research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a copper(II) complex containing 2-nitro­benzoate and tetra­methyl­ethylenedi­amine ligands

CROSSMARK_Color_square_no_text.svg

aDepartment of Fundamental Sciences, Faculty of Engineering, Samsun University, 55420, Samsun, Turkey, bDepartment of Chemistry, College of Science, Salahaddin University, Erbil, 44001, Iraq, cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, dDivision of Chemistry and Biological Chemistry, Nanyang Technological University, 637371, Singapore, eDepartment of Computer and Electronic Engineering Technology, Sana'a Community College, Sana'a, Yemen, and fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 24 February 2021; accepted 15 March 2021; online 19 March 2021)

The reaction of copper(II) sulfatepentahydrate with 2-nitro­benzoic acid and N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) in basic solution produces the complex bis­(2-nitro­benzoato-κO)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)copper(II), [Cu(C7H4NO4)2(C6H16N2)] or [Cu(2-nitro­benzoate)2(tmeda)]. Each carboxyl­ate group of the 2-nitro­benzoate ligand is coordinated by CuII atom in a monodentate fashion and two TMEDA ligand nitro­gen atoms are coordinate by the metal center, giving rise to a distorted square-planar coordination environment. In the crystal, metal complexes are linked by centrosymmetric C—H⋯O hydrogen bonds, forming ribbons via a R22(10) ring motif. These ribbons are linked by further C—H⋯O hydrogen bonds, leading to two-dimensional hydrogen-bonded arrays parallel to the bc plane. Weak ππ stacking inter­actions provide additional stabilization of the crystal structure. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The major inter­actions of the complex are O⋯H/H⋯O (44.9%), H⋯H (34%) and C⋯H (14.5%).

1. Chemical context

Copper(II) carboxyl­ate complexes continue to be of considerable inter­est on account of their biological properties such as anti­bacterial (Melník et al., 1982[Melník, M., Auderová, M. & Hol'ko, M. (1982). Inorg. Chim. Acta, 67, 117-120.]), anti­fungal (Kozlevčar et al., 1999[Kozlevčar, B., Leban, I., Turel, I., Šegedin, P., Petric, M., Pohleven, F., White, A., Williams, D. & Sieler, J. (1999). Polyhedron, 18, 755-762.]), cytotoxic and anti­viral activities (Ranford et al., 1993[Ranford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393-3399.]). Carboxyl­ate ligands are versatile and can coordinate to metal centers in different modes such as monodentate, bidentate and bridging fashions. The bidentate coordination can be either symmetrical bidentate chelating, having the same C—O bond lengths, or asymmetrical bidentate chelating, having different C—O bond lengths. Carboxyl­ate ligands have been used to generate units for developing supra­molecular architectures. Copper is one of essential metals for human life. In the human body, various enzymes are copper-dependent such as Cytochrome c oxidase, superoxide dismutase, ferroxidases, mono­amine oxidase, and dopamine β-monoxygenase (Brewer, 2009[Brewer, G. J. (2009). J. Am. Coll. Nutr. 28, 238-242.]; Balamurugan & Schaffner, 2006[Balamurugan, K. & Schaffner, W. (2006). BBA Mol. Cell. Res. 1763, 737-746.]). In this work, a new copper(II) complex involving 2-nitro­benzoic acid and N,N,N′,N′-tetra­methyl­ethylenedi­amine was synthesized, characterized by single crystal X-ray and studied by Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

Copper(II) acetate reacts with 2-nitro­benzoic acid and N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) to give the mono-nuclear copper(II) complex (I)[link]. The asymmetric unit of the title compound contains one half of the metal complex, the central metal being located on the special position 4e (1/2, y, 1/4). The CuII atom has a distorted square-planar geometry with one oxygen atom each from two nitro­benzoic acid ligands and two TMEDA ligand nitro­gen atoms (Figs. 1[link] and 2[link]). The two nitro groups of the rings are oriented trans to each other, being symmetry-related to each other through a twofold axis. The structure of the complex is shown in Fig. 1[link]. The Cu1—N1 and Cu1—O1 bond distances are 2.0269 (13) and 1.9589 (11) Å, respectively. The structural parameters of the TMEDA ligand, i.e. Cu—N bond lengths, are in agreement with a work reported by Gumienna-Kontecka et al. (2013[Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633-7644.]). The C4—O1 and C4—O2 distances in the carboxyl group are 1.2772 (19) and 1.2388 (18) Å, respectively. Selected bond lengths are given in Table 1[link].

Table 1
Selected bond lengths (Å)

C1—N1 1.482 (2) Cu1—O1 1.9589 (11)
C2—N1 1.483 (2) Cu1—N1 2.0269 (13)
C3—N1 1.490 (2) N2—O4 1.2206 (18)
C10—N2 1.4742 (19) N2—O3 1.2249 (19)
[Figure 1]
Figure 1
The mol­ecular structure of [Cu(2-nitro­benzoate)2(tmeda)], with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) −x + 1, y, −z + [{1\over 2}].
[Figure 2]
Figure 2
View of the two-dimensional hydrogen-bonded network in the structure of [Cu(2-nitro­benzoate)2(tmeda) showing C9—H9⋯O4 hydrogen bonds [described by an R22(10) ring motif] as green dashed lines and C3—H3A⋯O3 hydrogen bonds as blue dashed lines.

3. Supra­molecular features

The crystal packing of the title complex (Fig. 2[link]) features inter­molecular hydrogen bonds (C3—H3A⋯O3i and C9—H9⋯O4ii; symmetry codes as in Table 2[link]). The metal complexes are self-assembled by centrosymmetric C9—H9⋯O4 hydrogen bonds along the c–axis direction, forming supra­molecular ribbons linked via R22(10) ring motifs. Adjacent ribbons are connected by C3—H3A⋯O3 hydrogen bonds; these inter­actions lead to the formation of layers lying parallel to the bc plane. The three-dimensional network is stabilized by ππ stacking inter­actions with a centroid-to-centroid distance Cg1⋯Cg1iii of 3.741 (2) Å, where Cg1 is the centroid of the C5–C10 ring [symmetry code: (iii) −x + 1, −y + 1, −z + 1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O3i 0.99 2.59 3.531 (2) 158
C9—H9⋯O4ii 0.95 2.42 3.291 (2) 152
Symmetry codes: (i) [-x+1, y-1, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title complex revealed four hits: catena-[(μ2-terephthalato-O,O′,O′′,O′′′)(μ2-terephthalato-O,O′′)bis­[N-(2-amino­eth­yl)-3-amino-1-propanol]dicopper(II)] (FEMBEF; Mukherjee et al., 2004[Mukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Chaudhuri, N. R. (2004). Eur. J. Inorg. Chem. pp. 4675-4680.]), bis­[(μ2-biphenyl-2,2′-di­carboxyl­ato-O2,O2′)[N-(pyr­id;in-2-yl-N)pyridin-2-amine-N1]]dicopper(II) tetra­hydrate (GUCXOS; Kumagai et al., 2009[Kumagai, H., Akita-Tanaka, M., Kawata, S., Inoue, K., Kepert, C. J. & Kurmoo, M. (2009). Cryst. Growth Des. 9, 2734-2741.]), bis­[(μ2-biphenyl-2,2′-di­carboxyl­ato-O2,O2′)[N-(pyridin-2-yl-N)pyridin-2-am­ine-N1]]dicopper(II) biphenyl-2,2′-di­carb­oxy­lic acid solvate monohydrate (GUCXUY; Kumagai et al., 2009[Kumagai, H., Akita-Tanaka, M., Kawata, S., Inoue, K., Kepert, C. J. & Kurmoo, M. (2009). Cryst. Growth Des. 9, 2734-2741.]) and bis­(2-nitro­benzoato)bis­(3,5-dimethyl-1H-pyrazole-N2)copper(II) (MIJFUH; Karmakar et al., 2007[Karmakar, A., Bania, K., Baruah, A. M. & Baruah, J. B. (2007). Inorg. Chem. Commun. 10, 959-964.]). The Cu—N and Cu—O bond lengths range from 1.973 to 2.022 Å and 1.955 to 1.987 Å, respectively. The Cu—N and Cu—O bond lengths in the title complex [2.0269 (13) and 1.9589 (11) Å, respectively] fall within these limits.

5. Hirshfeld surface analysis

Hirshfeld surface analysis and the associated two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) are very important for explaining the inter­molecular contacts in the crystal structure (Demircioğlu et al., 2019[Demircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129-137.]; Ilmi et al., 2020[Ilmi, R., Kansız, S., Al-Rasbi, N. K., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673-5683.]). We performed the Hirshfeld surface analysis with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). Fig. 3[link] shows the Hirshfeld surface mapped over dnorm (–0.2250 to 1.2935 a.u.) and the mol­ecular electrostatic potentials (–0.2173 to 0.1248). In Fig. 3[link]a, the red spots correspond to the O⋯H contacts. The electrostatic potential (Fig. 3[link]b) shows donor (red) and acceptor (blue) regions. O⋯H/H⋯O (44.9%) contacts, seen as a pair of spikes of scattered points in the fingerprint plot, make the largest contribution to the total Hirshfeld surface in [Cu(2-nitro­benzoate)2(tmeda)] (Fig. 4[link]). The second most important inter­action is H⋯H, contributing 34% to the overall crystal packing, which is shown in the 2D fingerprint of the (di, de) points related to the H atoms. Two symmetrical wings on the left and right sides are shown in the graph of C⋯H/H⋯C inter­actions (14.5%). The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of O⋯H, H⋯H and C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major role in the crystal packing.

[Figure 3]
Figure 3
Hirshfeld surface of [Cu(2-nitro­benzoate)2(tmeda)] mapped with (a) dnorm and (b) the mol­ecular electrostatic potential.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for [Cu(2-nitro­benzoate)2(tmeda)] showing all inter­actions and those delineated into O⋯H/H⋯O, H⋯H and C⋯H/H⋯C contacts (di is the closest inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact).

6. Synthesis and crystallization

An aqueous solution of sodium 2-nitro­benzoate (5 mmol, 0.9 g) was added to an aqueous solution of CuSO4·5H2O (2.5 mmol, 0.6 g) under stirring. Tetra­methyl­ethylenedi­amine (2.5 mmol, 0.3 g) was added and the color changed from light blue to violet. The mixture was filtered and the filtrate was allowed to stand for slow evaporation. Single crystals suitable for X-ray were obtained after several days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.95, 0.98 and 0.99 Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C7H4NO4)2(C6H16N2)]
Mr 511.97
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 12.7286 (3), 7.4918 (2), 22.8967 (6)
β (°) 98.395 (1)
V3) 2160.04 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.22 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest withPhoton II CPADs detector
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.77, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 23494, 4737, 3573
Rint 0.056
(sin θ/λ)max−1) 0.808
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.092, 1.03
No. of reflections 4737
No. of parameters 152
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.63
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); software used to prepare material for publication: APEX3 (Bruker, 2017).

Bis(2-nitrobenzoato-κO)(N,N,N',N'-tetramethylethylenediamine-κ2N,N')copper(II) top
Crystal data top
[Cu(C7H4NO4)2(C6H16N2)]F(000) = 1060
Mr = 511.97Dx = 1.574 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.7286 (3) ÅCell parameters from 6607 reflections
b = 7.4918 (2) Åθ = 3.2–34.7°
c = 22.8967 (6) ŵ = 1.07 mm1
β = 98.395 (1)°T = 100 K
V = 2160.04 (10) Å3Block, blue
Z = 40.22 × 0.20 × 0.12 mm
Data collection top
Bruker D8 Quest withPhoton II CPADs detector
diffractometer
4737 independent reflections
Radiation source: Incoatec microfocus source, Bruker D8 Quest3573 reflections with I > 2σ(I)
Multilayer Mirror monochromatorRint = 0.056
Detector resolution: 7.4074 pixels mm-1θmax = 35.1°, θmin = 3.2°
phi and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1212
Tmin = 0.77, Tmax = 0.88l = 3634
23494 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0258P)2 + 3.2488P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4737 reflectionsΔρmax = 0.55 e Å3
152 parametersΔρmin = 0.63 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29927 (12)0.0971 (2)0.26549 (9)0.0226 (3)
H1A0.2822850.1107380.2225820.034*
H1B0.2826100.2081220.2848150.034*
H1C0.2571670.0007680.2785360.034*
C20.43747 (14)0.0376 (2)0.34649 (8)0.0227 (3)
H2A0.3952840.0603810.3593610.034*
H2B0.4195730.1489510.3652450.034*
H2C0.5131780.0118910.3578790.034*
C30.44109 (12)0.1106 (2)0.25164 (8)0.0191 (3)
H3A0.4004400.1168740.2113840.023*
H3B0.4224150.2158790.2741550.023*
C40.51601 (12)0.4529 (2)0.34319 (7)0.0161 (3)
C50.48616 (11)0.56860 (19)0.39205 (7)0.0141 (3)
C60.37979 (12)0.5852 (2)0.39976 (7)0.0164 (3)
H60.3264730.5292990.3724780.020*
C70.35056 (12)0.6815 (2)0.44637 (8)0.0196 (3)
H70.2775990.6939020.4501770.024*
C80.42749 (12)0.7599 (2)0.48755 (7)0.0205 (3)
H80.4072560.8238130.5199730.025*
C90.53414 (12)0.7451 (2)0.48142 (7)0.0188 (3)
H90.5875550.7978190.5094310.023*
C100.56064 (11)0.6518 (2)0.43364 (7)0.0151 (3)
Cu10.5000000.25244 (3)0.2500000.01202 (6)
N10.41383 (10)0.05640 (17)0.28142 (6)0.0152 (2)
N20.67360 (10)0.65314 (18)0.42590 (6)0.0176 (3)
O10.44317 (9)0.43232 (14)0.29904 (5)0.0165 (2)
O20.60401 (9)0.37907 (16)0.34882 (6)0.0226 (2)
O30.69761 (10)0.73929 (18)0.38435 (6)0.0275 (3)
O40.73708 (9)0.57614 (18)0.46249 (6)0.0268 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (6)0.0213 (7)0.0324 (10)0.0007 (6)0.0050 (6)0.0020 (7)
C20.0297 (8)0.0196 (7)0.0197 (8)0.0011 (6)0.0063 (7)0.0039 (6)
C30.0187 (6)0.0126 (6)0.0265 (8)0.0024 (5)0.0054 (6)0.0010 (6)
C40.0175 (6)0.0128 (6)0.0184 (7)0.0012 (5)0.0039 (5)0.0002 (5)
C50.0144 (6)0.0124 (6)0.0159 (7)0.0005 (5)0.0030 (5)0.0005 (5)
C60.0140 (6)0.0167 (6)0.0187 (7)0.0013 (5)0.0025 (5)0.0003 (6)
C70.0161 (6)0.0231 (7)0.0211 (8)0.0007 (6)0.0073 (6)0.0002 (6)
C80.0201 (6)0.0241 (7)0.0189 (7)0.0001 (6)0.0073 (6)0.0038 (7)
C90.0178 (6)0.0204 (6)0.0181 (7)0.0009 (6)0.0026 (5)0.0021 (6)
C100.0131 (6)0.0149 (6)0.0177 (7)0.0004 (5)0.0036 (5)0.0002 (5)
Cu10.01247 (10)0.01009 (10)0.01356 (12)0.0000.00210 (8)0.000
N10.0149 (5)0.0127 (5)0.0186 (6)0.0002 (4)0.0040 (5)0.0006 (5)
N20.0145 (5)0.0174 (6)0.0214 (7)0.0017 (5)0.0037 (5)0.0035 (5)
O10.0189 (5)0.0143 (5)0.0161 (5)0.0004 (4)0.0021 (4)0.0023 (4)
O20.0180 (5)0.0237 (6)0.0262 (6)0.0038 (4)0.0038 (5)0.0065 (5)
O30.0213 (5)0.0332 (7)0.0297 (7)0.0039 (5)0.0092 (5)0.0044 (6)
O40.0165 (5)0.0295 (7)0.0329 (7)0.0040 (5)0.0013 (5)0.0026 (6)
Geometric parameters (Å, º) top
C1—N11.482 (2)C5—C61.396 (2)
C1—H1A0.9800C6—C71.383 (2)
C1—H1B0.9800C6—H60.9500
C1—H1C0.9800C7—C81.387 (2)
C2—N11.483 (2)C7—H70.9500
C2—H2A0.9800C8—C91.389 (2)
C2—H2B0.9800C8—H80.9500
C2—H2C0.9800C9—C101.381 (2)
C3—N11.490 (2)C9—H90.9500
C3—C3i1.513 (3)C10—N21.4742 (19)
C3—H3A0.9900Cu1—O11.9589 (11)
C3—H3B0.9900Cu1—O1i1.9589 (11)
C4—O21.2388 (18)Cu1—N12.0269 (13)
C4—O11.2772 (19)Cu1—N1i2.0269 (13)
C4—C51.508 (2)N2—O41.2206 (18)
C5—C101.389 (2)N2—O31.2249 (19)
N1—C1—H1A109.5C6—C7—H7119.9
N1—C1—H1B109.5C8—C7—H7119.9
H1A—C1—H1B109.5C7—C8—C9120.04 (15)
N1—C1—H1C109.5C7—C8—H8120.0
H1A—C1—H1C109.5C9—C8—H8120.0
H1B—C1—H1C109.5C10—C9—C8118.42 (14)
N1—C2—H2A109.5C10—C9—H9120.8
N1—C2—H2B109.5C8—C9—H9120.8
H2A—C2—H2B109.5C9—C10—C5123.28 (14)
N1—C2—H2C109.5C9—C10—N2116.55 (13)
H2A—C2—H2C109.5C5—C10—N2120.05 (13)
H2B—C2—H2C109.5O1—Cu1—O1i93.07 (7)
N1—C3—C3i108.76 (11)O1—Cu1—N191.76 (5)
N1—C3—H3A109.9O1i—Cu1—N1165.06 (5)
C3i—C3—H3A109.9O1—Cu1—N1i165.06 (5)
N1—C3—H3B109.9O1i—Cu1—N1i91.76 (5)
C3i—C3—H3B109.9N1—Cu1—N1i87.13 (7)
H3A—C3—H3B108.3C1—N1—C2108.35 (13)
O2—C4—O1124.71 (15)C1—N1—C3110.27 (12)
O2—C4—C5120.10 (14)C2—N1—C3110.70 (13)
O1—C4—C5115.09 (13)C1—N1—Cu1109.12 (10)
C10—C5—C6116.79 (14)C2—N1—Cu1112.61 (10)
C10—C5—C4123.09 (13)C3—N1—Cu1105.77 (9)
C6—C5—C4119.95 (13)O4—N2—O3124.54 (14)
C7—C6—C5121.26 (14)O4—N2—C10118.28 (14)
C7—C6—H6119.4O3—N2—C10117.09 (13)
C5—C6—H6119.4C4—O1—Cu1104.50 (9)
C6—C7—C8120.18 (14)
O2—C4—C5—C1024.2 (2)C4—C5—C10—C9174.19 (15)
O1—C4—C5—C10159.09 (14)C6—C5—C10—N2174.93 (13)
O2—C4—C5—C6150.89 (15)C4—C5—C10—N29.9 (2)
O1—C4—C5—C625.8 (2)C3i—C3—N1—C1157.97 (16)
C10—C5—C6—C70.6 (2)C3i—C3—N1—C282.14 (18)
C4—C5—C6—C7175.98 (15)C3i—C3—N1—Cu140.11 (18)
C5—C6—C7—C81.8 (2)C9—C10—N2—O467.41 (19)
C6—C7—C8—C91.3 (3)C5—C10—N2—O4116.36 (17)
C7—C8—C9—C100.2 (2)C9—C10—N2—O3109.26 (17)
C8—C9—C10—C51.5 (2)C5—C10—N2—O366.97 (19)
C8—C9—C10—N2174.64 (15)O2—C4—O1—Cu14.07 (19)
C6—C5—C10—C91.0 (2)C5—C4—O1—Cu1172.47 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3ii0.992.593.531 (2)158
C9—H9···O4iii0.952.423.291 (2)152
Symmetry codes: (ii) x+1, y1, z+1/2; (iii) x+3/2, y+3/2, z+1.
 

Acknowledgements

Authors contributions are as follows. Methodology, AMQ; software, SK, ND, LY and ES; validation, SK, AMQ and ND; formal analysis, AMQ; investigation, SK, AMQ, ND and ES; resources, AMQ and ES; writing (review and editing), SK and AMQ; visualization, SK; supervision, SK and ND; funding acquisition, LY and ES.

References

First citationBalamurugan, K. & Schaffner, W. (2006). BBA Mol. Cell. Res. 1763, 737–746.  CAS Google Scholar
First citationBrewer, G. J. (2009). J. Am. Coll. Nutr. 28, 238–242.  CrossRef PubMed Google Scholar
First citationBruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129–137.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644.  Web of Science CAS PubMed Google Scholar
First citationIlmi, R., Kansız, S., Al-Rasbi, N. K., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673–5683.  CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Bania, K., Baruah, A. M. & Baruah, J. B. (2007). Inorg. Chem. Commun. 10, 959–964.  CSD CrossRef CAS Google Scholar
First citationKozlevčar, B., Leban, I., Turel, I., Šegedin, P., Petric, M., Pohleven, F., White, A., Williams, D. & Sieler, J. (1999). Polyhedron, 18, 755–762.  Google Scholar
First citationKumagai, H., Akita-Tanaka, M., Kawata, S., Inoue, K., Kepert, C. J. & Kurmoo, M. (2009). Cryst. Growth Des. 9, 2734–2741.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelník, M., Auderová, M. & Hol'ko, M. (1982). Inorg. Chim. Acta, 67, 117–120.  Google Scholar
First citationMukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Chaudhuri, N. R. (2004). Eur. J. Inorg. Chem. pp. 4675–4680.  Web of Science CSD CrossRef Google Scholar
First citationRanford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393–3399.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds