule A in blue and mol­ecule B in red).

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated with CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The analysis of Hirshfeld surface mapped over dnorm is shown in (Fig. 3[link]). The inter­actions between the corresponding donor and acceptor atoms are visualized as bright-red spots on both sides (zones 1, 2, 3 and 4) of the Hirshfeld surfaces (Fig. 3[link]), corresponding to C17—H17⋯N2, C4—H4C⋯N2, C16—H16⋯O2 and C18—H18⋯O4 hydrogen bonds, respectively. Two other red spots exist, corresponding to C4—H4A⋯O inter­actions (Fig. 3[link], zone 5), are considered to be very weak inter­actions, comparing them to the van der Waals radii. The overall two-dimensional fingerprint plot of the structure and H⋯S/S⋯H, H⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illus­trated in Fig. 4[link]a–m). The H⋯H contacts, accounting for about 35.4% of the Hirshfeld surface (Fig. 4[link]b) represent the largest contribution and are seen in the fingerprint plot as a pair of shorts pikes at de + di = 2.2 Å; comparing this to van der Waals radius, we find the difference between them is about 1 Å, which means it is a very powerful inter­action. H⋯O/O⋯H contacts (Fig. 4[link]c) make a contribution of 28.7%, with a distinctive peak in the fingerprint plot at de + di = 2.4 Å; the van der Waals radius sum for this inter­action is about 2.7 Å.

[Figure 3]
Figure 3
Two views of the Hirshfeld surface mapped over dnorm.
[Figure 4]
Figure 4
Two-dimensional finger print plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯S/S⋯H, (e) H⋯N/N⋯H and (f) C⋯C.

The pair of short peaks at de + di = 3.1, i.e. almost equal to the sum of the van der Waals radius, in the fingerprint plot delineated into H⋯S/S⋯H contacts are indicative of short inter­atomic contacts in the crystal (6% contribution, Fig. 4[link]d). Although the H⋯N /N⋯H inter­actions have a notable contribution of 12% to the Hirshfeld surface (Fig. 4[link]e), their inter­atomic distances (de + di = 2.4 Å) are less than their van der Waals radius (2.7 Å), which means that it is a very strong inter­action in this structure. The presence of ππ stacking reflects the presence of C⋯C contacts (Fig. 4[link]f), which account for 7.9% of the Hirshfeld surface with de + di = 3.4 Å; the van der Waals radius is 3.4 Å, so we can confirm the presence of ππ stacking. Two further views of the Hirshfeld surface are shown in Fig. 5[link].

[Figure 5]
Figure 5
Two views of the Hirshfeld surface mapped over dnorm, with inter­actions to neighbouring mol­ecules shown as green dashed lines.

5. Database survey

A search of the Cambridge Structural Database (CSD, v5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (Z)-4-(thio­phen-2-yl­methyl­idene)isoxazol-5(4H)-one unit gave five hits: 4-(2-hydroxybenzyl­idene)-3-methyl­isoxazol-5(4H)-one (AJESAK; Cheng et al., 2009[Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012.]), 2-(naphthalen-1-yl)-4-(thio­phen-2-yl­methyl­idene)-1,3-oxazol-5(4H)-one (ERIXIN; Gündoğdu et al., 2011[Gündoğdu, C., Alp, S., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1321-o1322.]), (Z)-4-benzyl­idene-3-methyl­isoxazol-5(4H)-one (MBYIOZ01; Chandra et al., 2012[Chandra, N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091.]), 2-methyl-4-(thio­phen-2-yl­methyl­idene)-1,3-oxazol-5(4H)-one (WOYPIL; Sharma et al., 2015[Sharma, P., Subbulakshmi, K. N., Narayana, B., Byrappa, K. & Kant, R. (2015). Acta Cryst. E71, o123-o124.]) and (Z)-4-(4-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (VIDSAF; Zemamouche et al., 2018[Zemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926-930.]).

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules, as found for ERIXIN and WOYPIL while in AJESAK, MBYIOZ01 and VIDSAF, there is only one mol­ecule per asymmetric unit. The configuration about the C=C bond is Z in all five compounds and in each mol­ecule, the oxazol and thio­phene rings are inclined to one another by 3.67 (2), 10.00 (1), 0.86 (9), 7.02 (8), 2.65 (16), 4.55 (15), 6.50 (1), 7.98 (8) and 3.18 (8)°, respectively.

In the crystal of WOYPIL, the individual mol­ecules are linked via C—H⋯O hydrogen bonds, forming ABAB chains along the [10[\overline{1}]] direction, similarly in the crystal of the title compound, the packing of mol­ecules A and B is of an ABAB⋯ type along the [100] direction. In our compound, the cohesion of the crystal is ensured by inter­actions of the type C—H⋯O, C—H⋯π and ππ [inter­centroid distances of 3.701 (2) and 3.766 (2) Å compared with 3.811 (2) and 3.889 (2) Å in ERIXIN and 3.767 (2) and 3.867 (2) Å in WOYPIL].

6. Synthesis and crystallization

Thio­phene-2-carbaldehyde (C5H4OS, 1 mmol), hydroxyl­amine hydro­chloride (ClH4NO, 1 mmol), ethyl aceto­acetate (C6H10O3,1 mmol) and K2CO3 (5 mol%) were mixed in a 25 mL flask equipped with a magnetic stirrer. The mixture was refluxed in 5 mL of water for 3h (followed by TLC). When the reaction was judged to be finished, the mixture was gradually poured into ice-cold water. Stirring was maintained for a few minutes and the obtained solid was filtered and purified by crystallization from ethanol (yield 72%).

7. Refinement details

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C9H7NO2S
Mr 193.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 301
a, b, c (Å) 10.4660 (4), 12.1614 (5), 14.7636 (6)
β (°) 110.362 (1)
V3) 1761.71 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.31 × 0.20 × 0.10
 
Data collection
Diffractometer Agilent Technologies Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]))
Tmin, Tmax 0.758, 0.968
No. of measured, independent and observed [I > 2σ(I)] reflections 72470, 6743, 4110
Rint 0.084
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.239, 1.07
No. of reflections 6743
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.54
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(Z)-3-Methyl-4-(thiophen-2-ylmethylidene)isoxazol-5(4H)-one top
Crystal data top
C9H7NO2SF(000) = 800
Mr = 193.22Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6745 reflections
a = 10.4660 (4) Åθ = 2.2–33.2°
b = 12.1614 (5) ŵ = 0.33 mm1
c = 14.7636 (6) ÅT = 301 K
β = 110.362 (1)°Needle, white
V = 1761.71 (12) Å30.31 × 0.20 × 0.10 mm
Z = 8
Data collection top
Agilent Technologies Xcalibur, Eos
diffractometer
6743 independent reflections
Radiation source: Enhance (Mo) X-ray Source4110 reflections with I > 2σ(I)
Detector resolution: 8.02 pixels mm-1Rint = 0.084
ω scansθmax = 33.2°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013))
h = 1616
Tmin = 0.758, Tmax = 0.968k = 1818
72470 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1035P)2 + 1.1548P]
where P = (Fo2 + 2Fc2)/3
6743 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.54 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50289 (8)0.12735 (6)0.55602 (6)0.0497 (2)
S20.83062 (8)0.29525 (7)0.33090 (6)0.0532 (2)
O40.6147 (3)0.42483 (17)0.34895 (19)0.0640 (6)
O30.3944 (3)0.40232 (18)0.32977 (18)0.0637 (6)
O20.9633 (2)0.1945 (2)0.58548 (19)0.0614 (6)
O10.7799 (3)0.09198 (18)0.57358 (19)0.0621 (6)
N10.9970 (3)0.3094 (2)0.5893 (2)0.0568 (7)
C50.6521 (2)0.32586 (19)0.57740 (17)0.0341 (5)
H50.6443380.4016270.5822650.041*
C110.5024 (3)0.2451 (2)0.31621 (16)0.0363 (5)
N20.2960 (3)0.3124 (2)0.3099 (2)0.0592 (7)
C140.5970 (3)0.1692 (2)0.31523 (17)0.0361 (5)
H140.5635410.0976870.3056930.043*
C30.8908 (3)0.3632 (2)0.58677 (19)0.0418 (6)
C160.8203 (3)0.0795 (3)0.3326 (2)0.0465 (6)
H160.790390.0073120.3313230.056*
C150.7368 (3)0.1771 (2)0.32585 (17)0.0364 (5)
C60.5301 (2)0.2673 (2)0.56833 (16)0.0324 (4)
C90.3378 (3)0.1419 (3)0.5469 (2)0.0550 (8)
H90.2776090.0832360.5374560.066*
C100.5189 (3)0.3637 (2)0.3330 (2)0.0465 (6)
C120.3616 (3)0.2241 (2)0.30278 (18)0.0416 (6)
C70.4104 (3)0.3206 (2)0.56579 (19)0.0418 (6)
H70.4033060.396360.5708860.05*
C20.7769 (2)0.2927 (2)0.58031 (17)0.0355 (5)
C80.3026 (3)0.2476 (3)0.5548 (2)0.0519 (7)
H80.2165440.2693180.5530160.062*
C10.8307 (3)0.1822 (2)0.5786 (2)0.0443 (6)
C130.2887 (3)0.1175 (3)0.2820 (2)0.0532 (7)
H13A0.3507050.0605650.2790270.08*
H13B0.2533530.1009020.3323770.08*
H13C0.2149670.1218520.2212890.08*
C180.9717 (3)0.2218 (3)0.3399 (3)0.0583 (8)
H181.0539290.2539530.3435470.07*
C40.8928 (4)0.4854 (3)0.5881 (3)0.0646 (9)
H4A0.8055540.5124820.5858660.097*
H4B0.9619170.5106120.6461950.097*
H4C0.9121030.5121350.5330230.097*
C170.9534 (3)0.1117 (3)0.3413 (3)0.0566 (8)
H171.0229340.0614620.3474170.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0513 (4)0.0345 (3)0.0660 (5)0.0054 (3)0.0238 (3)0.0015 (3)
S20.0498 (4)0.0494 (4)0.0636 (5)0.0118 (3)0.0237 (3)0.0100 (3)
O40.0809 (17)0.0329 (10)0.0859 (16)0.0047 (11)0.0387 (14)0.0056 (10)
O30.0730 (16)0.0448 (12)0.0793 (15)0.0232 (11)0.0341 (13)0.0034 (11)
O20.0423 (11)0.0631 (14)0.0834 (16)0.0140 (10)0.0278 (11)0.0066 (12)
O10.0627 (14)0.0389 (11)0.0916 (17)0.0077 (10)0.0354 (13)0.0033 (11)
N10.0374 (12)0.0693 (18)0.0679 (16)0.0039 (12)0.0237 (11)0.0109 (13)
C50.0345 (11)0.0299 (10)0.0394 (11)0.0009 (9)0.0147 (9)0.0022 (8)
C110.0417 (12)0.0362 (12)0.0331 (11)0.0051 (10)0.0157 (9)0.0013 (9)
N20.0530 (15)0.0618 (17)0.0671 (16)0.0191 (13)0.0263 (13)0.0006 (13)
C140.0374 (12)0.0318 (11)0.0422 (12)0.0015 (9)0.0176 (10)0.0020 (9)
C30.0337 (12)0.0526 (15)0.0426 (12)0.0043 (11)0.0176 (10)0.0049 (11)
C160.0339 (12)0.0606 (17)0.0494 (14)0.0057 (12)0.0203 (11)0.0100 (12)
C150.0354 (12)0.0373 (12)0.0385 (11)0.0018 (9)0.0152 (9)0.0033 (9)
C60.0322 (11)0.0333 (11)0.0336 (10)0.0009 (8)0.0139 (8)0.0031 (8)
C90.0515 (17)0.0628 (19)0.0546 (16)0.0228 (15)0.0234 (14)0.0033 (14)
C100.0633 (18)0.0370 (13)0.0442 (13)0.0105 (12)0.0250 (13)0.0043 (10)
C120.0399 (13)0.0478 (14)0.0395 (12)0.0097 (11)0.0168 (10)0.0036 (10)
C70.0351 (12)0.0447 (14)0.0470 (13)0.0004 (10)0.0159 (10)0.0069 (11)
C20.0322 (11)0.0377 (12)0.0384 (11)0.0002 (9)0.0147 (9)0.0011 (9)
C80.0327 (12)0.072 (2)0.0532 (15)0.0035 (13)0.0182 (11)0.0082 (14)
C10.0399 (14)0.0447 (14)0.0525 (14)0.0071 (11)0.0212 (11)0.0010 (11)
C130.0348 (13)0.0605 (18)0.0669 (18)0.0018 (12)0.0209 (13)0.0016 (14)
C180.0392 (15)0.068 (2)0.070 (2)0.0122 (14)0.0218 (14)0.0102 (16)
C40.0546 (19)0.0530 (18)0.093 (2)0.0161 (15)0.0339 (18)0.0061 (17)
C170.0416 (15)0.064 (2)0.0678 (19)0.0066 (14)0.0238 (14)0.0052 (15)
Geometric parameters (Å, º) top
S1—C91.695 (3)C3—C41.487 (4)
S1—C61.725 (2)C16—C171.410 (4)
S2—C181.691 (4)C16—C151.457 (4)
S2—C151.727 (3)C16—H160.93
O4—C101.204 (4)C6—C71.399 (3)
O3—C101.370 (4)C9—C81.354 (5)
O3—N21.460 (4)C9—H90.93
O2—C11.365 (4)C12—C131.481 (4)
O2—N11.437 (4)C7—C81.400 (4)
O1—C11.210 (4)C7—H70.93
N1—C31.280 (4)C2—C11.460 (4)
C5—C21.354 (3)C8—H80.93
C5—C61.427 (3)C13—H13A0.96
C5—H50.93C13—H13B0.96
C11—C141.357 (3)C13—H13C0.96
C11—C121.440 (4)C18—C171.354 (5)
C11—C101.463 (4)C18—H180.93
N2—C121.299 (4)C4—H4A0.96
C14—C151.420 (3)C4—H4B0.96
C14—H140.93C4—H4C0.96
C3—C21.444 (4)C17—H170.93
C9—S1—C691.80 (14)N2—C12—C11112.7 (3)
C18—S2—C1591.80 (15)N2—C12—C13119.5 (3)
C10—O3—N2110.2 (2)C11—C12—C13127.8 (2)
C1—O2—N1109.8 (2)C6—C7—C8112.8 (3)
C3—N1—O2107.3 (2)C6—C7—H7123.6
C2—C5—C6132.6 (2)C8—C7—H7123.6
C2—C5—H5113.7C5—C2—C3126.2 (2)
C6—C5—H5113.7C5—C2—C1130.3 (2)
C14—C11—C12126.4 (2)C3—C2—C1103.5 (2)
C14—C11—C10129.0 (3)C9—C8—C7112.3 (3)
C12—C11—C10104.6 (2)C9—C8—H8123.9
C12—N2—O3106.3 (3)C7—C8—H8123.9
C11—C14—C15132.9 (2)O1—C1—O2121.1 (3)
C11—C14—H14113.6O1—C1—C2132.2 (3)
C15—C14—H14113.6O2—C1—C2106.6 (2)
N1—C3—C2112.8 (3)C12—C13—H13A109.5
N1—C3—C4120.2 (3)C12—C13—H13B109.5
C2—C3—C4127.0 (3)H13A—C13—H13B109.5
C17—C16—C15109.3 (3)C12—C13—H13C109.5
C17—C16—H16125.4H13A—C13—H13C109.5
C15—C16—H16125.4H13B—C13—H13C109.5
C14—C15—C16121.5 (2)C17—C18—S2113.6 (2)
C14—C15—S2127.6 (2)C17—C18—H18123.2
C16—C15—S2110.91 (19)S2—C18—H18123.2
C7—C6—C5122.3 (2)C3—C4—H4A109.5
C7—C6—S1109.93 (19)C3—C4—H4B109.5
C5—C6—S1127.71 (18)H4A—C4—H4B109.5
C8—C9—S1113.2 (2)C3—C4—H4C109.5
C8—C9—H9123.4H4A—C4—H4C109.5
S1—C9—H9123.4H4B—C4—H4C109.5
O4—C10—O3120.8 (3)C18—C17—C16114.4 (3)
O4—C10—C11133.0 (3)C18—C17—H17122.8
O3—C10—C11106.1 (3)C16—C17—H17122.8
C1—O2—N1—C31.2 (3)O3—N2—C12—C13179.7 (2)
C10—O3—N2—C120.6 (3)C14—C11—C12—N2178.3 (3)
C12—C11—C14—C15179.0 (3)C10—C11—C12—N20.4 (3)
C10—C11—C14—C152.7 (5)C14—C11—C12—C132.2 (4)
O2—N1—C3—C20.5 (3)C10—C11—C12—C13179.2 (3)
O2—N1—C3—C4179.0 (3)C5—C6—C7—C8178.9 (2)
C11—C14—C15—C16173.0 (3)S1—C6—C7—C80.4 (3)
C11—C14—C15—S28.0 (4)C6—C5—C2—C3177.9 (2)
C17—C16—C15—C14179.2 (2)C6—C5—C2—C12.6 (5)
C17—C16—C15—S20.0 (3)N1—C3—C2—C5179.3 (3)
C18—S2—C15—C14178.4 (2)C4—C3—C2—C52.3 (5)
C18—S2—C15—C160.7 (2)N1—C3—C2—C10.3 (3)
C2—C5—C6—C7179.2 (3)C4—C3—C2—C1178.1 (3)
C2—C5—C6—S10.9 (4)S1—C9—C8—C71.8 (4)
C9—S1—C6—C70.5 (2)C6—C7—C8—C91.4 (4)
C9—S1—C6—C5177.9 (2)N1—O2—C1—O1179.3 (3)
C6—S1—C9—C81.3 (3)N1—O2—C1—C21.4 (3)
N2—O3—C10—O4179.7 (3)C5—C2—C1—O10.6 (6)
N2—O3—C10—C110.8 (3)C3—C2—C1—O1179.8 (3)
C14—C11—C10—O40.8 (5)C5—C2—C1—O2178.6 (3)
C12—C11—C10—O4179.4 (3)C3—C2—C1—O21.0 (3)
C14—C11—C10—O3177.9 (2)C15—S2—C18—C171.2 (3)
C12—C11—C10—O30.7 (3)S2—C18—C17—C161.5 (4)
O3—N2—C12—C110.1 (3)C15—C16—C17—C180.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.513.387 (3)156
C8—H8···N1ii0.932.583.491 (5)166
C13—H13c···N1iii0.962.573.487 (4)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x1, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge Ferhat Abbas University of Setif for assistance with the data collection.

References

First citationAbbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893.  Web of Science CrossRef CAS Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBadrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Sci. 6, 236–239.  CAS Google Scholar
First citationBatra, S. & Bhaduri, A. P. (1994). Indian Inst. Sci. 74, 213–226.  CAS Google Scholar
First citationChandra, N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091.  CSD CrossRef IUCr Journals Google Scholar
First citationCheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGündoğdu, C., Alp, S., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1321–o1322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLaughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564–6569.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMiyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89–94.  Web of Science CrossRef CAS Google Scholar
First citationSharma, P., Subbulakshmi, K. N., Narayana, B., Byrappa, K. & Kant, R. (2015). Acta Cryst. E71, o123–o124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTomita, K., Murakami, T. & Yamazaki, Y. (1977). US patent 4044018 A.  Google Scholar
First citationTu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem. 5, 1450–1453.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationZemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926–930.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds