research communications
N1,N3-bis{[1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl]methylidene}-2,2-dimethylpropane-1,3-diamine)bis(thiocyanato)iron(II)
of (aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania, and cThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: mlseredyuk@gmail.com, voruch@eml.ru
The II(NCS)2(C29H32N8O2)], consists of eight charge-neutral complex molecules. In the complex molecule, the tetradentate ligand N1,N3-bis{[1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl]methylene}-2,2-dimethylpropane-1,3-diamine coordinates to the FeII ion through the N atoms of the 1,2,3-triazole and aldimine groups. Two thiocyanate anions, coordinated through their N atoms, complete the coordination sphere of the central Fe ion. In the crystal, neighbouring molecules are linked through weak C⋯C, C⋯N and C⋯S interactions into a one-dimensional chain running parallel to [010]. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H (37.5%), H⋯C/C⋯H (24.7%), H⋯S/S⋯H (15.7%) and H⋯N/N⋯H (11.7%). The average Fe—N bond distance is 2.167 Å, indicating the high-spin state of the FeII ion, which does not change upon cooling, as demonstrated by low-temperature measurements.
of the title compound, [FeKeywords: iron(II) complex; thiocyanate complex; high-spin state; trigonal distortion; magnetism; crystal structure.
CCDC reference: 2075540
1. Chemical context
FeII complexes based on derived from N-substituted 1,2,3-triazole represent an interesting class of coordination compounds exhibiting spin-state switching between low- and high-spin states in different temperature regions (Hagiwara et al., 2014, 2016, 2020; Hora & Hagiwara, 2017). In all of the charge-neutral mononuclear complexes of this kind described so far, the thiocyanate anions occupy the axial position in the coordination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016; Hagiwara et al., 2017).
Having ongoing interest in functional 3d-metal complexes formed by polydentate ligands (Seredyuk et al., 2006, 2007, 2011, 2015, 2016; Seredyuk, 2012; Valverde-Muñoz et al., 2020), we report here the synthesis and of a new FeII complex based on the tetradentate ligand N1,N3-bis{[1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl]methylene}-2,2-dimethylpropane-1,3-diamine with thiocyanate anions arranged around the iron(II) atom in a cis-configuration.
2. Structural commentary
The FeII ion of the title complex has a distorted trigonal–prismatic N6 coordination environment formed by the four N atoms of the tetradentate Schiff-base ligand and the two NCS− counter-ions (Fig. 1). The average bond length, <Fe—N> = 2.167 Å, is typical for high-spin complexes with an [FeN6] chromophore (Gütlich & Goodwin, 2004). The N—Fe—N angle between the cis-aligned thiocyanate N atoms is 91.6 (1)°. The average trigonal distortion parameters, Σ = Σ112(|90 − φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995) and Θ = Σ124(|60 − θi|), where θi is the angle generated by the superposition of two opposite faces of an octahedron (Chang et al., 1990), are 127.4 and 481.9°, respectively. The values reveal a great deviation of the coordination environment from an ideal octahedron (where Σ = Θ = 0), and are significantly larger than those of similar [FeN6] high-spin trans-complexes (Hagiwara et al., 2017). With the aid of continuous shape measurements (CShM), the shape closest to the Fe-based and its distortion can be determined numerically (Kershaw Cook et al., 2015). The calculated CShM value relative to ideal Oh symmetry is 4.269, and 5.671 relative to ideal D3h trigonal–prismatic symmetry. Hence, the is closer to the former geometry, but is appreciably distorted, as indicated by the calculated value (for an ideal polyhedron CShM = 0). The volume of the [FeN6] is 12.50 Å3.
3. Supramolecular features
In the crystal, neighbouring complex molecules form one-dimensional supramolecular chains propagating parallel to [010] through weak contacts [S2⋯C19i = 3.271 (3) Å, N3⋯C7ii = 3.161 (3) Å and C14⋯C12ii = 3.320 (3) Å; symmetry codes: (i) x, −1 + y, z; (ii) − x, − + y, z] (Fig. 2). Weak C—H⋯X hydrogen bonds (Table 1) link the chains into a three-dimensional network. No strong hydrogen-bonding or stacking interactions are observed between the complex molecules in the crystal structure.
4. Hirshfeld surface and 2D fingerprint plots
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.3171 (red) to 1.6637 (blue) a.u. (Fig. 3). The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the interactions described above. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are presented in Fig. 4, associated with their relative contributions to the Hirshfeld surface. At 37.5%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 24.7%, and the H⋯S/S⋯H contacts contribute 15.7% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 11.7% contribution to the Hirshfeld surface.
5. Magnetic properties
Variable-temperature in the form of χMT versus T (χM is the molar and T is the temperature). At 300 K, the χMT value is close to 3.40 cm3 K mol−1, and on cooling the value remains constant down to 30 K. The decrease in χMT below 30 K is attributed to the zero-field splitting of the high-spin (S = 2) FeII centres (Kahn, 1993), which corroborates well with the observed long average Fe—N bond length and the large geometric distortion of the of the central FeII ion.
measurements were performed on single crystals (10 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum interference device (SQUID) susceptometer operating at 1 T in the temperature range 10–400 K. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal's constants. The magnetic behaviour of the compound is shown in Fig. 56. Database survey
A search of the Cambridge Structural Database (CSD, online) reveals five similar FeII thiocyanate complexes: derivatives of 1,3-diamine and N-substituted 1,2,3-triazole DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017; Hagiwara & Okada, 2016). These complexes show hysteretic spin crossover with variation of the Fe—N distances in the range 1.931–1.959 Å for the low-spin state and 2.154–2.169 Å for the high-spin state of the FeII ions. The reported pseudo-trigonal–prismatic complexes with an [FeN6] chromophore are formed by structurally hindered rigid hexadentate ligands favouring a trigonal geometry of the central FeII ion: CABLOH (Voloshin et al., 2001), BUNSAF (El Hajj et al., 2009), OWIHAE (Seredyuk et al., 2011), OTANOO (Stock et al., 2016). The complex CUWQAP, recently reported by us (Znovjyak et al., 2020), has a similar strongly distorted coordination environment of the central FeII ion. Table 2 collates the distortion parameters Σ, Θ and CShM for the pseudo-trigonal–prismatic complexes mentioned above.
7. Synthesis and crystallization
The ligand of the title compound was obtained in situ by condensation of 2,2-dimethyl-1,3-propanediamine (24 µL, 0.20 mmol) with 1-(4-methoxybenzyl)-1H-1,2,3-triazole-4-carbaldehyde (92 mg, 0.45 mmol) by boiling in methanol for 5 min and was subsequently reacted with [Fe(py)4(NCS)2] (100 mg, 0.20 mmol) and ascorbic acid (11 mg, 0.06 mmol) dissolved in a minimum of boiling methanol. The yellow solution formed was slowly cooled to ambient temperature. Yellow–orange crystals then precipitated and were filtered off. Elemental analysis calculated (%) for C29H32FeN10O2S2: C, 51.79; H, 4.80; N, 20.82; S, 9.53. Found: C, 52.02; H, 4.68; N, 20.77; S, 9.40. IR v (cm−1, KBr): 1614 (C=N), 2070, 2118 (NCS).
8. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2075540
https://doi.org/10.1107/S2056989021003662/cq2043sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021003662/cq2043Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021003662/cq2043Isup3.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Fe(NCS)2(C27H32N8O2)] | Dx = 1.380 Mg m−3 |
Mr = 672.61 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3410 reflections |
a = 22.8809 (15) Å | θ = 2.2–26.9° |
b = 9.0485 (4) Å | µ = 0.64 mm−1 |
c = 31.2662 (18) Å | T = 99 K |
V = 6473.3 (6) Å3 | Plate, clear dark red |
Z = 8 | 0.3 × 0.2 × 0.05 mm |
F(000) = 2800 |
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer | 4331 reflections with I > 2σ(I) |
Detector resolution: 8.0797 pixels mm-1 | Rint = 0.062 |
ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | h = −10→27 |
Tmin = 0.983, Tmax = 1.000 | k = −10→10 |
14323 measured reflections | l = −35→37 |
5718 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0332P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
5718 reflections | Δρmax = 0.45 e Å−3 |
401 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.36927 (2) | 0.44257 (5) | 0.48750 (2) | 0.01653 (14) | |
S1 | 0.35511 (5) | 0.27805 (13) | 0.63189 (3) | 0.0447 (3) | |
S2 | 0.45693 (4) | 0.01869 (10) | 0.41509 (3) | 0.0291 (3) | |
O1 | 0.21074 (11) | 0.7698 (3) | 0.22792 (7) | 0.0291 (6) | |
O2 | 0.59076 (10) | 0.1143 (2) | 0.27020 (7) | 0.0248 (6) | |
N1 | 0.30621 (12) | 0.6015 (3) | 0.51744 (8) | 0.0178 (7) | |
N2 | 0.29144 (12) | 0.4260 (3) | 0.44994 (8) | 0.0170 (7) | |
N3 | 0.27703 (12) | 0.3551 (3) | 0.41465 (9) | 0.0214 (7) | |
N4 | 0.22437 (12) | 0.4080 (3) | 0.40340 (9) | 0.0206 (7) | |
N5 | 0.42995 (12) | 0.6039 (3) | 0.51301 (9) | 0.0164 (6) | |
N6 | 0.40524 (12) | 0.5724 (3) | 0.43049 (9) | 0.0187 (7) | |
N7 | 0.40240 (13) | 0.5591 (3) | 0.38880 (9) | 0.0219 (7) | |
N8 | 0.45248 (13) | 0.6174 (3) | 0.37344 (9) | 0.0211 (7) | |
N9 | 0.36115 (13) | 0.3225 (3) | 0.54366 (10) | 0.0257 (7) | |
N10 | 0.41108 (12) | 0.2661 (3) | 0.45691 (9) | 0.0227 (7) | |
C1 | 0.37528 (17) | 0.8159 (4) | 0.60960 (11) | 0.0310 (10) | |
H1A | 0.375354 | 0.733805 | 0.629056 | 0.047* | |
H1B | 0.342017 | 0.877495 | 0.615288 | 0.047* | |
H1C | 0.410447 | 0.872295 | 0.613305 | 0.047* | |
C3 | 0.37212 (15) | 0.7588 (4) | 0.56379 (11) | 0.0193 (8) | |
C4 | 0.31474 (15) | 0.6730 (4) | 0.55938 (10) | 0.0227 (9) | |
H4A | 0.313404 | 0.597677 | 0.581427 | 0.027* | |
H4B | 0.282487 | 0.740361 | 0.564420 | 0.027* | |
C16 | 0.42617 (15) | 0.6583 (4) | 0.55718 (10) | 0.0196 (8) | |
H16A | 0.461308 | 0.713397 | 0.564006 | 0.024* | |
H16B | 0.423858 | 0.574790 | 0.576577 | 0.024* | |
C5 | 0.25706 (15) | 0.6127 (4) | 0.49871 (10) | 0.0185 (8) | |
H5 | 0.227835 | 0.674579 | 0.509020 | 0.022* | |
C6 | 0.24881 (15) | 0.5244 (3) | 0.46060 (11) | 0.0166 (8) | |
C7 | 0.20567 (15) | 0.5129 (4) | 0.43064 (11) | 0.0233 (9) | |
H7 | 0.170935 | 0.566109 | 0.429329 | 0.028* | |
C8 | 0.19663 (18) | 0.3560 (4) | 0.36374 (11) | 0.0319 (10) | |
H8A | 0.155587 | 0.336456 | 0.369061 | 0.038* | |
H8B | 0.214826 | 0.264241 | 0.354803 | 0.038* | |
C9 | 0.20226 (17) | 0.4690 (4) | 0.32836 (11) | 0.0252 (9) | |
C10 | 0.15496 (16) | 0.5551 (4) | 0.31594 (11) | 0.0255 (9) | |
H10 | 0.119558 | 0.544958 | 0.330250 | 0.031* | |
C11 | 0.15932 (16) | 0.6545 (4) | 0.28308 (11) | 0.0243 (9) | |
H11 | 0.127045 | 0.711095 | 0.275409 | 0.029* | |
C12 | 0.21154 (16) | 0.6713 (4) | 0.26122 (11) | 0.0227 (9) | |
C13 | 0.26012 (16) | 0.5918 (4) | 0.27391 (11) | 0.0279 (9) | |
H13 | 0.295853 | 0.605572 | 0.260294 | 0.033* | |
C14 | 0.25489 (16) | 0.4906 (4) | 0.30743 (12) | 0.0285 (9) | |
H14 | 0.287484 | 0.436628 | 0.315875 | 0.034* | |
C15 | 0.26393 (17) | 0.7909 (5) | 0.20445 (12) | 0.0402 (11) | |
H15A | 0.257419 | 0.860635 | 0.181795 | 0.060* | |
H15B | 0.276332 | 0.698306 | 0.192538 | 0.060* | |
H15C | 0.293636 | 0.827953 | 0.223293 | 0.060* | |
C17 | 0.46360 (15) | 0.6705 (4) | 0.48662 (11) | 0.0185 (8) | |
H17 | 0.491715 | 0.737278 | 0.496004 | 0.022* | |
C18 | 0.45624 (14) | 0.6381 (3) | 0.44164 (11) | 0.0159 (8) | |
C19 | 0.48706 (16) | 0.6670 (3) | 0.40516 (11) | 0.0201 (8) | |
H19 | 0.523657 | 0.710946 | 0.402782 | 0.024* | |
C20 | 0.46345 (17) | 0.6144 (4) | 0.32700 (11) | 0.0291 (10) | |
H20A | 0.485754 | 0.701335 | 0.319094 | 0.035* | |
H20B | 0.426354 | 0.618584 | 0.312035 | 0.035* | |
C21 | 0.49624 (15) | 0.4783 (4) | 0.31281 (10) | 0.0196 (8) | |
C22 | 0.54372 (15) | 0.4919 (4) | 0.28529 (10) | 0.0231 (9) | |
H22 | 0.555641 | 0.585120 | 0.276344 | 0.028* | |
C23 | 0.57315 (15) | 0.3689 (4) | 0.27121 (11) | 0.0230 (9) | |
H23 | 0.604410 | 0.379555 | 0.252458 | 0.028* | |
C24 | 0.55672 (15) | 0.2287 (4) | 0.28470 (10) | 0.0190 (8) | |
C25 | 0.50976 (15) | 0.2136 (4) | 0.31199 (11) | 0.0219 (8) | |
H25 | 0.498300 | 0.120252 | 0.321203 | 0.026* | |
C26 | 0.47962 (16) | 0.3382 (4) | 0.32569 (11) | 0.0232 (9) | |
H26 | 0.447708 | 0.327227 | 0.343831 | 0.028* | |
C27 | 0.58123 (16) | −0.0289 (4) | 0.28871 (11) | 0.0283 (9) | |
H27A | 0.611071 | −0.095612 | 0.279086 | 0.042* | |
H27B | 0.543625 | −0.065338 | 0.280106 | 0.042* | |
H27C | 0.582617 | −0.021393 | 0.319323 | 0.042* | |
C28 | 0.35849 (16) | 0.3024 (4) | 0.58016 (13) | 0.0249 (9) | |
C29 | 0.42995 (15) | 0.1637 (4) | 0.43909 (11) | 0.0199 (8) | |
C2 | 0.37357 (17) | 0.8902 (4) | 0.53291 (11) | 0.0284 (9) | |
H2A | 0.410648 | 0.939228 | 0.535081 | 0.043* | |
H2B | 0.342892 | 0.958133 | 0.540118 | 0.043* | |
H2C | 0.368063 | 0.855479 | 0.504172 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0201 (3) | 0.0141 (2) | 0.0154 (3) | 0.0026 (2) | −0.0036 (2) | −0.0026 (2) |
S1 | 0.0471 (7) | 0.0629 (8) | 0.0239 (6) | −0.0011 (6) | 0.0011 (5) | 0.0165 (6) |
S2 | 0.0348 (6) | 0.0177 (5) | 0.0348 (6) | 0.0031 (4) | 0.0071 (5) | −0.0057 (5) |
O1 | 0.0315 (16) | 0.0343 (15) | 0.0215 (14) | −0.0001 (13) | −0.0023 (12) | 0.0044 (13) |
O2 | 0.0298 (15) | 0.0227 (13) | 0.0220 (14) | 0.0095 (12) | 0.0042 (12) | −0.0018 (12) |
N1 | 0.0216 (17) | 0.0167 (14) | 0.0151 (16) | 0.0030 (13) | −0.0001 (13) | −0.0014 (13) |
N2 | 0.0231 (17) | 0.0132 (14) | 0.0146 (15) | −0.0012 (13) | 0.0007 (13) | 0.0011 (13) |
N3 | 0.0267 (18) | 0.0179 (15) | 0.0194 (17) | −0.0017 (14) | −0.0055 (14) | −0.0015 (14) |
N4 | 0.0231 (17) | 0.0176 (15) | 0.0210 (17) | −0.0022 (13) | −0.0118 (14) | 0.0016 (14) |
N5 | 0.0182 (16) | 0.0145 (14) | 0.0165 (15) | 0.0056 (12) | −0.0027 (13) | −0.0039 (14) |
N6 | 0.0243 (17) | 0.0171 (15) | 0.0148 (16) | 0.0042 (13) | −0.0010 (13) | −0.0042 (14) |
N7 | 0.0283 (18) | 0.0210 (16) | 0.0164 (16) | 0.0027 (14) | −0.0008 (14) | −0.0031 (15) |
N8 | 0.0300 (19) | 0.0151 (15) | 0.0182 (17) | 0.0069 (14) | 0.0029 (15) | −0.0025 (14) |
N9 | 0.034 (2) | 0.0213 (17) | 0.0221 (18) | −0.0045 (15) | −0.0018 (16) | 0.0002 (15) |
N10 | 0.0229 (17) | 0.0190 (16) | 0.0263 (18) | 0.0049 (14) | −0.0070 (15) | −0.0054 (15) |
C1 | 0.038 (2) | 0.033 (2) | 0.022 (2) | 0.0049 (19) | −0.0067 (19) | −0.0095 (19) |
C3 | 0.025 (2) | 0.0200 (18) | 0.0134 (18) | 0.0065 (17) | −0.0021 (16) | −0.0069 (16) |
C4 | 0.027 (2) | 0.028 (2) | 0.0133 (19) | 0.0065 (17) | 0.0028 (16) | −0.0028 (17) |
C16 | 0.027 (2) | 0.0182 (18) | 0.0134 (19) | −0.0020 (16) | −0.0035 (16) | −0.0020 (16) |
C5 | 0.019 (2) | 0.0163 (17) | 0.021 (2) | 0.0045 (15) | 0.0046 (16) | 0.0024 (16) |
C6 | 0.0174 (19) | 0.0148 (17) | 0.0178 (19) | −0.0014 (15) | 0.0017 (16) | 0.0041 (16) |
C7 | 0.020 (2) | 0.0203 (19) | 0.029 (2) | 0.0009 (16) | −0.0046 (18) | 0.0029 (18) |
C8 | 0.045 (3) | 0.023 (2) | 0.028 (2) | −0.0019 (19) | −0.022 (2) | −0.0017 (19) |
C9 | 0.036 (2) | 0.0183 (19) | 0.022 (2) | −0.0021 (18) | −0.0166 (18) | −0.0089 (17) |
C10 | 0.024 (2) | 0.026 (2) | 0.027 (2) | −0.0047 (18) | −0.0077 (17) | −0.0019 (19) |
C11 | 0.022 (2) | 0.023 (2) | 0.028 (2) | 0.0021 (17) | −0.0092 (18) | −0.0017 (18) |
C12 | 0.029 (2) | 0.0229 (19) | 0.0159 (19) | 0.0002 (17) | −0.0064 (18) | −0.0053 (17) |
C13 | 0.027 (2) | 0.033 (2) | 0.024 (2) | 0.0076 (18) | 0.0018 (18) | −0.0093 (19) |
C14 | 0.030 (2) | 0.024 (2) | 0.031 (2) | 0.0126 (18) | −0.012 (2) | −0.0089 (19) |
C15 | 0.034 (3) | 0.057 (3) | 0.029 (2) | −0.003 (2) | 0.007 (2) | 0.005 (2) |
C17 | 0.0162 (19) | 0.0157 (17) | 0.024 (2) | 0.0031 (15) | −0.0044 (17) | 0.0006 (17) |
C18 | 0.0151 (19) | 0.0110 (16) | 0.022 (2) | 0.0042 (15) | −0.0013 (16) | −0.0035 (16) |
C19 | 0.023 (2) | 0.0131 (17) | 0.025 (2) | 0.0050 (16) | 0.0023 (17) | 0.0012 (17) |
C20 | 0.043 (3) | 0.030 (2) | 0.014 (2) | 0.0088 (19) | 0.0047 (18) | 0.0024 (18) |
C21 | 0.029 (2) | 0.0201 (19) | 0.0099 (18) | 0.0015 (17) | −0.0038 (16) | 0.0009 (16) |
C22 | 0.033 (2) | 0.0198 (19) | 0.0166 (19) | −0.0028 (17) | 0.0020 (18) | 0.0039 (17) |
C23 | 0.023 (2) | 0.028 (2) | 0.018 (2) | 0.0018 (17) | 0.0064 (17) | −0.0004 (18) |
C24 | 0.024 (2) | 0.0229 (19) | 0.0105 (18) | 0.0024 (17) | −0.0032 (16) | −0.0051 (16) |
C25 | 0.029 (2) | 0.0167 (18) | 0.020 (2) | 0.0011 (17) | 0.0007 (17) | −0.0003 (17) |
C26 | 0.026 (2) | 0.028 (2) | 0.015 (2) | −0.0004 (18) | 0.0024 (16) | 0.0021 (18) |
C27 | 0.042 (2) | 0.021 (2) | 0.022 (2) | 0.0107 (18) | 0.0012 (19) | 0.0001 (17) |
C28 | 0.023 (2) | 0.0181 (19) | 0.034 (2) | −0.0012 (16) | −0.0035 (19) | 0.0049 (19) |
C29 | 0.019 (2) | 0.0207 (19) | 0.020 (2) | −0.0035 (16) | −0.0035 (16) | 0.0056 (18) |
C2 | 0.040 (2) | 0.0204 (19) | 0.025 (2) | 0.0086 (18) | −0.0059 (19) | −0.0034 (18) |
Fe1—N1 | 2.242 (3) | C6—C7 | 1.365 (5) |
Fe1—N2 | 2.138 (3) | C7—H7 | 0.9300 |
Fe1—N5 | 2.167 (3) | C8—H8A | 0.9700 |
Fe1—N6 | 2.288 (3) | C8—H8B | 0.9700 |
Fe1—N9 | 2.073 (3) | C8—C9 | 1.512 (5) |
Fe1—N10 | 2.092 (3) | C9—C10 | 1.389 (5) |
S1—C28 | 1.634 (4) | C9—C14 | 1.384 (5) |
S2—C29 | 1.633 (4) | C10—H10 | 0.9300 |
O1—C12 | 1.371 (4) | C10—C11 | 1.369 (5) |
O1—C15 | 1.434 (4) | C11—H11 | 0.9300 |
O2—C24 | 1.373 (4) | C11—C12 | 1.385 (5) |
O2—C27 | 1.435 (4) | C12—C13 | 1.382 (5) |
N1—C4 | 1.475 (4) | C13—H13 | 0.9300 |
N1—C5 | 1.272 (4) | C13—C14 | 1.397 (5) |
N2—N3 | 1.319 (4) | C14—H14 | 0.9300 |
N2—C6 | 1.362 (4) | C15—H15A | 0.9600 |
N3—N4 | 1.344 (4) | C15—H15B | 0.9600 |
N4—C7 | 1.345 (4) | C15—H15C | 0.9600 |
N4—C8 | 1.470 (4) | C17—H17 | 0.9300 |
N5—C16 | 1.469 (4) | C17—C18 | 1.447 (4) |
N5—C17 | 1.279 (4) | C18—C19 | 1.366 (4) |
N6—N7 | 1.311 (4) | C19—H19 | 0.9300 |
N6—C18 | 1.355 (4) | C20—H20A | 0.9700 |
N7—N8 | 1.350 (4) | C20—H20B | 0.9700 |
N8—C19 | 1.346 (4) | C20—C21 | 1.508 (5) |
N8—C20 | 1.474 (4) | C21—C22 | 1.391 (5) |
N9—C28 | 1.157 (4) | C21—C26 | 1.384 (5) |
N10—C29 | 1.164 (4) | C22—H22 | 0.9300 |
C1—H1A | 0.9600 | C22—C23 | 1.373 (5) |
C1—H1B | 0.9600 | C23—H23 | 0.9300 |
C1—H1C | 0.9600 | C23—C24 | 1.388 (5) |
C1—C3 | 1.524 (4) | C24—C25 | 1.379 (5) |
C3—C4 | 1.531 (5) | C25—H25 | 0.9300 |
C3—C16 | 1.549 (4) | C25—C26 | 1.389 (5) |
C3—C2 | 1.532 (5) | C26—H26 | 0.9300 |
C4—H4A | 0.9700 | C27—H27A | 0.9600 |
C4—H4B | 0.9700 | C27—H27B | 0.9600 |
C16—H16A | 0.9700 | C27—H27C | 0.9600 |
C16—H16B | 0.9700 | C2—H2A | 0.9600 |
C5—H5 | 0.9300 | C2—H2B | 0.9600 |
C5—C6 | 1.447 (5) | C2—H2C | 0.9600 |
N1—Fe1—N6 | 103.14 (10) | H8A—C8—H8B | 108.0 |
N2—Fe1—N1 | 74.82 (10) | C9—C8—H8A | 109.4 |
N2—Fe1—N5 | 141.53 (10) | C9—C8—H8B | 109.4 |
N2—Fe1—N6 | 84.71 (10) | C10—C9—C8 | 121.2 (4) |
N5—Fe1—N1 | 80.01 (10) | C14—C9—C8 | 121.1 (3) |
N5—Fe1—N6 | 73.16 (10) | C14—C9—C10 | 117.8 (3) |
N9—Fe1—N1 | 85.69 (11) | C9—C10—H10 | 119.3 |
N9—Fe1—N2 | 110.72 (11) | C11—C10—C9 | 121.4 (4) |
N9—Fe1—N5 | 95.66 (11) | C11—C10—H10 | 119.3 |
N9—Fe1—N6 | 163.98 (11) | C10—C11—H11 | 119.8 |
N9—Fe1—N10 | 91.62 (11) | C10—C11—C12 | 120.3 (3) |
N10—Fe1—N1 | 167.02 (11) | C12—C11—H11 | 119.8 |
N10—Fe1—N2 | 94.38 (11) | O1—C12—C11 | 115.8 (3) |
N10—Fe1—N5 | 112.91 (10) | O1—C12—C13 | 124.5 (3) |
N10—Fe1—N6 | 82.61 (10) | C13—C12—C11 | 119.7 (3) |
C12—O1—C15 | 117.6 (3) | C12—C13—H13 | 120.4 |
C24—O2—C27 | 117.5 (3) | C12—C13—C14 | 119.2 (4) |
C4—N1—Fe1 | 124.6 (2) | C14—C13—H13 | 120.4 |
C5—N1—Fe1 | 115.3 (2) | C9—C14—C13 | 121.5 (3) |
C5—N1—C4 | 119.4 (3) | C9—C14—H14 | 119.3 |
N3—N2—Fe1 | 134.6 (2) | C13—C14—H14 | 119.3 |
N3—N2—C6 | 110.1 (3) | O1—C15—H15A | 109.5 |
C6—N2—Fe1 | 114.6 (2) | O1—C15—H15B | 109.5 |
N2—N3—N4 | 105.6 (3) | O1—C15—H15C | 109.5 |
N3—N4—C7 | 111.8 (3) | H15A—C15—H15B | 109.5 |
N3—N4—C8 | 119.6 (3) | H15A—C15—H15C | 109.5 |
C7—N4—C8 | 128.5 (3) | H15B—C15—H15C | 109.5 |
C16—N5—Fe1 | 122.3 (2) | N5—C17—H17 | 121.3 |
C17—N5—Fe1 | 117.8 (2) | N5—C17—C18 | 117.5 (3) |
C17—N5—C16 | 118.9 (3) | C18—C17—H17 | 121.3 |
N7—N6—Fe1 | 135.2 (2) | N6—C18—C17 | 116.0 (3) |
N7—N6—C18 | 109.8 (3) | N6—C18—C19 | 108.3 (3) |
C18—N6—Fe1 | 109.6 (2) | C19—C18—C17 | 135.5 (3) |
N6—N7—N8 | 106.0 (3) | N8—C19—C18 | 104.4 (3) |
N7—N8—C20 | 119.2 (3) | N8—C19—H19 | 127.8 |
C19—N8—N7 | 111.5 (3) | C18—C19—H19 | 127.8 |
C19—N8—C20 | 129.2 (3) | N8—C20—H20A | 109.0 |
C28—N9—Fe1 | 157.3 (3) | N8—C20—H20B | 109.0 |
C29—N10—Fe1 | 174.6 (3) | N8—C20—C21 | 112.9 (3) |
H1A—C1—H1B | 109.5 | H20A—C20—H20B | 107.8 |
H1A—C1—H1C | 109.5 | C21—C20—H20A | 109.0 |
H1B—C1—H1C | 109.5 | C21—C20—H20B | 109.0 |
C3—C1—H1A | 109.5 | C22—C21—C20 | 119.9 (3) |
C3—C1—H1B | 109.5 | C26—C21—C20 | 121.7 (3) |
C3—C1—H1C | 109.5 | C26—C21—C22 | 118.4 (3) |
C1—C3—C4 | 107.3 (3) | C21—C22—H22 | 119.7 |
C1—C3—C16 | 106.6 (3) | C23—C22—C21 | 120.7 (3) |
C1—C3—C2 | 109.2 (3) | C23—C22—H22 | 119.7 |
C4—C3—C16 | 112.0 (3) | C22—C23—H23 | 119.7 |
C4—C3—C2 | 110.8 (3) | C22—C23—C24 | 120.7 (3) |
C2—C3—C16 | 110.8 (3) | C24—C23—H23 | 119.7 |
N1—C4—C3 | 114.6 (3) | O2—C24—C23 | 115.8 (3) |
N1—C4—H4A | 108.6 | O2—C24—C25 | 124.9 (3) |
N1—C4—H4B | 108.6 | C25—C24—C23 | 119.3 (3) |
C3—C4—H4A | 108.6 | C24—C25—H25 | 120.1 |
C3—C4—H4B | 108.6 | C24—C25—C26 | 119.8 (3) |
H4A—C4—H4B | 107.6 | C26—C25—H25 | 120.1 |
N5—C16—C3 | 111.7 (3) | C21—C26—C25 | 121.2 (3) |
N5—C16—H16A | 109.3 | C21—C26—H26 | 119.4 |
N5—C16—H16B | 109.3 | C25—C26—H26 | 119.4 |
C3—C16—H16A | 109.3 | O2—C27—H27A | 109.5 |
C3—C16—H16B | 109.3 | O2—C27—H27B | 109.5 |
H16A—C16—H16B | 107.9 | O2—C27—H27C | 109.5 |
N1—C5—H5 | 121.6 | H27A—C27—H27B | 109.5 |
N1—C5—C6 | 116.8 (3) | H27A—C27—H27C | 109.5 |
C6—C5—H5 | 121.6 | H27B—C27—H27C | 109.5 |
N2—C6—C5 | 118.0 (3) | N9—C28—S1 | 178.7 (4) |
N2—C6—C7 | 107.5 (3) | N10—C29—S2 | 178.7 (3) |
C7—C6—C5 | 134.6 (3) | C3—C2—H2A | 109.5 |
N4—C7—C6 | 105.0 (3) | C3—C2—H2B | 109.5 |
N4—C7—H7 | 127.5 | C3—C2—H2C | 109.5 |
C6—C7—H7 | 127.5 | H2A—C2—H2B | 109.5 |
N4—C8—H8A | 109.4 | H2A—C2—H2C | 109.5 |
N4—C8—H8B | 109.4 | H2B—C2—H2C | 109.5 |
N4—C8—C9 | 111.3 (3) | ||
Fe1—N1—C4—C3 | 55.4 (4) | C4—C3—C16—N5 | 66.6 (4) |
Fe1—N1—C5—C6 | −1.1 (4) | C16—N5—C17—C18 | −165.6 (3) |
Fe1—N2—N3—N4 | −170.5 (2) | C16—C3—C4—N1 | −59.6 (4) |
Fe1—N2—C6—C5 | −8.2 (4) | C5—N1—C4—C3 | −134.5 (3) |
Fe1—N2—C6—C7 | 172.3 (2) | C5—C6—C7—N4 | −179.2 (4) |
Fe1—N5—C16—C3 | −70.4 (3) | C6—N2—N3—N4 | −0.9 (3) |
Fe1—N5—C17—C18 | 3.1 (4) | C7—N4—C8—C9 | 73.0 (5) |
Fe1—N6—N7—N8 | −150.2 (2) | C8—N4—C7—C6 | −176.5 (3) |
Fe1—N6—C18—C17 | −26.4 (3) | C8—C9—C10—C11 | −178.1 (3) |
Fe1—N6—C18—C19 | 157.9 (2) | C8—C9—C14—C13 | 178.2 (3) |
O1—C12—C13—C14 | −177.7 (3) | C9—C10—C11—C12 | 0.2 (5) |
O2—C24—C25—C26 | 177.8 (3) | C10—C9—C14—C13 | −2.2 (5) |
N1—C5—C6—N2 | 6.2 (5) | C10—C11—C12—O1 | 177.8 (3) |
N1—C5—C6—C7 | −174.5 (4) | C10—C11—C12—C13 | −2.8 (5) |
N2—N3—N4—C7 | 1.0 (4) | C11—C12—C13—C14 | 2.9 (5) |
N2—N3—N4—C8 | 177.2 (3) | C12—C13—C14—C9 | −0.4 (5) |
N2—C6—C7—N4 | 0.1 (4) | C14—C9—C10—C11 | 2.3 (5) |
N3—N2—C6—C5 | 179.9 (3) | C15—O1—C12—C11 | 179.9 (3) |
N3—N2—C6—C7 | 0.5 (4) | C15—O1—C12—C13 | 0.5 (5) |
N3—N4—C7—C6 | −0.7 (4) | C17—N5—C16—C3 | 97.8 (3) |
N3—N4—C8—C9 | −102.6 (4) | C17—C18—C19—N8 | −174.1 (3) |
N4—C8—C9—C10 | −104.9 (4) | C18—N6—N7—N8 | 0.0 (3) |
N4—C8—C9—C14 | 74.7 (4) | C19—N8—C20—C21 | 86.0 (4) |
N5—C17—C18—N6 | 17.1 (4) | C20—N8—C19—C18 | −177.8 (3) |
N5—C17—C18—C19 | −168.7 (4) | C20—C21—C22—C23 | −178.4 (3) |
N6—N7—N8—C19 | 0.2 (3) | C20—C21—C26—C25 | 179.2 (3) |
N6—N7—N8—C20 | 177.9 (3) | C21—C22—C23—C24 | −1.0 (5) |
N6—C18—C19—N8 | 0.4 (4) | C22—C21—C26—C25 | 0.7 (5) |
N7—N6—C18—C17 | 175.4 (3) | C22—C23—C24—O2 | −177.1 (3) |
N7—N6—C18—C19 | −0.3 (4) | C22—C23—C24—C25 | 1.0 (5) |
N7—N8—C19—C18 | −0.4 (4) | C23—C24—C25—C26 | −0.1 (5) |
N7—N8—C20—C21 | −91.3 (4) | C24—C25—C26—C21 | −0.7 (5) |
N8—C20—C21—C22 | −133.2 (3) | C26—C21—C22—C23 | 0.2 (5) |
N8—C20—C21—C26 | 48.3 (5) | C27—O2—C24—C23 | 170.2 (3) |
C1—C3—C4—N1 | −176.3 (3) | C27—O2—C24—C25 | −7.8 (5) |
C1—C3—C16—N5 | −176.3 (3) | C2—C3—C4—N1 | 64.6 (4) |
C4—N1—C5—C6 | −172.0 (3) | C2—C3—C16—N5 | −57.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27A···O1i | 0.96 | 2.60 | 3.517 (4) | 161 |
C20—H20B···O2ii | 0.97 | 2.60 | 3.282 (4) | 127 |
C19—H19···C28iii | 0.93 | 2.75 | 3.574 (5) | 148 |
C19—H19···S1iii | 0.93 | 2.98 | 3.825 (4) | 152 |
C17—H17···N10iii | 0.93 | 2.67 | 3.416 (4) | 138 |
C17—H17···C29iii | 0.93 | 2.85 | 3.685 (5) | 150 |
C16—H16A···C29iii | 0.97 | 2.73 | 3.667 (5) | 163 |
C5—H5···N9iv | 0.93 | 2.67 | 3.590 (5) | 173 |
C7—H7···N10iv | 0.93 | 2.75 | 3.614 (5) | 156 |
C7—H7···C29iv | 0.93 | 2.49 | 3.400 (5) | 166 |
C7—H7···S2iv | 0.93 | 2.99 | 3.752 (5) | 140 |
Symmetry codes: (i) x+1/2, y−1, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y+1/2, z. |
<Fe—N> | Σ | Θ | CShM (D3h) | |
Title compound | 2.167 | 127.4 | 481.9 | 5.671 |
CUWQAP | 2.186 | 149.38 | 453.2 | 4.008 |
CABLOH | 1.899 | 725.74 | 178.16 | 0.525 |
BUNSAF | 2.218 | 703.65 | 201.07 | 1.887 |
OWIHAE | 2.202 | 894.48 | 206.57 | 0.602 |
OTANOOa | 2.191 | 697.3 | 183.24 | 1.098 |
Note: (a) Parameters averaged over five independent complex cations. |
Acknowledgements
Authors contributions are as follows: Conceptualization, NUM and MS; methodology, KZ; formal analysis, NUM; synthesis, SOM; magnetic measurements, IAG; single crystal measurements, SS; writing (original draft), NUM and MS; writing (review and editing of the manuscript), NUM, MS, KZ, SOM, IAG, TYS and SS; visualization, TYS; funding acquisition, KZ.
Funding information
Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 734322).
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416–10423. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47. Google Scholar
Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006–6019. Web of Science CSD CrossRef CAS Google Scholar
Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952. Web of Science CSD CrossRef CAS Google Scholar
Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866–9880. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815–818. Web of Science CSD CrossRef CAS Google Scholar
Hagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132–17140. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49. Web of Science CrossRef Google Scholar
Kahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH. Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390. Web of Science CrossRef Google Scholar
Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef PubMed Google Scholar
Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254–5265. Web of Science CSD CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Valverde–Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. Google Scholar
Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Antipin, M. Y. & Polshin, E. V. (2001). Polyhedron, 20, 2721–2733. Web of Science CSD CrossRef CAS Google Scholar
Znovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661–1664. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.