research communications
and Hirshfeld surface analysis of a copper(II) complex containing 2-nitrobenzoate and tetramethylethylenediamine ligands
aDepartment of Fundamental Sciences, Faculty of Engineering, Samsun University, 55420, Samsun, Turkey, bDepartment of Chemistry, College of Science, Salahaddin University, Erbil, 44001, Iraq, cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, dDivision of Chemistry and Biological Chemistry, Nanyang Technological University, 637371, Singapore, eDepartment of Computer and Electronic Engineering Technology, Sana'a Community College, Sana'a, Yemen, and fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye
The reaction of copper(II) sulfatepentahydrate with 2-nitrobenzoic acid and N,N,N′,N′-tetramethylethylenediamine (TMEDA) in basic solution produces the complex bis(2-nitrobenzoato-κO)(N,N,N′,N′-tetramethylethylenediamine-κ2N,N′)copper(II), [Cu(C7H4NO4)2(C6H16N2)] or [Cu(2-nitrobenzoate)2(tmeda)]. Each carboxylate group of the 2-nitrobenzoate ligand is coordinated by CuII atom in a monodentate fashion and two TMEDA ligand nitrogen atoms are coordinate by the metal center, giving rise to a distorted square-planar coordination environment. In the crystal, metal complexes are linked by centrosymmetric C—H⋯O hydrogen bonds, forming ribbons via a R22(10) ring motif. These ribbons are linked by further C—H⋯O hydrogen bonds, leading to two-dimensional hydrogen-bonded arrays parallel to the bc plane. Weak π–π stacking interactions provide additional stabilization of the Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure. The major interactions of the complex are O⋯H/H⋯O (44.9%), H⋯H (34%) and C⋯H (14.5%).
Keywords: crystal structure; copper(II); tetramethylethylenediamine; 2-nitrobenzoate; Hirshfeld surface.
CCDC reference: 1910225
1. Chemical context
Copper(II) carboxylate complexes continue to be of considerable interest on account of their biological properties such as antibacterial (Melník et al., 1982), antifungal (Kozlevčar et al., 1999), cytotoxic and antiviral activities (Ranford et al., 1993). Carboxylate ligands are versatile and can coordinate to metal centers in different modes such as monodentate, bidentate and bridging fashions. The bidentate coordination can be either symmetrical bidentate chelating, having the same C—O bond lengths, or asymmetrical bidentate chelating, having different C—O bond lengths. Carboxylate ligands have been used to generate units for developing supramolecular architectures. Copper is one of essential metals for human life. In the human body, various enzymes are copper-dependent such as Cytochrome c oxidase, superoxide dismutase, ferroxidases, monoamine oxidase, and dopamine β-monoxygenase (Brewer, 2009; Balamurugan & Schaffner, 2006). In this work, a new copper(II) complex involving 2-nitrobenzoic acid and N,N,N′,N′-tetramethylethylenediamine was synthesized, characterized by single crystal X-ray and studied by Hirshfeld surface analysis.
2. Structural commentary
Copper(II) acetate reacts with 2-nitrobenzoic acid and N,N,N′,N′-tetramethylethylenediamine (TMEDA) to give the mono-nuclear copper(II) complex (I). The of the title compound contains one half of the metal complex, the central metal being located on the special position 4e (1/2, y, 1/4). The CuII atom has a distorted square-planar geometry with one oxygen atom each from two nitrobenzoic acid ligands and two TMEDA ligand nitrogen atoms (Figs. 1 and 2). The two nitro groups of the rings are oriented trans to each other, being symmetry-related to each other through a twofold axis. The structure of the complex is shown in Fig. 1. The Cu1—N1 and Cu1—O1 bond distances are 2.0269 (13) and 1.9589 (11) Å, respectively. The structural parameters of the TMEDA ligand, i.e. Cu—N bond lengths, are in agreement with a work reported by Gumienna-Kontecka et al. (2013). The C4—O1 and C4—O2 distances in the carboxyl group are 1.2772 (19) and 1.2388 (18) Å, respectively. Selected bond lengths are given in Table 1.
|
3. Supramolecular features
The crystal packing of the title complex (Fig. 2) features intermolecular hydrogen bonds (C3—H3A⋯O3i and C9—H9⋯O4ii; symmetry codes as in Table 2). The metal complexes are self-assembled by centrosymmetric C9—H9⋯O4 hydrogen bonds along the c–axis direction, forming supramolecular ribbons linked via R22(10) ring motifs. Adjacent ribbons are connected by C3—H3A⋯O3 hydrogen bonds; these interactions lead to the formation of layers lying parallel to the bc plane. The three-dimensional network is stabilized by π–π stacking interactions with a centroid-to-centroid distance Cg1⋯Cg1iii of 3.741 (2) Å, where Cg1 is the centroid of the C5–C10 ring [symmetry code: (iii) −x + 1, −y + 1, −z + 1].
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016) for the title complex revealed four hits: catena-[(μ2-terephthalato-O,O′,O′′,O′′′)(μ2-terephthalato-O,O′′)bis[N-(2-aminoethyl)-3-amino-1-propanol]dicopper(II)] (FEMBEF; Mukherjee et al., 2004), bis[(μ2-biphenyl-2,2′-dicarboxylato-O2,O2′)[N-(pyrid;in-2-yl-N)pyridin-2-amine-N1]]dicopper(II) tetrahydrate (GUCXOS; Kumagai et al., 2009), bis[(μ2-biphenyl-2,2′-dicarboxylato-O2,O2′)[N-(pyridin-2-yl-N)pyridin-2-amine-N1]]dicopper(II) biphenyl-2,2′-dicarboxylic acid solvate monohydrate (GUCXUY; Kumagai et al., 2009) and bis(2-nitrobenzoato)bis(3,5-dimethyl-1H-pyrazole-N2)copper(II) (MIJFUH; Karmakar et al., 2007). The Cu—N and Cu—O bond lengths range from 1.973 to 2.022 Å and 1.955 to 1.987 Å, respectively. The Cu—N and Cu—O bond lengths in the title complex [2.0269 (13) and 1.9589 (11) Å, respectively] fall within these limits.
5. Hirshfeld surface analysis
Hirshfeld surface analysis and the associated two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009) are very important for explaining the intermolecular contacts in the (Demircioğlu et al., 2019; Ilmi et al., 2020). We performed the Hirshfeld surface analysis with CrystalExplorer17 (Turner et al., 2017). Fig. 3 shows the Hirshfeld surface mapped over dnorm (–0.2250 to 1.2935 a.u.) and the molecular electrostatic potentials (–0.2173 to 0.1248). In Fig. 3a, the red spots correspond to the O⋯H contacts. The electrostatic potential (Fig. 3b) shows donor (red) and acceptor (blue) regions. O⋯H/H⋯O (44.9%) contacts, seen as a pair of spikes of scattered points in the fingerprint plot, make the largest contribution to the total Hirshfeld surface in [Cu(2-nitrobenzoate)2(tmeda)] (Fig. 4). The second most important interaction is H⋯H, contributing 34% to the overall crystal packing, which is shown in the 2D fingerprint of the (di, de) points related to the H atoms. Two symmetrical wings on the left and right sides are shown in the graph of C⋯H/H⋯C interactions (14.5%). The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of O⋯H, H⋯H and C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major role in the crystal packing.
6. Synthesis and crystallization
An aqueous solution of sodium 2-nitrobenzoate (5 mmol, 0.9 g) was added to an aqueous solution of CuSO4·5H2O (2.5 mmol, 0.6 g) under stirring. Tetramethylethylenediamine (2.5 mmol, 0.3 g) was added and the color changed from light blue to violet. The mixture was filtered and the filtrate was allowed to stand for slow evaporation. Single crystals suitable for X-ray were obtained after several days.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.95, 0.98 and 0.99 Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.
details are summarized in Table 3Supporting information
CCDC reference: 1910225
https://doi.org/10.1107/S2056989021002802/zn2005sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021002802/zn2005Isup2.hkl
Data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); software used to prepare material for publication: APEX3 (Bruker, 2017).[Cu(C7H4NO4)2(C6H16N2)] | F(000) = 1060 |
Mr = 511.97 | Dx = 1.574 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7286 (3) Å | Cell parameters from 6607 reflections |
b = 7.4918 (2) Å | θ = 3.2–34.7° |
c = 22.8967 (6) Å | µ = 1.07 mm−1 |
β = 98.395 (1)° | T = 100 K |
V = 2160.04 (10) Å3 | Block, blue |
Z = 4 | 0.22 × 0.20 × 0.12 mm |
Bruker D8 Quest withPhoton II CPADs detector diffractometer | 4737 independent reflections |
Radiation source: Incoatec microfocus source, Bruker D8 Quest | 3573 reflections with I > 2σ(I) |
Multilayer Mirror monochromator | Rint = 0.056 |
Detector resolution: 7.4074 pixels mm-1 | θmax = 35.1°, θmin = 3.2° |
phi and ω scans | h = −20→20 |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | k = −12→12 |
Tmin = 0.77, Tmax = 0.88 | l = −36→34 |
23494 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0258P)2 + 3.2488P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4737 reflections | Δρmax = 0.55 e Å−3 |
152 parameters | Δρmin = −0.63 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.29927 (12) | 0.0971 (2) | 0.26549 (9) | 0.0226 (3) | |
H1A | 0.282285 | 0.110738 | 0.222582 | 0.034* | |
H1B | 0.282610 | 0.208122 | 0.284815 | 0.034* | |
H1C | 0.257167 | −0.000768 | 0.278536 | 0.034* | |
C2 | 0.43747 (14) | 0.0376 (2) | 0.34649 (8) | 0.0227 (3) | |
H2A | 0.395284 | −0.060381 | 0.359361 | 0.034* | |
H2B | 0.419573 | 0.148951 | 0.365245 | 0.034* | |
H2C | 0.513178 | 0.011891 | 0.357879 | 0.034* | |
C3 | 0.44109 (12) | −0.1106 (2) | 0.25164 (8) | 0.0191 (3) | |
H3A | 0.400440 | −0.116874 | 0.211384 | 0.023* | |
H3B | 0.422415 | −0.215879 | 0.274155 | 0.023* | |
C4 | 0.51601 (12) | 0.4529 (2) | 0.34319 (7) | 0.0161 (3) | |
C5 | 0.48616 (11) | 0.56860 (19) | 0.39205 (7) | 0.0141 (3) | |
C6 | 0.37979 (12) | 0.5852 (2) | 0.39976 (7) | 0.0164 (3) | |
H6 | 0.326473 | 0.529299 | 0.372478 | 0.020* | |
C7 | 0.35056 (12) | 0.6815 (2) | 0.44637 (8) | 0.0196 (3) | |
H7 | 0.277599 | 0.693902 | 0.450177 | 0.024* | |
C8 | 0.42749 (12) | 0.7599 (2) | 0.48755 (7) | 0.0205 (3) | |
H8 | 0.407256 | 0.823813 | 0.519973 | 0.025* | |
C9 | 0.53414 (12) | 0.7451 (2) | 0.48142 (7) | 0.0188 (3) | |
H9 | 0.587555 | 0.797819 | 0.509431 | 0.023* | |
C10 | 0.56064 (11) | 0.6518 (2) | 0.43364 (7) | 0.0151 (3) | |
Cu1 | 0.500000 | 0.25244 (3) | 0.250000 | 0.01202 (6) | |
N1 | 0.41383 (10) | 0.05640 (17) | 0.28142 (6) | 0.0152 (2) | |
N2 | 0.67360 (10) | 0.65314 (18) | 0.42590 (6) | 0.0176 (3) | |
O1 | 0.44317 (9) | 0.43232 (14) | 0.29904 (5) | 0.0165 (2) | |
O2 | 0.60401 (9) | 0.37907 (16) | 0.34882 (6) | 0.0226 (2) | |
O3 | 0.69761 (10) | 0.73929 (18) | 0.38435 (6) | 0.0275 (3) | |
O4 | 0.73708 (9) | 0.57614 (18) | 0.46249 (6) | 0.0268 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0144 (6) | 0.0213 (7) | 0.0324 (10) | −0.0007 (6) | 0.0050 (6) | −0.0020 (7) |
C2 | 0.0297 (8) | 0.0196 (7) | 0.0197 (8) | −0.0011 (6) | 0.0063 (7) | 0.0039 (6) |
C3 | 0.0187 (6) | 0.0126 (6) | 0.0265 (8) | −0.0024 (5) | 0.0054 (6) | −0.0010 (6) |
C4 | 0.0175 (6) | 0.0128 (6) | 0.0184 (7) | −0.0012 (5) | 0.0039 (5) | −0.0002 (5) |
C5 | 0.0144 (6) | 0.0124 (6) | 0.0159 (7) | 0.0005 (5) | 0.0030 (5) | 0.0005 (5) |
C6 | 0.0140 (6) | 0.0167 (6) | 0.0187 (7) | −0.0013 (5) | 0.0025 (5) | 0.0003 (6) |
C7 | 0.0161 (6) | 0.0231 (7) | 0.0211 (8) | 0.0007 (6) | 0.0073 (6) | 0.0002 (6) |
C8 | 0.0201 (6) | 0.0241 (7) | 0.0189 (7) | 0.0001 (6) | 0.0073 (6) | −0.0038 (7) |
C9 | 0.0178 (6) | 0.0204 (6) | 0.0181 (7) | −0.0009 (6) | 0.0026 (5) | −0.0021 (6) |
C10 | 0.0131 (6) | 0.0149 (6) | 0.0177 (7) | 0.0004 (5) | 0.0036 (5) | −0.0002 (5) |
Cu1 | 0.01247 (10) | 0.01009 (10) | 0.01356 (12) | 0.000 | 0.00210 (8) | 0.000 |
N1 | 0.0149 (5) | 0.0127 (5) | 0.0186 (6) | −0.0002 (4) | 0.0040 (5) | 0.0006 (5) |
N2 | 0.0145 (5) | 0.0174 (6) | 0.0214 (7) | −0.0017 (5) | 0.0037 (5) | −0.0035 (5) |
O1 | 0.0189 (5) | 0.0143 (5) | 0.0161 (5) | 0.0004 (4) | 0.0021 (4) | −0.0023 (4) |
O2 | 0.0180 (5) | 0.0237 (6) | 0.0262 (6) | 0.0038 (4) | 0.0038 (5) | −0.0065 (5) |
O3 | 0.0213 (5) | 0.0332 (7) | 0.0297 (7) | −0.0039 (5) | 0.0092 (5) | 0.0044 (6) |
O4 | 0.0165 (5) | 0.0295 (7) | 0.0329 (7) | 0.0040 (5) | −0.0013 (5) | 0.0026 (6) |
C1—N1 | 1.482 (2) | C5—C6 | 1.396 (2) |
C1—H1A | 0.9800 | C6—C7 | 1.383 (2) |
C1—H1B | 0.9800 | C6—H6 | 0.9500 |
C1—H1C | 0.9800 | C7—C8 | 1.387 (2) |
C2—N1 | 1.483 (2) | C7—H7 | 0.9500 |
C2—H2A | 0.9800 | C8—C9 | 1.389 (2) |
C2—H2B | 0.9800 | C8—H8 | 0.9500 |
C2—H2C | 0.9800 | C9—C10 | 1.381 (2) |
C3—N1 | 1.490 (2) | C9—H9 | 0.9500 |
C3—C3i | 1.513 (3) | C10—N2 | 1.4742 (19) |
C3—H3A | 0.9900 | Cu1—O1 | 1.9589 (11) |
C3—H3B | 0.9900 | Cu1—O1i | 1.9589 (11) |
C4—O2 | 1.2388 (18) | Cu1—N1 | 2.0269 (13) |
C4—O1 | 1.2772 (19) | Cu1—N1i | 2.0269 (13) |
C4—C5 | 1.508 (2) | N2—O4 | 1.2206 (18) |
C5—C10 | 1.389 (2) | N2—O3 | 1.2249 (19) |
N1—C1—H1A | 109.5 | C6—C7—H7 | 119.9 |
N1—C1—H1B | 109.5 | C8—C7—H7 | 119.9 |
H1A—C1—H1B | 109.5 | C7—C8—C9 | 120.04 (15) |
N1—C1—H1C | 109.5 | C7—C8—H8 | 120.0 |
H1A—C1—H1C | 109.5 | C9—C8—H8 | 120.0 |
H1B—C1—H1C | 109.5 | C10—C9—C8 | 118.42 (14) |
N1—C2—H2A | 109.5 | C10—C9—H9 | 120.8 |
N1—C2—H2B | 109.5 | C8—C9—H9 | 120.8 |
H2A—C2—H2B | 109.5 | C9—C10—C5 | 123.28 (14) |
N1—C2—H2C | 109.5 | C9—C10—N2 | 116.55 (13) |
H2A—C2—H2C | 109.5 | C5—C10—N2 | 120.05 (13) |
H2B—C2—H2C | 109.5 | O1—Cu1—O1i | 93.07 (7) |
N1—C3—C3i | 108.76 (11) | O1—Cu1—N1 | 91.76 (5) |
N1—C3—H3A | 109.9 | O1i—Cu1—N1 | 165.06 (5) |
C3i—C3—H3A | 109.9 | O1—Cu1—N1i | 165.06 (5) |
N1—C3—H3B | 109.9 | O1i—Cu1—N1i | 91.76 (5) |
C3i—C3—H3B | 109.9 | N1—Cu1—N1i | 87.13 (7) |
H3A—C3—H3B | 108.3 | C1—N1—C2 | 108.35 (13) |
O2—C4—O1 | 124.71 (15) | C1—N1—C3 | 110.27 (12) |
O2—C4—C5 | 120.10 (14) | C2—N1—C3 | 110.70 (13) |
O1—C4—C5 | 115.09 (13) | C1—N1—Cu1 | 109.12 (10) |
C10—C5—C6 | 116.79 (14) | C2—N1—Cu1 | 112.61 (10) |
C10—C5—C4 | 123.09 (13) | C3—N1—Cu1 | 105.77 (9) |
C6—C5—C4 | 119.95 (13) | O4—N2—O3 | 124.54 (14) |
C7—C6—C5 | 121.26 (14) | O4—N2—C10 | 118.28 (14) |
C7—C6—H6 | 119.4 | O3—N2—C10 | 117.09 (13) |
C5—C6—H6 | 119.4 | C4—O1—Cu1 | 104.50 (9) |
C6—C7—C8 | 120.18 (14) | ||
O2—C4—C5—C10 | 24.2 (2) | C4—C5—C10—C9 | −174.19 (15) |
O1—C4—C5—C10 | −159.09 (14) | C6—C5—C10—N2 | −174.93 (13) |
O2—C4—C5—C6 | −150.89 (15) | C4—C5—C10—N2 | 9.9 (2) |
O1—C4—C5—C6 | 25.8 (2) | C3i—C3—N1—C1 | 157.97 (16) |
C10—C5—C6—C7 | 0.6 (2) | C3i—C3—N1—C2 | −82.14 (18) |
C4—C5—C6—C7 | 175.98 (15) | C3i—C3—N1—Cu1 | 40.11 (18) |
C5—C6—C7—C8 | −1.8 (2) | C9—C10—N2—O4 | 67.41 (19) |
C6—C7—C8—C9 | 1.3 (3) | C5—C10—N2—O4 | −116.36 (17) |
C7—C8—C9—C10 | 0.2 (2) | C9—C10—N2—O3 | −109.26 (17) |
C8—C9—C10—C5 | −1.5 (2) | C5—C10—N2—O3 | 66.97 (19) |
C8—C9—C10—N2 | 174.64 (15) | O2—C4—O1—Cu1 | 4.07 (19) |
C6—C5—C10—C9 | 1.0 (2) | C5—C4—O1—Cu1 | −172.47 (10) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O3ii | 0.99 | 2.59 | 3.531 (2) | 158 |
C9—H9···O4iii | 0.95 | 2.42 | 3.291 (2) | 152 |
Symmetry codes: (ii) −x+1, y−1, −z+1/2; (iii) −x+3/2, −y+3/2, −z+1. |
Acknowledgements
Authors contributions are as follows. Methodology, AMQ; software, SK, ND, LY and ES; validation, SK, AMQ and ND; formal analysis, AMQ; investigation, SK, AMQ, ND and ES; resources, AMQ and ES; writing (review and editing), SK and AMQ; visualization, SK; supervision, SK and ND; funding acquisition, LY and ES.
References
Balamurugan, K. & Schaffner, W. (2006). BBA Mol. Cell. Res. 1763, 737–746. CAS Google Scholar
Brewer, G. J. (2009). J. Am. Coll. Nutr. 28, 238–242. CrossRef PubMed Google Scholar
Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Demircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129–137. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644. Web of Science CAS PubMed Google Scholar
Ilmi, R., Kansız, S., Al-Rasbi, N. K., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673–5683. CSD CrossRef CAS Google Scholar
Karmakar, A., Bania, K., Baruah, A. M. & Baruah, J. B. (2007). Inorg. Chem. Commun. 10, 959–964. CSD CrossRef CAS Google Scholar
Kozlevčar, B., Leban, I., Turel, I., Šegedin, P., Petric, M., Pohleven, F., White, A., Williams, D. & Sieler, J. (1999). Polyhedron, 18, 755–762. Google Scholar
Kumagai, H., Akita-Tanaka, M., Kawata, S., Inoue, K., Kepert, C. J. & Kurmoo, M. (2009). Cryst. Growth Des. 9, 2734–2741. Web of Science CSD CrossRef CAS Google Scholar
Melník, M., Auderová, M. & Hol'ko, M. (1982). Inorg. Chim. Acta, 67, 117–120. Google Scholar
Mukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Chaudhuri, N. R. (2004). Eur. J. Inorg. Chem. pp. 4675–4680. Web of Science CSD CrossRef Google Scholar
Ranford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393–3399. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.