research communications
Z)-3-methyl-4-(thiophen-2-ylmethylidene)isoxazol-5(4H)-one
and Hirshfeld surface analysis of (aLaboratoire de Synthèse de Molécules d'Intérêts Biologiques, Département de Chimie, Université Mentouri Constantine, 25000, Algeria, and bLaboratoire de Cristallographie, Département de Physique, Université Mentouri Constantine, 25000, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr
The title compound, C9H7NO2S crystallizes with two independent molecules (A and B) in the with Z = 8. Both molecules are almost planar with a dihedral angle between the isoxazole and thiophen rings of 3.67 (2)° in molecule A and 10.00 (1) ° in molecule B. The packing of molecules A and B is of an ABAB⋯ type along the b-axis direction, the configuration about the C=C bond is Z. In the crystal, the presence of C—H⋯O, C—H⋯ N and π–π interactions [centroid–centroid distances of 3.701 (2) and 3.766 (2) Å] link the molecules into a three-dimensional architecture. An analysis of Hirshfeld surfaces shows the importance of C—H⋯O and C—H⋯N hydrogen bonds in the packing mechanism of the crystalline structure.
Keywords: crystal structure; π–π interactions; isoxazole; Hirshfeld surface.
CCDC reference: 2069004
1. Chemical context
Isoxazolones show some interesting biological properties. They are inhibitors of the factorization of tumor necrosis alpha (TNF-α) (Laughlin et al., 2005) and antimicrobial (Mazimba et al., 2014). They are used for the treatment of cerebrovascular disorders and as muscle relaxants. They are also herbicides (Tomita et al., 1977) and fungicides (Miyake et al., 2012). On other hand, isoxazolone derivatives constitute excellent intermediates for the synthesis of various heterocycles such as pyridopyrimidines (Tu et al., 2006), quinolines (Abbiati et al., 2003) and undergo various chemical transformations (Batra & Bhaduri, 1994). Some cycloaddition reactions are also described and provide access to several types of polycycles (Badrey & Gomha, 2014). For these reasons, these compounds have been the subject of several investigations. The present method for their synthesis is a three-component between an aromatic aldehyde, ethyl acetoacetate and hydroxylamine hydrochloride under different conditions and for our part we propose here the use of K2CO3, a food additive, tolerated in organic agriculture, very inexpensive, highly available and a safe catalyst, in an aqueous medium. In the present study, we report on the synthesis, molecular and together with a Hirshfeld surface analysis of the title isoxazole derivative.
2. Structural commentary
The molecular structure of the title compound is shown in (Fig. 1). It crystallizes with two independent molecules (A and B) in the The molecular structure adopts a Z-configuration about the C=C [1.354 (3) Å in molecule A and 1.357 (3) Å in molecule B] double bonds.
The bond lengths in the two molecules are practically equal, while there are slight differences in bond angles; with for example C2—C3—C4 (molecule A) and C11—C12—C13 (molecule B) differing by 0.8 (2)°. Also, a slight difference of 0.3 (2)° is observed between the angles C2—C5—C6 and C11—C14—C15. In molecule A, the angle between the normal of the molecular plane (O2A/N1A/C1A–C3A) and the normal of the (S1A/C6A–C9A) plane is 3.67 (2)°. An important difference is observed in molecule B, where the angle between the normal of the molecular plane (O3B/N2B/C10B–C12B) and the normal of the (S2B/C15B–C18B) plane is 10.00 (1)°. In the molecular skeleton, the angle between the mean planes of the molecules A and B is 4.09 (1)°. Each of the two methyl groups, C4 and C13, has a C—H bond lying in the mean plane of the molecular skeleton, and they are oriented toward the thiophene group.
3. Supramolecular features
In the crystal, the structure consists of wavy layers containing molecules of the same type, forming an alternated packing described by an ABAB⋯ sequence (Fig. 2). The molecules form infinite chains along the b-axis direction. They are linked by offset π–π interactions: [Cg1⋯Cg2i = 3.701 (2) Å and Cg3⋯Cg4ii = 3.766 (2) Å where Cg1, Cg2, Cg3 and Cg4 are the centroids of the O2A/N1A/C1A–C3A, S2B/C15B–C18B, S1A/C6A–C9A and O3B/N2B/C10B–C12B rings, respectively; symmetry codes: (i) −x, + y, − z; (ii) −x, − y, + z]. The two molecules A and B are involved in intermolecular C—H⋯O and C—H⋯N hydrogen bonds (Table 1).
4. Analysis of the Hirshfeld surfaces
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated with CrystalExplorer (Turner et al., 2017). The analysis of Hirshfeld surface mapped over dnorm is shown in (Fig. 3). The interactions between the corresponding donor and acceptor atoms are visualized as bright-red spots on both sides (zones 1, 2, 3 and 4) of the Hirshfeld surfaces (Fig. 3), corresponding to C17—H17⋯N2, C4—H4C⋯N2, C16—H16⋯O2 and C18—H18⋯O4 hydrogen bonds, respectively. Two other red spots exist, corresponding to C4—H4A⋯O interactions (Fig. 3, zone 5), are considered to be very weak interactions, comparing them to the van der Waals radii. The overall two-dimensional fingerprint plot of the structure and H⋯S/S⋯H, H⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 4a–m). The H⋯H contacts, accounting for about 35.4% of the Hirshfeld surface (Fig. 4b) represent the largest contribution and are seen in the fingerprint plot as a pair of shorts pikes at de + di = 2.2 Å; comparing this to van der Waals radius, we find the difference between them is about 1 Å, which means it is a very powerful interaction. H⋯O/O⋯H contacts (Fig. 4c) make a contribution of 28.7%, with a distinctive peak in the fingerprint plot at de + di = 2.4 Å; the van der Waals radius sum for this interaction is about 2.7 Å.
The pair of short peaks at de + di = 3.1, i.e. almost equal to the sum of the van der Waals radius, in the fingerprint plot delineated into H⋯S/S⋯H contacts are indicative of short interatomic contacts in the crystal (6% contribution, Fig. 4d). Although the H⋯N /N⋯H interactions have a notable contribution of 12% to the Hirshfeld surface (Fig. 4e), their interatomic distances (de + di = 2.4 Å) are less than their van der Waals radius (2.7 Å), which means that it is a very strong interaction in this structure. The presence of π–π stacking reflects the presence of C⋯C contacts (Fig. 4f), which account for 7.9% of the Hirshfeld surface with de + di = 3.4 Å; the van der Waals radius is 3.4 Å, so we can confirm the presence of π–π stacking. Two further views of the Hirshfeld surface are shown in Fig. 5.
5. Database survey
A search of the Cambridge Structural Database (CSD, v5.40, last update May 2019; Groom et al., 2016) for the (Z)-4-(thiophen-2-ylmethylidene)isoxazol-5(4H)-one unit gave five hits: 4-(2-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one (AJESAK; Cheng et al., 2009), 2-(naphthalen-1-yl)-4-(thiophen-2-ylmethylidene)-1,3-oxazol-5(4H)-one (ERIXIN; Gündoğdu et al., 2011), (Z)-4-benzylidene-3-methylisoxazol-5(4H)-one (MBYIOZ01; Chandra et al., 2012), 2-methyl-4-(thiophen-2-ylmethylidene)-1,3-oxazol-5(4H)-one (WOYPIL; Sharma et al., 2015) and (Z)-4-(4-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one (VIDSAF; Zemamouche et al., 2018).
The Z in all five compounds and in each molecule, the oxazol and thiophene rings are inclined to one another by 3.67 (2), 10.00 (1), 0.86 (9), 7.02 (8), 2.65 (16), 4.55 (15), 6.50 (1), 7.98 (8) and 3.18 (8)°, respectively.
of the title compound contains two crystallographically independent molecules, as found for ERIXIN and WOYPIL while in AJESAK, MBYIOZ01 and VIDSAF, there is only one molecule per The configuration about the C=C bond isIn the crystal of WOYPIL, the individual molecules are linked via C—H⋯O hydrogen bonds, forming ABAB chains along the [10] direction, similarly in the crystal of the title compound, the packing of molecules A and B is of an ABAB⋯ type along the [100] direction. In our compound, the cohesion of the crystal is ensured by interactions of the type C—H⋯O, C—H⋯π and π–π [intercentroid distances of 3.701 (2) and 3.766 (2) Å compared with 3.811 (2) and 3.889 (2) Å in ERIXIN and 3.767 (2) and 3.867 (2) Å in WOYPIL].
6. Synthesis and crystallization
Thiophene-2-carbaldehyde (C5H4OS, 1 mmol), hydroxylamine hydrochloride (ClH4NO, 1 mmol), ethyl acetoacetate (C6H10O3,1 mmol) and K2CO3 (5 mol%) were mixed in a 25 mL flask equipped with a magnetic stirrer. The mixture was refluxed in 5 mL of water for 3h (followed by TLC). When the reaction was judged to be finished, the mixture was gradually poured into ice-cold water. Stirring was maintained for a few minutes and the obtained solid was filtered and purified by crystallization from ethanol (yield 72%).
7. details
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).
details for the title compound are summarized in Table 2Supporting information
CCDC reference: 2069004
https://doi.org/10.1107/S2056989021002632/zn2002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021002632/zn2002Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002632/zn2002Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C9H7NO2S | F(000) = 800 |
Mr = 193.22 | Dx = 1.457 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6745 reflections |
a = 10.4660 (4) Å | θ = 2.2–33.2° |
b = 12.1614 (5) Å | µ = 0.33 mm−1 |
c = 14.7636 (6) Å | T = 301 K |
β = 110.362 (1)° | Needle, white |
V = 1761.71 (12) Å3 | 0.31 × 0.20 × 0.10 mm |
Z = 8 |
Agilent Technologies Xcalibur, Eos diffractometer | 6743 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4110 reflections with I > 2σ(I) |
Detector resolution: 8.02 pixels mm-1 | Rint = 0.084 |
ω scans | θmax = 33.2°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013)) | h = −16→16 |
Tmin = 0.758, Tmax = 0.968 | k = −18→18 |
72470 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.079 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.239 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.1035P)2 + 1.1548P] where P = (Fo2 + 2Fc2)/3 |
6743 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.50289 (8) | 0.12735 (6) | 0.55602 (6) | 0.0497 (2) | |
S2 | 0.83062 (8) | 0.29525 (7) | 0.33090 (6) | 0.0532 (2) | |
O4 | 0.6147 (3) | 0.42483 (17) | 0.34895 (19) | 0.0640 (6) | |
O3 | 0.3944 (3) | 0.40232 (18) | 0.32977 (18) | 0.0637 (6) | |
O2 | 0.9633 (2) | 0.1945 (2) | 0.58548 (19) | 0.0614 (6) | |
O1 | 0.7799 (3) | 0.09198 (18) | 0.57358 (19) | 0.0621 (6) | |
N1 | 0.9970 (3) | 0.3094 (2) | 0.5893 (2) | 0.0568 (7) | |
C5 | 0.6521 (2) | 0.32586 (19) | 0.57740 (17) | 0.0341 (5) | |
H5 | 0.644338 | 0.401627 | 0.582265 | 0.041* | |
C11 | 0.5024 (3) | 0.2451 (2) | 0.31621 (16) | 0.0363 (5) | |
N2 | 0.2960 (3) | 0.3124 (2) | 0.3099 (2) | 0.0592 (7) | |
C14 | 0.5970 (3) | 0.1692 (2) | 0.31523 (17) | 0.0361 (5) | |
H14 | 0.563541 | 0.097687 | 0.305693 | 0.043* | |
C3 | 0.8908 (3) | 0.3632 (2) | 0.58677 (19) | 0.0418 (6) | |
C16 | 0.8203 (3) | 0.0795 (3) | 0.3326 (2) | 0.0465 (6) | |
H16 | 0.79039 | 0.007312 | 0.331323 | 0.056* | |
C15 | 0.7368 (3) | 0.1771 (2) | 0.32585 (17) | 0.0364 (5) | |
C6 | 0.5301 (2) | 0.2673 (2) | 0.56833 (16) | 0.0324 (4) | |
C9 | 0.3378 (3) | 0.1419 (3) | 0.5469 (2) | 0.0550 (8) | |
H9 | 0.277609 | 0.083236 | 0.537456 | 0.066* | |
C10 | 0.5189 (3) | 0.3637 (2) | 0.3330 (2) | 0.0465 (6) | |
C12 | 0.3616 (3) | 0.2241 (2) | 0.30278 (18) | 0.0416 (6) | |
C7 | 0.4104 (3) | 0.3206 (2) | 0.56579 (19) | 0.0418 (6) | |
H7 | 0.403306 | 0.39636 | 0.570886 | 0.05* | |
C2 | 0.7769 (2) | 0.2927 (2) | 0.58031 (17) | 0.0355 (5) | |
C8 | 0.3026 (3) | 0.2476 (3) | 0.5548 (2) | 0.0519 (7) | |
H8 | 0.216544 | 0.269318 | 0.553016 | 0.062* | |
C1 | 0.8307 (3) | 0.1822 (2) | 0.5786 (2) | 0.0443 (6) | |
C13 | 0.2887 (3) | 0.1175 (3) | 0.2820 (2) | 0.0532 (7) | |
H13A | 0.350705 | 0.060565 | 0.279027 | 0.08* | |
H13B | 0.253353 | 0.100902 | 0.332377 | 0.08* | |
H13C | 0.214967 | 0.121852 | 0.221289 | 0.08* | |
C18 | 0.9717 (3) | 0.2218 (3) | 0.3399 (3) | 0.0583 (8) | |
H18 | 1.053929 | 0.253953 | 0.343547 | 0.07* | |
C4 | 0.8928 (4) | 0.4854 (3) | 0.5881 (3) | 0.0646 (9) | |
H4A | 0.805554 | 0.512482 | 0.585866 | 0.097* | |
H4B | 0.961917 | 0.510612 | 0.646195 | 0.097* | |
H4C | 0.912103 | 0.512135 | 0.533023 | 0.097* | |
C17 | 0.9534 (3) | 0.1117 (3) | 0.3413 (3) | 0.0566 (8) | |
H17 | 1.022934 | 0.061462 | 0.347417 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0513 (4) | 0.0345 (3) | 0.0660 (5) | −0.0054 (3) | 0.0238 (3) | −0.0015 (3) |
S2 | 0.0498 (4) | 0.0494 (4) | 0.0636 (5) | −0.0118 (3) | 0.0237 (3) | −0.0100 (3) |
O4 | 0.0809 (17) | 0.0329 (10) | 0.0859 (16) | −0.0047 (11) | 0.0387 (14) | −0.0056 (10) |
O3 | 0.0730 (16) | 0.0448 (12) | 0.0793 (15) | 0.0232 (11) | 0.0341 (13) | 0.0034 (11) |
O2 | 0.0423 (11) | 0.0631 (14) | 0.0834 (16) | 0.0140 (10) | 0.0278 (11) | −0.0066 (12) |
O1 | 0.0627 (14) | 0.0389 (11) | 0.0916 (17) | 0.0077 (10) | 0.0354 (13) | −0.0033 (11) |
N1 | 0.0374 (12) | 0.0693 (18) | 0.0679 (16) | −0.0039 (12) | 0.0237 (11) | −0.0109 (13) |
C5 | 0.0345 (11) | 0.0299 (10) | 0.0394 (11) | 0.0009 (9) | 0.0147 (9) | −0.0022 (8) |
C11 | 0.0417 (12) | 0.0362 (12) | 0.0331 (11) | 0.0051 (10) | 0.0157 (9) | 0.0013 (9) |
N2 | 0.0530 (15) | 0.0618 (17) | 0.0671 (16) | 0.0191 (13) | 0.0263 (13) | 0.0006 (13) |
C14 | 0.0374 (12) | 0.0318 (11) | 0.0422 (12) | −0.0015 (9) | 0.0176 (10) | −0.0020 (9) |
C3 | 0.0337 (12) | 0.0526 (15) | 0.0426 (12) | −0.0043 (11) | 0.0176 (10) | −0.0049 (11) |
C16 | 0.0339 (12) | 0.0606 (17) | 0.0494 (14) | −0.0057 (12) | 0.0203 (11) | −0.0100 (12) |
C15 | 0.0354 (12) | 0.0373 (12) | 0.0385 (11) | −0.0018 (9) | 0.0152 (9) | −0.0033 (9) |
C6 | 0.0322 (11) | 0.0333 (11) | 0.0336 (10) | −0.0009 (8) | 0.0139 (8) | −0.0031 (8) |
C9 | 0.0515 (17) | 0.0628 (19) | 0.0546 (16) | −0.0228 (15) | 0.0234 (14) | −0.0033 (14) |
C10 | 0.0633 (18) | 0.0370 (13) | 0.0442 (13) | 0.0105 (12) | 0.0250 (13) | 0.0043 (10) |
C12 | 0.0399 (13) | 0.0478 (14) | 0.0395 (12) | 0.0097 (11) | 0.0168 (10) | 0.0036 (10) |
C7 | 0.0351 (12) | 0.0447 (14) | 0.0470 (13) | 0.0004 (10) | 0.0159 (10) | −0.0069 (11) |
C2 | 0.0322 (11) | 0.0377 (12) | 0.0384 (11) | −0.0002 (9) | 0.0147 (9) | −0.0011 (9) |
C8 | 0.0327 (12) | 0.072 (2) | 0.0532 (15) | −0.0035 (13) | 0.0182 (11) | −0.0082 (14) |
C1 | 0.0399 (14) | 0.0447 (14) | 0.0525 (14) | 0.0071 (11) | 0.0212 (11) | −0.0010 (11) |
C13 | 0.0348 (13) | 0.0605 (18) | 0.0669 (18) | 0.0018 (12) | 0.0209 (13) | −0.0016 (14) |
C18 | 0.0392 (15) | 0.068 (2) | 0.070 (2) | −0.0122 (14) | 0.0218 (14) | −0.0102 (16) |
C4 | 0.0546 (19) | 0.0530 (18) | 0.093 (2) | −0.0161 (15) | 0.0339 (18) | −0.0061 (17) |
C17 | 0.0416 (15) | 0.064 (2) | 0.0678 (19) | 0.0066 (14) | 0.0238 (14) | −0.0052 (15) |
S1—C9 | 1.695 (3) | C3—C4 | 1.487 (4) |
S1—C6 | 1.725 (2) | C16—C17 | 1.410 (4) |
S2—C18 | 1.691 (4) | C16—C15 | 1.457 (4) |
S2—C15 | 1.727 (3) | C16—H16 | 0.93 |
O4—C10 | 1.204 (4) | C6—C7 | 1.399 (3) |
O3—C10 | 1.370 (4) | C9—C8 | 1.354 (5) |
O3—N2 | 1.460 (4) | C9—H9 | 0.93 |
O2—C1 | 1.365 (4) | C12—C13 | 1.481 (4) |
O2—N1 | 1.437 (4) | C7—C8 | 1.400 (4) |
O1—C1 | 1.210 (4) | C7—H7 | 0.93 |
N1—C3 | 1.280 (4) | C2—C1 | 1.460 (4) |
C5—C2 | 1.354 (3) | C8—H8 | 0.93 |
C5—C6 | 1.427 (3) | C13—H13A | 0.96 |
C5—H5 | 0.93 | C13—H13B | 0.96 |
C11—C14 | 1.357 (3) | C13—H13C | 0.96 |
C11—C12 | 1.440 (4) | C18—C17 | 1.354 (5) |
C11—C10 | 1.463 (4) | C18—H18 | 0.93 |
N2—C12 | 1.299 (4) | C4—H4A | 0.96 |
C14—C15 | 1.420 (3) | C4—H4B | 0.96 |
C14—H14 | 0.93 | C4—H4C | 0.96 |
C3—C2 | 1.444 (4) | C17—H17 | 0.93 |
C9—S1—C6 | 91.80 (14) | N2—C12—C11 | 112.7 (3) |
C18—S2—C15 | 91.80 (15) | N2—C12—C13 | 119.5 (3) |
C10—O3—N2 | 110.2 (2) | C11—C12—C13 | 127.8 (2) |
C1—O2—N1 | 109.8 (2) | C6—C7—C8 | 112.8 (3) |
C3—N1—O2 | 107.3 (2) | C6—C7—H7 | 123.6 |
C2—C5—C6 | 132.6 (2) | C8—C7—H7 | 123.6 |
C2—C5—H5 | 113.7 | C5—C2—C3 | 126.2 (2) |
C6—C5—H5 | 113.7 | C5—C2—C1 | 130.3 (2) |
C14—C11—C12 | 126.4 (2) | C3—C2—C1 | 103.5 (2) |
C14—C11—C10 | 129.0 (3) | C9—C8—C7 | 112.3 (3) |
C12—C11—C10 | 104.6 (2) | C9—C8—H8 | 123.9 |
C12—N2—O3 | 106.3 (3) | C7—C8—H8 | 123.9 |
C11—C14—C15 | 132.9 (2) | O1—C1—O2 | 121.1 (3) |
C11—C14—H14 | 113.6 | O1—C1—C2 | 132.2 (3) |
C15—C14—H14 | 113.6 | O2—C1—C2 | 106.6 (2) |
N1—C3—C2 | 112.8 (3) | C12—C13—H13A | 109.5 |
N1—C3—C4 | 120.2 (3) | C12—C13—H13B | 109.5 |
C2—C3—C4 | 127.0 (3) | H13A—C13—H13B | 109.5 |
C17—C16—C15 | 109.3 (3) | C12—C13—H13C | 109.5 |
C17—C16—H16 | 125.4 | H13A—C13—H13C | 109.5 |
C15—C16—H16 | 125.4 | H13B—C13—H13C | 109.5 |
C14—C15—C16 | 121.5 (2) | C17—C18—S2 | 113.6 (2) |
C14—C15—S2 | 127.6 (2) | C17—C18—H18 | 123.2 |
C16—C15—S2 | 110.91 (19) | S2—C18—H18 | 123.2 |
C7—C6—C5 | 122.3 (2) | C3—C4—H4A | 109.5 |
C7—C6—S1 | 109.93 (19) | C3—C4—H4B | 109.5 |
C5—C6—S1 | 127.71 (18) | H4A—C4—H4B | 109.5 |
C8—C9—S1 | 113.2 (2) | C3—C4—H4C | 109.5 |
C8—C9—H9 | 123.4 | H4A—C4—H4C | 109.5 |
S1—C9—H9 | 123.4 | H4B—C4—H4C | 109.5 |
O4—C10—O3 | 120.8 (3) | C18—C17—C16 | 114.4 (3) |
O4—C10—C11 | 133.0 (3) | C18—C17—H17 | 122.8 |
O3—C10—C11 | 106.1 (3) | C16—C17—H17 | 122.8 |
C1—O2—N1—C3 | 1.2 (3) | O3—N2—C12—C13 | −179.7 (2) |
C10—O3—N2—C12 | 0.6 (3) | C14—C11—C12—N2 | 178.3 (3) |
C12—C11—C14—C15 | 179.0 (3) | C10—C11—C12—N2 | −0.4 (3) |
C10—C11—C14—C15 | −2.7 (5) | C14—C11—C12—C13 | −2.2 (4) |
O2—N1—C3—C2 | −0.5 (3) | C10—C11—C12—C13 | 179.2 (3) |
O2—N1—C3—C4 | −179.0 (3) | C5—C6—C7—C8 | 178.9 (2) |
C11—C14—C15—C16 | 173.0 (3) | S1—C6—C7—C8 | 0.4 (3) |
C11—C14—C15—S2 | −8.0 (4) | C6—C5—C2—C3 | 177.9 (2) |
C17—C16—C15—C14 | 179.2 (2) | C6—C5—C2—C1 | −2.6 (5) |
C17—C16—C15—S2 | 0.0 (3) | N1—C3—C2—C5 | 179.3 (3) |
C18—S2—C15—C14 | −178.4 (2) | C4—C3—C2—C5 | −2.3 (5) |
C18—S2—C15—C16 | 0.7 (2) | N1—C3—C2—C1 | −0.3 (3) |
C2—C5—C6—C7 | −179.2 (3) | C4—C3—C2—C1 | 178.1 (3) |
C2—C5—C6—S1 | −0.9 (4) | S1—C9—C8—C7 | 1.8 (4) |
C9—S1—C6—C7 | 0.5 (2) | C6—C7—C8—C9 | −1.4 (4) |
C9—S1—C6—C5 | −177.9 (2) | N1—O2—C1—O1 | 179.3 (3) |
C6—S1—C9—C8 | −1.3 (3) | N1—O2—C1—C2 | −1.4 (3) |
N2—O3—C10—O4 | −179.7 (3) | C5—C2—C1—O1 | 0.6 (6) |
N2—O3—C10—C11 | −0.8 (3) | C3—C2—C1—O1 | −179.8 (3) |
C14—C11—C10—O4 | 0.8 (5) | C5—C2—C1—O2 | −178.6 (3) |
C12—C11—C10—O4 | 179.4 (3) | C3—C2—C1—O2 | 1.0 (3) |
C14—C11—C10—O3 | −177.9 (2) | C15—S2—C18—C17 | −1.2 (3) |
C12—C11—C10—O3 | 0.7 (3) | S2—C18—C17—C16 | 1.5 (4) |
O3—N2—C12—C11 | −0.1 (3) | C15—C16—C17—C18 | −0.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O4i | 0.93 | 2.51 | 3.387 (3) | 156 |
C8—H8···N1ii | 0.93 | 2.58 | 3.491 (5) | 166 |
C13—H13c···N1iii | 0.96 | 2.57 | 3.487 (4) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x−1, −y+1/2, z−1/2. |
Acknowledgements
The authors gratefully acknowledge Ferhat Abbas University of Setif for assistance with the data collection.
References
Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893. Web of Science CrossRef CAS Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Badrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Sci. 6, 236–239. CAS Google Scholar
Batra, S. & Bhaduri, A. P. (1994). Indian Inst. Sci. 74, 213–226. CAS Google Scholar
Chandra, N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091. CSD CrossRef IUCr Journals Google Scholar
Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gündoğdu, C., Alp, S., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1321–o1322. Web of Science CSD CrossRef IUCr Journals Google Scholar
Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564–6569. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Miyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89–94. Web of Science CrossRef CAS Google Scholar
Sharma, P., Subbulakshmi, K. N., Narayana, B., Byrappa, K. & Kant, R. (2015). Acta Cryst. E71, o123–o124. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tomita, K., Murakami, T. & Yamazaki, Y. (1977). US patent 4044018 A. Google Scholar
Tu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem. 5, 1450–1453. Web of Science CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Zemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926–930. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.