research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (N1,N3-bis­­{[1-(4-meth­­oxy­benz­yl)-1H-1,2,3-triazol-4-yl]methyl­­idene}-2,2-di­meth­yl­propane-1,3-di­amine)­bis­­(thio­cyanato)­iron(II)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania, and cThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: mlseredyuk@gmail.com, voruch@eml.ru

Edited by A. M. Chippindale, University of Reading, England (Received 1 April 2021; accepted 6 April 2021; online 9 April 2021)

The unit cell of the title compound, [FeII(NCS)2(C29H32N8O2)], consists of eight charge-neutral complex mol­ecules. In the complex mol­ecule, the tetra­dentate ligand N1,N3-bis­{[1-(4-meth­oxy­benz­yl)-1H-1,2,3-triazol-4-yl]methyl­ene}-2,2-di­methyl­propane-1,3-di­amine coordinates to the FeII ion through the N atoms of the 1,2,3-triazole and aldimine groups. Two thio­cyanate anions, coordinated through their N atoms, complete the coordination sphere of the central Fe ion. In the crystal, neighbouring mol­ecules are linked through weak C⋯C, C⋯N and C⋯S inter­actions into a one-dimensional chain running parallel to [010]. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H (37.5%), H⋯C/C⋯H (24.7%), H⋯S/S⋯H (15.7%) and H⋯N/N⋯H (11.7%). The average Fe—N bond distance is 2.167 Å, indicating the high-spin state of the FeII ion, which does not change upon cooling, as demonstrated by low-temperature magnetic susceptibility measurements.

1. Chemical context

FeII complexes based on Schiff bases derived from N-substituted 1,2,3-triazole aldehydes represent an inter­esting class of coordination compounds exhibiting spin-state switching between low- and high-spin states in different temperature regions (Hagiwara et al., 2014[Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950-952.], 2016[Hagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132-17140.], 2020[Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866-9880.]; Hora & Hagiwara, 2017[Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.]). In all of the charge-neutral mononuclear complexes of this kind described so far, the thio­cyanate anions occupy the axial position in the coordination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016[Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815-818.]; Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]).

[Scheme 1]

Having ongoing inter­est in functional 3d-metal complexes formed by polydentate ligands (Seredyuk et al., 2006[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385-390.], 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.], 2015[Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424-7432.], 2016[Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627-39635.]; Seredyuk, 2012[Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65-71.]; Valverde-Muñoz et al., 2020[Valverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632-18638.]), we report here the synthesis and crystal structure of a new FeII complex based on the tetra­dentate ligand N1,N3-bis­{[1-(4-meth­oxy­benz­yl)-1H-1,2,3-triazol-4-yl]methyl­ene}-2,2-di­methyl­propane-1,3-di­amine with thio­cyanate anions arranged around the iron(II) atom in a cis-configuration.

2. Structural commentary

The FeII ion of the title complex has a distorted trigonal–prismatic N6 coordination environment formed by the four N atoms of the tetra­dentate Schiff-base ligand and the two NCS counter-ions (Fig. 1[link]). The average bond length, <Fe—N> = 2.167 Å, is typical for high-spin complexes with an [FeN6] chromophore (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The N—Fe—N angle between the cis-aligned thio­cyanate N atoms is 91.6 (1)°. The average trigonal distortion parameters, Σ = Σ112(|90 − φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]) and Θ = Σ124(|60 − θi|), where θi is the angle generated by the superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]), are 127.4 and 481.9°, respectively. The values reveal a great deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0), and are significantly larger than those of similar [FeN6] high-spin trans-complexes (Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]). With the aid of continuous shape measurements (CShM), the shape closest to the Fe-based coordination polyhedron and its distortion can be determined numerically (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]). The calculated CShM value relative to ideal Oh symmetry is 4.269, and 5.671 relative to ideal D3h trigonal–prismatic symmetry. Hence, the coordination polyhedron is closer to the former geometry, but is appreciably distorted, as indicated by the calculated value (for an ideal polyhedron CShM = 0). The volume of the [FeN6] coordination polyhedron is 12.50 Å3.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Weak inter­molecular element⋯element contacts are represented by dashed red lines.

3. Supra­molecular features

In the crystal, neighbouring complex mol­ecules form one-dimensional supra­molecular chains propagating parallel to [010] through weak contacts [S2⋯C19i = 3.271 (3) Å, N3⋯C7ii = 3.161 (3) Å and C14⋯C12ii = 3.320 (3) Å; symmetry codes: (i) x, −1 + y, z; (ii) [{1\over 2}] − x, −[{1\over 2}] + y, z] (Fig. 2[link]). Weak C—H⋯X hydrogen bonds (Table 1[link]) link the chains into a three-dimensional network. No strong hydrogen-bonding or stacking inter­actions are observed between the complex mol­ecules in the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯O1i 0.96 2.60 3.517 (4) 161
C20—H20B⋯O2ii 0.97 2.60 3.282 (4) 127
C19—H19⋯C28iii 0.93 2.75 3.574 (5) 148
C19—H19⋯S1iii 0.93 2.98 3.825 (4) 152
C17—H17⋯N10iii 0.93 2.67 3.416 (4) 138
C17—H17⋯C29iii 0.93 2.85 3.685 (5) 150
C16—H16A⋯C29iii 0.97 2.73 3.667 (5) 163
C5—H5⋯N9iv 0.93 2.67 3.590 (5) 173
C7—H7⋯N10iv 0.93 2.75 3.614 (5) 156
C7—H7⋯C29iv 0.93 2.49 3.400 (5) 166
C7—H7⋯S2iv 0.93 2.99 3.752 (5) 140
Symmetry codes: (i) [x+{\script{1\over 2}}, y-1, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The packing of mol­ecules into one-dimensional chains running parallel to [010] held together by weak C⋯C/N/S bonding.

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. https://hirshfeldsurface.net.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.3171 (red) to 1.6637 (blue) a.u. (Fig. 3[link]). The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the inter­actions described above. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are presented in Fig. 4[link], associated with their relative contributions to the Hirshfeld surface. At 37.5%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 24.7%, and the H⋯S/S⋯H contacts contribute 15.7% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 11.7% contribution to the Hirshfeld surface.

[Figure 3]
Figure 3
Two projections of dnorm mapped on Hirshfeld surfaces, showing the inter­actions between molecules. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii.
[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot and those delineated into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Magnetic properties

Variable-temperature magnetic susceptibility measurements were performed on single crystals (10 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum inter­ference device (SQUID) susceptometer operating at 1 T in the temperature range 10–400 K. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal's constants. The magnetic behaviour of the compound is shown in Fig. 5[link] in the form of χMT versus T (χM is the molar magnetic susceptibility and T is the temperature). At 300 K, the χMT value is close to 3.40 cm3 K mol−1, and on cooling the value remains constant down to 30 K. The decrease in χMT below 30 K is attributed to the zero-field splitting of the high-spin (S = 2) FeII centres (Kahn, 1993[Kahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH.]), which corroborates well with the observed long average Fe—N bond length and the large geometric distortion of the coordination polyhedron of the central FeII ion.

[Figure 5]
Figure 5
χMT versus T plot for the title compound.

6. Database survey

A search of the Cambridge Structural Database (CSD, online) reveals five similar FeII thio­cyanate complexes: derivatives of 1,3-di­amine and N-substituted 1,2,3-triazole aldehydes: DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]; Hagiwara & Okada, 2016[Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815-818.]). These complexes show hysteretic spin crossover with variation of the Fe—N distances in the range 1.931–1.959 Å for the low-spin state and 2.154–2.169 Å for the high-spin state of the FeII ions. The reported pseudo-trigonal–prismatic complexes with an [FeN6] chromophore are formed by structurally hindered rigid hexa­dentate ligands favouring a trigonal geometry of the central FeII ion: CABLOH (Voloshin et al., 2001[Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Antipin, M. Y. & Polshin, E. V. (2001). Polyhedron, 20, 2721-2733.]), BUNSAF (El Hajj et al., 2009[El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416-10423.]), OWIHAE (Seredyuk et al., 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.]), OTANOO (Stock et al., 2016[Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254-5265.]). The complex CUWQAP, recently reported by us (Znovjyak et al., 2020[Znovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661-1664.]), has a similar strongly distorted coordination environment of the central FeII ion. Table 2[link] collates the distortion parameters Σ, Θ and CShM for the pseudo-trigonal–prismatic complexes mentioned above.

Table 2
Comparison of the distortion parameters (Å, °) for indicated FeII complexes

  <Fe—N> Σ Θ CShM (D3h)
Title compound 2.167 127.4 481.9 5.671
CUWQAP 2.186 149.38 453.2 4.008
CABLOH 1.899 725.74 178.16 0.525
BUNSAF 2.218 703.65 201.07 1.887
OWIHAE 2.202 894.48 206.57 0.602
OTANOOa 2.191 697.3 183.24 1.098
Note: (a) Parameters averaged over five independent complex cations.

7. Synthesis and crystallization

The ligand of the title compound was obtained in situ by condensation of 2,2-dimethyl-1,3-propanedi­amine (24 µL, 0.20 mmol) with 1-(4-meth­oxy­benz­yl)-1H-1,2,3-triazole-4-carbaldehyde (92 mg, 0.45 mmol) by boiling in methanol for 5 min and was subsequently reacted with [Fe(py)4(NCS)2] (100 mg, 0.20 mmol) and ascorbic acid (11 mg, 0.06 mmol) dissolved in a minimum of boiling methanol. The yellow solution formed was slowly cooled to ambient temperature. Yellow–orange crystals then precipitated and were filtered off. Elemental analysis calculated (%) for C29H32FeN10O2S2: C, 51.79; H, 4.80; N, 20.82; S, 9.53. Found: C, 52.02; H, 4.68; N, 20.77; S, 9.40. IR v (cm−1, KBr): 1614 (C=N), 2070, 2118 (NCS).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(NCS)2(C27H32N8O2)]
Mr 672.61
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 99
a, b, c (Å) 22.8809 (15), 9.0485 (4), 31.2662 (18)
V3) 6473.3 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.3 × 0.2 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.983, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14323, 5718, 4331
Rint 0.062
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.111, 1.10
No. of reflections 5718
No. of parameters 401
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(N1,N3-Bis{[1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl]methylidene}-2,2-dimethylpropane-1,3-diamine)bis(thiocyanato)iron(II) top
Crystal data top
[Fe(NCS)2(C27H32N8O2)]Dx = 1.380 Mg m3
Mr = 672.61Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3410 reflections
a = 22.8809 (15) Åθ = 2.2–26.9°
b = 9.0485 (4) ŵ = 0.64 mm1
c = 31.2662 (18) ÅT = 99 K
V = 6473.3 (6) Å3Plate, clear dark red
Z = 80.3 × 0.2 × 0.05 mm
F(000) = 2800
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
4331 reflections with I > 2σ(I)
Detector resolution: 8.0797 pixels mm-1Rint = 0.062
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1027
Tmin = 0.983, Tmax = 1.000k = 1010
14323 measured reflectionsl = 3537
5718 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
5718 reflectionsΔρmax = 0.45 e Å3
401 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.36927 (2)0.44257 (5)0.48750 (2)0.01653 (14)
S10.35511 (5)0.27805 (13)0.63189 (3)0.0447 (3)
S20.45693 (4)0.01869 (10)0.41509 (3)0.0291 (3)
O10.21074 (11)0.7698 (3)0.22792 (7)0.0291 (6)
O20.59076 (10)0.1143 (2)0.27020 (7)0.0248 (6)
N10.30621 (12)0.6015 (3)0.51744 (8)0.0178 (7)
N20.29144 (12)0.4260 (3)0.44994 (8)0.0170 (7)
N30.27703 (12)0.3551 (3)0.41465 (9)0.0214 (7)
N40.22437 (12)0.4080 (3)0.40340 (9)0.0206 (7)
N50.42995 (12)0.6039 (3)0.51301 (9)0.0164 (6)
N60.40524 (12)0.5724 (3)0.43049 (9)0.0187 (7)
N70.40240 (13)0.5591 (3)0.38880 (9)0.0219 (7)
N80.45248 (13)0.6174 (3)0.37344 (9)0.0211 (7)
N90.36115 (13)0.3225 (3)0.54366 (10)0.0257 (7)
N100.41108 (12)0.2661 (3)0.45691 (9)0.0227 (7)
C10.37528 (17)0.8159 (4)0.60960 (11)0.0310 (10)
H1A0.3753540.7338050.6290560.047*
H1B0.3420170.8774950.6152880.047*
H1C0.4104470.8722950.6133050.047*
C30.37212 (15)0.7588 (4)0.56379 (11)0.0193 (8)
C40.31474 (15)0.6730 (4)0.55938 (10)0.0227 (9)
H4A0.3134040.5976770.5814270.027*
H4B0.2824870.7403610.5644200.027*
C160.42617 (15)0.6583 (4)0.55718 (10)0.0196 (8)
H16A0.4613080.7133970.5640060.024*
H16B0.4238580.5747900.5765770.024*
C50.25706 (15)0.6127 (4)0.49871 (10)0.0185 (8)
H50.2278350.6745790.5090200.022*
C60.24881 (15)0.5244 (3)0.46060 (11)0.0166 (8)
C70.20567 (15)0.5129 (4)0.43064 (11)0.0233 (9)
H70.1709350.5661090.4293290.028*
C80.19663 (18)0.3560 (4)0.36374 (11)0.0319 (10)
H8A0.1555870.3364560.3690610.038*
H8B0.2148260.2642410.3548030.038*
C90.20226 (17)0.4690 (4)0.32836 (11)0.0252 (9)
C100.15496 (16)0.5551 (4)0.31594 (11)0.0255 (9)
H100.1195580.5449580.3302500.031*
C110.15932 (16)0.6545 (4)0.28308 (11)0.0243 (9)
H110.1270450.7110950.2754090.029*
C120.21154 (16)0.6713 (4)0.26122 (11)0.0227 (9)
C130.26012 (16)0.5918 (4)0.27391 (11)0.0279 (9)
H130.2958530.6055720.2602940.033*
C140.25489 (16)0.4906 (4)0.30743 (12)0.0285 (9)
H140.2874840.4366280.3158750.034*
C150.26393 (17)0.7909 (5)0.20445 (12)0.0402 (11)
H15A0.2574190.8606350.1817950.060*
H15B0.2763320.6983060.1925380.060*
H15C0.2936360.8279530.2232930.060*
C170.46360 (15)0.6705 (4)0.48662 (11)0.0185 (8)
H170.4917150.7372780.4960040.022*
C180.45624 (14)0.6381 (3)0.44164 (11)0.0159 (8)
C190.48706 (16)0.6670 (3)0.40516 (11)0.0201 (8)
H190.5236570.7109460.4027820.024*
C200.46345 (17)0.6144 (4)0.32700 (11)0.0291 (10)
H20A0.4857540.7013350.3190940.035*
H20B0.4263540.6185840.3120350.035*
C210.49624 (15)0.4783 (4)0.31281 (10)0.0196 (8)
C220.54372 (15)0.4919 (4)0.28529 (10)0.0231 (9)
H220.5556410.5851200.2763440.028*
C230.57315 (15)0.3689 (4)0.27121 (11)0.0230 (9)
H230.6044100.3795550.2524580.028*
C240.55672 (15)0.2287 (4)0.28470 (10)0.0190 (8)
C250.50976 (15)0.2136 (4)0.31199 (11)0.0219 (8)
H250.4983000.1202520.3212030.026*
C260.47962 (16)0.3382 (4)0.32569 (11)0.0232 (9)
H260.4477080.3272270.3438310.028*
C270.58123 (16)0.0289 (4)0.28871 (11)0.0283 (9)
H27A0.6110710.0956120.2790860.042*
H27B0.5436250.0653380.2801060.042*
H27C0.5826170.0213930.3193230.042*
C280.35849 (16)0.3024 (4)0.58016 (13)0.0249 (9)
C290.42995 (15)0.1637 (4)0.43909 (11)0.0199 (8)
C20.37357 (17)0.8902 (4)0.53291 (11)0.0284 (9)
H2A0.4106480.9392280.5350810.043*
H2B0.3428920.9581330.5401180.043*
H2C0.3680630.8554790.5041720.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0201 (3)0.0141 (2)0.0154 (3)0.0026 (2)0.0036 (2)0.0026 (2)
S10.0471 (7)0.0629 (8)0.0239 (6)0.0011 (6)0.0011 (5)0.0165 (6)
S20.0348 (6)0.0177 (5)0.0348 (6)0.0031 (4)0.0071 (5)0.0057 (5)
O10.0315 (16)0.0343 (15)0.0215 (14)0.0001 (13)0.0023 (12)0.0044 (13)
O20.0298 (15)0.0227 (13)0.0220 (14)0.0095 (12)0.0042 (12)0.0018 (12)
N10.0216 (17)0.0167 (14)0.0151 (16)0.0030 (13)0.0001 (13)0.0014 (13)
N20.0231 (17)0.0132 (14)0.0146 (15)0.0012 (13)0.0007 (13)0.0011 (13)
N30.0267 (18)0.0179 (15)0.0194 (17)0.0017 (14)0.0055 (14)0.0015 (14)
N40.0231 (17)0.0176 (15)0.0210 (17)0.0022 (13)0.0118 (14)0.0016 (14)
N50.0182 (16)0.0145 (14)0.0165 (15)0.0056 (12)0.0027 (13)0.0039 (14)
N60.0243 (17)0.0171 (15)0.0148 (16)0.0042 (13)0.0010 (13)0.0042 (14)
N70.0283 (18)0.0210 (16)0.0164 (16)0.0027 (14)0.0008 (14)0.0031 (15)
N80.0300 (19)0.0151 (15)0.0182 (17)0.0069 (14)0.0029 (15)0.0025 (14)
N90.034 (2)0.0213 (17)0.0221 (18)0.0045 (15)0.0018 (16)0.0002 (15)
N100.0229 (17)0.0190 (16)0.0263 (18)0.0049 (14)0.0070 (15)0.0054 (15)
C10.038 (2)0.033 (2)0.022 (2)0.0049 (19)0.0067 (19)0.0095 (19)
C30.025 (2)0.0200 (18)0.0134 (18)0.0065 (17)0.0021 (16)0.0069 (16)
C40.027 (2)0.028 (2)0.0133 (19)0.0065 (17)0.0028 (16)0.0028 (17)
C160.027 (2)0.0182 (18)0.0134 (19)0.0020 (16)0.0035 (16)0.0020 (16)
C50.019 (2)0.0163 (17)0.021 (2)0.0045 (15)0.0046 (16)0.0024 (16)
C60.0174 (19)0.0148 (17)0.0178 (19)0.0014 (15)0.0017 (16)0.0041 (16)
C70.020 (2)0.0203 (19)0.029 (2)0.0009 (16)0.0046 (18)0.0029 (18)
C80.045 (3)0.023 (2)0.028 (2)0.0019 (19)0.022 (2)0.0017 (19)
C90.036 (2)0.0183 (19)0.022 (2)0.0021 (18)0.0166 (18)0.0089 (17)
C100.024 (2)0.026 (2)0.027 (2)0.0047 (18)0.0077 (17)0.0019 (19)
C110.022 (2)0.023 (2)0.028 (2)0.0021 (17)0.0092 (18)0.0017 (18)
C120.029 (2)0.0229 (19)0.0159 (19)0.0002 (17)0.0064 (18)0.0053 (17)
C130.027 (2)0.033 (2)0.024 (2)0.0076 (18)0.0018 (18)0.0093 (19)
C140.030 (2)0.024 (2)0.031 (2)0.0126 (18)0.012 (2)0.0089 (19)
C150.034 (3)0.057 (3)0.029 (2)0.003 (2)0.007 (2)0.005 (2)
C170.0162 (19)0.0157 (17)0.024 (2)0.0031 (15)0.0044 (17)0.0006 (17)
C180.0151 (19)0.0110 (16)0.022 (2)0.0042 (15)0.0013 (16)0.0035 (16)
C190.023 (2)0.0131 (17)0.025 (2)0.0050 (16)0.0023 (17)0.0012 (17)
C200.043 (3)0.030 (2)0.014 (2)0.0088 (19)0.0047 (18)0.0024 (18)
C210.029 (2)0.0201 (19)0.0099 (18)0.0015 (17)0.0038 (16)0.0009 (16)
C220.033 (2)0.0198 (19)0.0166 (19)0.0028 (17)0.0020 (18)0.0039 (17)
C230.023 (2)0.028 (2)0.018 (2)0.0018 (17)0.0064 (17)0.0004 (18)
C240.024 (2)0.0229 (19)0.0105 (18)0.0024 (17)0.0032 (16)0.0051 (16)
C250.029 (2)0.0167 (18)0.020 (2)0.0011 (17)0.0007 (17)0.0003 (17)
C260.026 (2)0.028 (2)0.015 (2)0.0004 (18)0.0024 (16)0.0021 (18)
C270.042 (2)0.021 (2)0.022 (2)0.0107 (18)0.0012 (19)0.0001 (17)
C280.023 (2)0.0181 (19)0.034 (2)0.0012 (16)0.0035 (19)0.0049 (19)
C290.019 (2)0.0207 (19)0.020 (2)0.0035 (16)0.0035 (16)0.0056 (18)
C20.040 (2)0.0204 (19)0.025 (2)0.0086 (18)0.0059 (19)0.0034 (18)
Geometric parameters (Å, º) top
Fe1—N12.242 (3)C6—C71.365 (5)
Fe1—N22.138 (3)C7—H70.9300
Fe1—N52.167 (3)C8—H8A0.9700
Fe1—N62.288 (3)C8—H8B0.9700
Fe1—N92.073 (3)C8—C91.512 (5)
Fe1—N102.092 (3)C9—C101.389 (5)
S1—C281.634 (4)C9—C141.384 (5)
S2—C291.633 (4)C10—H100.9300
O1—C121.371 (4)C10—C111.369 (5)
O1—C151.434 (4)C11—H110.9300
O2—C241.373 (4)C11—C121.385 (5)
O2—C271.435 (4)C12—C131.382 (5)
N1—C41.475 (4)C13—H130.9300
N1—C51.272 (4)C13—C141.397 (5)
N2—N31.319 (4)C14—H140.9300
N2—C61.362 (4)C15—H15A0.9600
N3—N41.344 (4)C15—H15B0.9600
N4—C71.345 (4)C15—H15C0.9600
N4—C81.470 (4)C17—H170.9300
N5—C161.469 (4)C17—C181.447 (4)
N5—C171.279 (4)C18—C191.366 (4)
N6—N71.311 (4)C19—H190.9300
N6—C181.355 (4)C20—H20A0.9700
N7—N81.350 (4)C20—H20B0.9700
N8—C191.346 (4)C20—C211.508 (5)
N8—C201.474 (4)C21—C221.391 (5)
N9—C281.157 (4)C21—C261.384 (5)
N10—C291.164 (4)C22—H220.9300
C1—H1A0.9600C22—C231.373 (5)
C1—H1B0.9600C23—H230.9300
C1—H1C0.9600C23—C241.388 (5)
C1—C31.524 (4)C24—C251.379 (5)
C3—C41.531 (5)C25—H250.9300
C3—C161.549 (4)C25—C261.389 (5)
C3—C21.532 (5)C26—H260.9300
C4—H4A0.9700C27—H27A0.9600
C4—H4B0.9700C27—H27B0.9600
C16—H16A0.9700C27—H27C0.9600
C16—H16B0.9700C2—H2A0.9600
C5—H50.9300C2—H2B0.9600
C5—C61.447 (5)C2—H2C0.9600
N1—Fe1—N6103.14 (10)H8A—C8—H8B108.0
N2—Fe1—N174.82 (10)C9—C8—H8A109.4
N2—Fe1—N5141.53 (10)C9—C8—H8B109.4
N2—Fe1—N684.71 (10)C10—C9—C8121.2 (4)
N5—Fe1—N180.01 (10)C14—C9—C8121.1 (3)
N5—Fe1—N673.16 (10)C14—C9—C10117.8 (3)
N9—Fe1—N185.69 (11)C9—C10—H10119.3
N9—Fe1—N2110.72 (11)C11—C10—C9121.4 (4)
N9—Fe1—N595.66 (11)C11—C10—H10119.3
N9—Fe1—N6163.98 (11)C10—C11—H11119.8
N9—Fe1—N1091.62 (11)C10—C11—C12120.3 (3)
N10—Fe1—N1167.02 (11)C12—C11—H11119.8
N10—Fe1—N294.38 (11)O1—C12—C11115.8 (3)
N10—Fe1—N5112.91 (10)O1—C12—C13124.5 (3)
N10—Fe1—N682.61 (10)C13—C12—C11119.7 (3)
C12—O1—C15117.6 (3)C12—C13—H13120.4
C24—O2—C27117.5 (3)C12—C13—C14119.2 (4)
C4—N1—Fe1124.6 (2)C14—C13—H13120.4
C5—N1—Fe1115.3 (2)C9—C14—C13121.5 (3)
C5—N1—C4119.4 (3)C9—C14—H14119.3
N3—N2—Fe1134.6 (2)C13—C14—H14119.3
N3—N2—C6110.1 (3)O1—C15—H15A109.5
C6—N2—Fe1114.6 (2)O1—C15—H15B109.5
N2—N3—N4105.6 (3)O1—C15—H15C109.5
N3—N4—C7111.8 (3)H15A—C15—H15B109.5
N3—N4—C8119.6 (3)H15A—C15—H15C109.5
C7—N4—C8128.5 (3)H15B—C15—H15C109.5
C16—N5—Fe1122.3 (2)N5—C17—H17121.3
C17—N5—Fe1117.8 (2)N5—C17—C18117.5 (3)
C17—N5—C16118.9 (3)C18—C17—H17121.3
N7—N6—Fe1135.2 (2)N6—C18—C17116.0 (3)
N7—N6—C18109.8 (3)N6—C18—C19108.3 (3)
C18—N6—Fe1109.6 (2)C19—C18—C17135.5 (3)
N6—N7—N8106.0 (3)N8—C19—C18104.4 (3)
N7—N8—C20119.2 (3)N8—C19—H19127.8
C19—N8—N7111.5 (3)C18—C19—H19127.8
C19—N8—C20129.2 (3)N8—C20—H20A109.0
C28—N9—Fe1157.3 (3)N8—C20—H20B109.0
C29—N10—Fe1174.6 (3)N8—C20—C21112.9 (3)
H1A—C1—H1B109.5H20A—C20—H20B107.8
H1A—C1—H1C109.5C21—C20—H20A109.0
H1B—C1—H1C109.5C21—C20—H20B109.0
C3—C1—H1A109.5C22—C21—C20119.9 (3)
C3—C1—H1B109.5C26—C21—C20121.7 (3)
C3—C1—H1C109.5C26—C21—C22118.4 (3)
C1—C3—C4107.3 (3)C21—C22—H22119.7
C1—C3—C16106.6 (3)C23—C22—C21120.7 (3)
C1—C3—C2109.2 (3)C23—C22—H22119.7
C4—C3—C16112.0 (3)C22—C23—H23119.7
C4—C3—C2110.8 (3)C22—C23—C24120.7 (3)
C2—C3—C16110.8 (3)C24—C23—H23119.7
N1—C4—C3114.6 (3)O2—C24—C23115.8 (3)
N1—C4—H4A108.6O2—C24—C25124.9 (3)
N1—C4—H4B108.6C25—C24—C23119.3 (3)
C3—C4—H4A108.6C24—C25—H25120.1
C3—C4—H4B108.6C24—C25—C26119.8 (3)
H4A—C4—H4B107.6C26—C25—H25120.1
N5—C16—C3111.7 (3)C21—C26—C25121.2 (3)
N5—C16—H16A109.3C21—C26—H26119.4
N5—C16—H16B109.3C25—C26—H26119.4
C3—C16—H16A109.3O2—C27—H27A109.5
C3—C16—H16B109.3O2—C27—H27B109.5
H16A—C16—H16B107.9O2—C27—H27C109.5
N1—C5—H5121.6H27A—C27—H27B109.5
N1—C5—C6116.8 (3)H27A—C27—H27C109.5
C6—C5—H5121.6H27B—C27—H27C109.5
N2—C6—C5118.0 (3)N9—C28—S1178.7 (4)
N2—C6—C7107.5 (3)N10—C29—S2178.7 (3)
C7—C6—C5134.6 (3)C3—C2—H2A109.5
N4—C7—C6105.0 (3)C3—C2—H2B109.5
N4—C7—H7127.5C3—C2—H2C109.5
C6—C7—H7127.5H2A—C2—H2B109.5
N4—C8—H8A109.4H2A—C2—H2C109.5
N4—C8—H8B109.4H2B—C2—H2C109.5
N4—C8—C9111.3 (3)
Fe1—N1—C4—C355.4 (4)C4—C3—C16—N566.6 (4)
Fe1—N1—C5—C61.1 (4)C16—N5—C17—C18165.6 (3)
Fe1—N2—N3—N4170.5 (2)C16—C3—C4—N159.6 (4)
Fe1—N2—C6—C58.2 (4)C5—N1—C4—C3134.5 (3)
Fe1—N2—C6—C7172.3 (2)C5—C6—C7—N4179.2 (4)
Fe1—N5—C16—C370.4 (3)C6—N2—N3—N40.9 (3)
Fe1—N5—C17—C183.1 (4)C7—N4—C8—C973.0 (5)
Fe1—N6—N7—N8150.2 (2)C8—N4—C7—C6176.5 (3)
Fe1—N6—C18—C1726.4 (3)C8—C9—C10—C11178.1 (3)
Fe1—N6—C18—C19157.9 (2)C8—C9—C14—C13178.2 (3)
O1—C12—C13—C14177.7 (3)C9—C10—C11—C120.2 (5)
O2—C24—C25—C26177.8 (3)C10—C9—C14—C132.2 (5)
N1—C5—C6—N26.2 (5)C10—C11—C12—O1177.8 (3)
N1—C5—C6—C7174.5 (4)C10—C11—C12—C132.8 (5)
N2—N3—N4—C71.0 (4)C11—C12—C13—C142.9 (5)
N2—N3—N4—C8177.2 (3)C12—C13—C14—C90.4 (5)
N2—C6—C7—N40.1 (4)C14—C9—C10—C112.3 (5)
N3—N2—C6—C5179.9 (3)C15—O1—C12—C11179.9 (3)
N3—N2—C6—C70.5 (4)C15—O1—C12—C130.5 (5)
N3—N4—C7—C60.7 (4)C17—N5—C16—C397.8 (3)
N3—N4—C8—C9102.6 (4)C17—C18—C19—N8174.1 (3)
N4—C8—C9—C10104.9 (4)C18—N6—N7—N80.0 (3)
N4—C8—C9—C1474.7 (4)C19—N8—C20—C2186.0 (4)
N5—C17—C18—N617.1 (4)C20—N8—C19—C18177.8 (3)
N5—C17—C18—C19168.7 (4)C20—C21—C22—C23178.4 (3)
N6—N7—N8—C190.2 (3)C20—C21—C26—C25179.2 (3)
N6—N7—N8—C20177.9 (3)C21—C22—C23—C241.0 (5)
N6—C18—C19—N80.4 (4)C22—C21—C26—C250.7 (5)
N7—N6—C18—C17175.4 (3)C22—C23—C24—O2177.1 (3)
N7—N6—C18—C190.3 (4)C22—C23—C24—C251.0 (5)
N7—N8—C19—C180.4 (4)C23—C24—C25—C260.1 (5)
N7—N8—C20—C2191.3 (4)C24—C25—C26—C210.7 (5)
N8—C20—C21—C22133.2 (3)C26—C21—C22—C230.2 (5)
N8—C20—C21—C2648.3 (5)C27—O2—C24—C23170.2 (3)
C1—C3—C4—N1176.3 (3)C27—O2—C24—C257.8 (5)
C1—C3—C16—N5176.3 (3)C2—C3—C4—N164.6 (4)
C4—N1—C5—C6172.0 (3)C2—C3—C16—N557.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···O1i0.962.603.517 (4)161
C20—H20B···O2ii0.972.603.282 (4)127
C19—H19···C28iii0.932.753.574 (5)148
C19—H19···S1iii0.932.983.825 (4)152
C17—H17···N10iii0.932.673.416 (4)138
C17—H17···C29iii0.932.853.685 (5)150
C16—H16A···C29iii0.972.733.667 (5)163
C5—H5···N9iv0.932.673.590 (5)173
C7—H7···N10iv0.932.753.614 (5)156
C7—H7···C29iv0.932.493.400 (5)166
C7—H7···S2iv0.932.993.752 (5)140
Symmetry codes: (i) x+1/2, y1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z.
Comparison of the distortion parameters (Å, °) for indicated FeII complexes top
<Fe—N>ΣΘCShM (D3h)
Title compound2.167127.4481.95.671
CUWQAP2.186149.38453.24.008
CABLOH1.899725.74178.160.525
BUNSAF2.218703.65201.071.887
OWIHAE2.202894.48206.570.602
OTANOOa2.191697.3183.241.098
Note: (a) Parameters averaged over five independent complex cations.
 

Acknowledgements

Authors contributions are as follows: Conceptualization, NUM and MS; methodology, KZ; formal analysis, NUM; synthesis, SOM; magnetic measurements, IAG; single crystal measurements, SS; writing (original draft), NUM and MS; writing (review and editing of the manuscript), NUM, MS, KZ, SOM, IAG, TYS and SS; visualization, TYS; funding acquisition, KZ.

Funding information

Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 734322).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationEl Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416–10423.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006–6019.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866–9880.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815–818.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132–17140.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.  Web of Science CrossRef Google Scholar
First citationKahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH.  Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390.  Web of Science CrossRef Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254–5265.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationValverde–Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638.  Google Scholar
First citationVoloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Antipin, M. Y. & Polshin, E. V. (2001). Polyhedron, 20, 2721–2733.  Web of Science CSD CrossRef CAS Google Scholar
First citationZnovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661–1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds