research communications
N1,N3-bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato)iron(II)
of {aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania, and cThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: mlseredyuk@gmail.com, voruch@eml.ru
The II(NCS)2(C19H32N8)], consists of two charge-neutral complex molecules. In the complex molecule, the tetradentate ligand N1,N3-bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine coordinates to the FeII ion through the N atoms of the 1,2,3-triazole and aldimine groups. Two thiocyanate anions, also coordinated through their N atoms, complete the coordination sphere of the central Fe ion. In the crystal, neighbouring molecules are linked through weak C—H⋯C/S/N interactions into a three-dimensional network. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 50.8%, H⋯C/C⋯H 14.3%, H⋯S/S⋯H 20.5% and H⋯N/N⋯H 12.1%. The average Fe—N bond distance is 2.170 Å, indicating the high-spin state of the FeII ion, which does not change upon cooling, as demonstrated by low-temperature measurements. DFT calculations of energy frameworks at the B3LYP/6–31 G(d,p) theory level were performed to account for the interactions involved in the crystal structure.
of the title compound, [FeKeywords: iron(II) complex; thiocyanate complex; high-spin state; trigonal distortion; magnetism; energy frameworks; crystal structure.
CCDC reference: 2079827
1. Chemical context
An interesting class of coordination compounds exhibiting spin-state switching between low- and high-spin states is represented by FeII complexes based on derived from N-substituted 1,2,3-triazole (Hagiwara et al., 2014, 2016, 2020; Hora & Hagiwara, 2017). In all of the charge-neutral mononuclear complexes of this kind described so far, the thiocyanate anions occupy the axial position in the coordination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016; Hagiwara et al., 2017).
Having interest in functional 3d metal complexes formed by polydentate ligands (Seredyuk et al., 2006, 2007, 2011, 2012, 2015, 2016; Valverde-Muñoz et al., 2020), we report here a continuation of our ongoing exploration of new FeII cis-complexes with thiocyanate anions and tetradentate ligands N1,N3-bis[(1-R-1H-1,2,3-triazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine, and report below structural and magnetic investigations of a new complex with R = tert-butyl.
2. Structural commentary
The FeII ion of the title complex has a distorted trigonal–prismatic N6 coordination environment formed by the four N atoms of the tetradentate Schiff-base ligand and the two NCS− counter-ions (Fig. 1). The average bond length, <Fe—N> = 2.170 (4) Å, is typical for high-spin complexes with an [FeN6] chromophore (Gütlich & Goodwin, 2004). The N—Fe—N′ angle between the cis-aligned thiocyanate N atoms is 91.91 (8)°. The average trigonal distortion parameters, Σ = Σ112(|90 – φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995), Θ = Σ124(|60 – θi|), where θi is the angle generated by superposition of two opposite faces of an octahedron (Chang et al., 1990) are 127.8 and 438.2°, respectively. The values reveal a great deviation of the coordination environment from an ideal octahedron (where Σ = Θ = 0), and are significantly larger than those of similar [FeN6] high-spin trans-complexes (Hagiwara et al., 2017). With the aid of continuous shape measurements (CShM), the closest shape of a and its distortion can be determined numerically (Kershaw Cook et al., 2015). The calculated CShM value relative to ideal Oh symmetry is 3.829, while it is 6.709 relative to the ideal D3h trigonal–prismatic symmetry. Hence, the polyhedron is closer to the former geometry, but is still appreciably distorted, as indicated by the calculated value (for an ideal polyhedron CShM = 0). The volume of the [FeN6] is 12.60 Å3.
3. Supramolecular features
In the lattice, neighbouring complex molecules form a three-dimensional supramolecular network (Fig. 2) through the weak C—H⋯X hydrogen bonds (Table 1). No strong hydrogen bonding or stacking interactions are observed between the complex molecules in the crystal lattice.
4. Hirshfeld surface and 2D fingerprint plots
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1141 (red) to 1.9978 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 3. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are presented in Fig. 4, associated with their relative contributions to the Hirshfeld surface. At 50.8%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 14.3%, and the H⋯S/S⋯H contacts contribute 20.5% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.1% contribution to the Hirshfeld surface.
5. Energy frameworks
The energy frameworks, calculated using the wave function at the B3LYP/6-3G(d,p) level of theory for the title compound, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 5a. The cylindrical radii, adjusted to the same scale factor of 80, are proportional to the relative strength of the corresponding energies (Turner et al., 2017; Tan et al., 2019). It can be seen that the major contribution to the intermolecular interactions is from Coulomb forces (Eele), reflecting dipole–dipole interactions of the asymmetric complex cis-molecules in the lattice. According to the calculations, the most repulsive interaction is due to the anion-to-anion alignment of neighbouring complex molecules (Etot = 65.3 kJ mol−1) while the ligand-to-anion alignment gives the most attractive one (Etot = −223.9 kJ mol−1) (Fig. 5b). The colour-coded interaction mappings within a radius of 3.8 Å of a central reference molecule for the title compound together with full details of the various contributions to the total energy (Etot) are given in the Supporting Information.
6. Magnetic properties
Variable-temperature in the form of χMT versus T (χM is the molar and T is the temperature). At 300 K, the χMT value is close to 3.51 cm3 K mol−1, and on cooling the value remains constant down to 30 K. The decrease of χMT below 30 K is attributed to the zero-field splitting of the high-spin (S = 2) FeII centres (Kahn, 1993), which corroborates with the observed long average Fe—N bond length and the large geometric distortion of the of the central FeII ion.
measurements were performed on single crystals (10 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum interference device (SQUID) susceptometer operating at 1 T. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal's constants. The magnetic behaviour of the compound is shown in Fig. 67. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals five similar FeII thiocyanate complexes, derivatives of a 1,3-diamine and N-substituted 1,2,3-triazole DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017, Hagiwara & Okada, 2016). These complexes show hysteretic spin crossover with variation of the Fe—N distances in the range 1.931–1.959 Å for the low-spin state and 2.154–2.169 Å for the high-spin state of the FeII ions. The reported pseudo-trigonal–prismatic complexes with an [FeN6] chromophore are formed by structurally hindered rigid hexadentate ligands favouring trigonal geometry of the central FeII ion: CABLOH (Voloshin et al., 2001), BUNSAF (El Hajj et al., 2009), OWIHAE (Seredyuk et al., 2011), OTANOO (Stock et al., 2016). The recently reported by us cis-complexes CUWQAP and IQEFAO have similar strongly distorted coordination environment of the central FeII ion (Znovjyak et al., 2020, 2021). Table 2 collates the distortion parameters Σ, Θ and CShM for the pseudo-trigonal-prismatic complexes mentioned above.
|
8. Synthesis and crystallization
The synthesis of the title compound is identical to that reported by us recently for similar thiocyanate complexes (Znovjyak et al., 2020, 2021). The ligand of the title compound was obtained in situ by condensation of 2,2-dimethyl-1,3-propanediamine (24 µL, 0.20 mmol) with 1-tert-butyl-1H-1,2,3-triazole-4-carbaldehyde (63 mg, 0.45 mmol) in boiling methanol (5 ml) over 5 min and subsequently reacted with [Fe(py)4(NCS)2] (100 mg, 0.20 mmol) and ascorbic acid (11 mg, 0.06 mmol) in boiling methanol (5 ml). The formed yellow solution was slowly cooled to ambient temperature. Yellow–orange crystals then precipitated and were subsequently filtered off. Elemental analysis calculated (%) for C21H32FeN10S2: C, 46.32; H, 5.92; N, 25.72; S, 11.78. Found: C, 46.40; H, 6.10; N, 26.18; S, 11.80. IR v (cm−1, KBr): 1611 (C=N), 2071, 2116 (NCS).
9. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2079827
https://doi.org/10.1107/S2056989021004412/dj2026sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021004412/dj2026Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021004412/dj2026Isup3.cdx
The full colour-coded interaction mappings of a central reference molecule for the title compound. DOI: https://doi.org/10.1107/S2056989021004412/dj2026sup4.pdf
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Fe(NCS)2(C19H32N8)] | Z = 2 |
Mr = 544.53 | F(000) = 572 |
Triclinic, P1 | Dx = 1.269 Mg m−3 |
a = 9.4768 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.8151 (5) Å | Cell parameters from 3729 reflections |
c = 15.2493 (7) Å | θ = 2.0–26.8° |
α = 102.267 (4)° | µ = 0.70 mm−1 |
β = 102.813 (4)° | T = 250 K |
γ = 103.291 (4)° | Prism, orange |
V = 1424.90 (13) Å3 | 0.4 × 0.2 × 0.2 mm |
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer | 4188 reflections with I > 2σ(I) |
Detector resolution: 16.1593 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | h = −10→11 |
Tmin = 0.865, Tmax = 1.000 | k = −12→12 |
10732 measured reflections | l = −18→18 |
5016 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0371P)2 + 0.545P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5016 reflections | Δρmax = 0.46 e Å−3 |
315 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.23066 (4) | 0.71954 (3) | 0.39637 (2) | 0.03412 (12) | |
S1 | −0.02770 (8) | 0.91016 (6) | 0.59945 (5) | 0.04605 (18) | |
S2 | 0.18981 (11) | 0.99900 (8) | 0.18833 (5) | 0.0709 (3) | |
N1 | 0.4279 (2) | 0.81942 (18) | 0.51741 (13) | 0.0362 (5) | |
N2 | 0.4378 (2) | 0.70935 (19) | 0.34658 (14) | 0.0382 (5) | |
N3 | 0.4618 (2) | 0.6739 (2) | 0.26556 (14) | 0.0422 (5) | |
N4 | 0.6061 (2) | 0.73984 (19) | 0.27554 (14) | 0.0397 (5) | |
N5 | 0.2174 (2) | 0.57207 (18) | 0.47997 (13) | 0.0347 (4) | |
N6 | 0.1170 (2) | 0.52968 (18) | 0.29454 (13) | 0.0359 (5) | |
N7 | 0.0625 (2) | 0.48742 (19) | 0.20347 (14) | 0.0399 (5) | |
N8 | 0.0220 (2) | 0.35431 (18) | 0.18153 (13) | 0.0386 (5) | |
N9 | 0.0762 (3) | 0.7799 (2) | 0.46068 (16) | 0.0504 (6) | |
N10 | 0.2124 (2) | 0.8439 (2) | 0.31141 (15) | 0.0466 (5) | |
C1 | 0.3934 (4) | 0.7358 (3) | 0.74168 (19) | 0.0664 (9) | |
H1A | 0.488965 | 0.795885 | 0.780643 | 0.100* | |
H1B | 0.375591 | 0.655489 | 0.760243 | 0.100* | |
H1C | 0.314239 | 0.775546 | 0.748319 | 0.100* | |
C2 | 0.5250 (3) | 0.6455 (3) | 0.6288 (2) | 0.0570 (7) | |
H2A | 0.522605 | 0.621296 | 0.564042 | 0.086* | |
H2B | 0.513695 | 0.568366 | 0.651321 | 0.086* | |
H2C | 0.619922 | 0.709544 | 0.664560 | 0.086* | |
C3 | 0.3958 (3) | 0.7047 (2) | 0.63914 (16) | 0.0427 (6) | |
C4 | 0.4194 (3) | 0.8373 (2) | 0.61365 (16) | 0.0405 (6) | |
H4A | 0.336116 | 0.872821 | 0.620707 | 0.049* | |
H4B | 0.512065 | 0.900330 | 0.656164 | 0.049* | |
C5 | 0.5577 (3) | 0.8462 (2) | 0.50359 (17) | 0.0406 (6) | |
H5 | 0.644384 | 0.894529 | 0.552199 | 0.049* | |
C6 | 0.5647 (3) | 0.7985 (2) | 0.40914 (16) | 0.0370 (6) | |
C7 | 0.6733 (3) | 0.8177 (2) | 0.36351 (17) | 0.0430 (6) | |
H7 | 0.772226 | 0.872582 | 0.387956 | 0.052* | |
C8 | 0.6700 (3) | 0.7264 (3) | 0.19420 (18) | 0.0487 (7) | |
C9 | 0.5645 (4) | 0.6141 (4) | 0.1149 (2) | 0.1047 (15) | |
H9A | 0.550373 | 0.534196 | 0.134109 | 0.157* | |
H9B | 0.606340 | 0.604349 | 0.062876 | 0.157* | |
H9C | 0.468901 | 0.631363 | 0.096737 | 0.157* | |
C10 | 0.6890 (6) | 0.8558 (4) | 0.1695 (3) | 0.1240 (18) | |
H10A | 0.592928 | 0.873393 | 0.155227 | 0.186* | |
H10B | 0.727368 | 0.850811 | 0.116084 | 0.186* | |
H10C | 0.758785 | 0.925718 | 0.221622 | 0.186* | |
C11 | 0.8222 (4) | 0.7048 (5) | 0.2252 (3) | 0.1079 (15) | |
H11A | 0.887477 | 0.779295 | 0.275755 | 0.162* | |
H11B | 0.865439 | 0.695136 | 0.173773 | 0.162* | |
H11C | 0.810879 | 0.626152 | 0.245908 | 0.162* | |
C12 | 0.2433 (3) | 0.6048 (2) | 0.58150 (16) | 0.0436 (6) | |
H12A | 0.235390 | 0.523925 | 0.600421 | 0.052* | |
H12B | 0.163402 | 0.639851 | 0.596548 | 0.052* | |
C13 | 0.1634 (3) | 0.4524 (2) | 0.43216 (17) | 0.0388 (6) | |
H13 | 0.155551 | 0.384125 | 0.460660 | 0.047* | |
C14 | 0.1140 (3) | 0.4256 (2) | 0.33115 (16) | 0.0343 (5) | |
C15 | 0.0539 (3) | 0.3127 (2) | 0.25822 (17) | 0.0416 (6) | |
H15 | 0.038598 | 0.225792 | 0.261304 | 0.050* | |
C16 | −0.0388 (3) | 0.2749 (3) | 0.08089 (17) | 0.0479 (7) | |
C17 | −0.1268 (4) | 0.1368 (3) | 0.0764 (2) | 0.0696 (9) | |
H17A | −0.060908 | 0.096972 | 0.110571 | 0.104* | |
H17B | −0.166885 | 0.084533 | 0.012288 | 0.104* | |
H17C | −0.208368 | 0.141301 | 0.103520 | 0.104* | |
C18 | 0.0941 (4) | 0.2720 (4) | 0.0434 (2) | 0.0891 (12) | |
H18A | 0.146877 | 0.360201 | 0.045494 | 0.134* | |
H18B | 0.059447 | 0.217558 | −0.020213 | 0.134* | |
H18C | 0.161008 | 0.236346 | 0.080741 | 0.134* | |
C19 | −0.1432 (5) | 0.3412 (3) | 0.0304 (2) | 0.0919 (13) | |
H19A | −0.226092 | 0.341066 | 0.056965 | 0.138* | |
H19B | −0.181430 | 0.293743 | −0.034808 | 0.138* | |
H19C | −0.088105 | 0.430716 | 0.037174 | 0.138* | |
C20 | 0.0333 (3) | 0.8349 (2) | 0.51828 (18) | 0.0367 (6) | |
C21 | 0.2028 (3) | 0.9064 (2) | 0.25931 (17) | 0.0390 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0342 (2) | 0.03043 (19) | 0.0383 (2) | 0.01036 (15) | 0.01232 (16) | 0.00759 (15) |
S1 | 0.0547 (4) | 0.0404 (4) | 0.0486 (4) | 0.0136 (3) | 0.0264 (3) | 0.0117 (3) |
S2 | 0.0981 (7) | 0.0621 (5) | 0.0433 (4) | 0.0113 (5) | 0.0066 (4) | 0.0230 (4) |
N1 | 0.0387 (12) | 0.0299 (10) | 0.0377 (11) | 0.0076 (9) | 0.0129 (9) | 0.0052 (9) |
N2 | 0.0317 (11) | 0.0383 (11) | 0.0399 (12) | 0.0052 (9) | 0.0124 (9) | 0.0040 (9) |
N3 | 0.0318 (11) | 0.0451 (12) | 0.0424 (12) | 0.0044 (9) | 0.0111 (10) | 0.0040 (10) |
N4 | 0.0324 (11) | 0.0432 (12) | 0.0388 (12) | 0.0054 (9) | 0.0116 (9) | 0.0059 (10) |
N5 | 0.0328 (11) | 0.0337 (11) | 0.0369 (11) | 0.0075 (9) | 0.0115 (9) | 0.0087 (9) |
N6 | 0.0359 (11) | 0.0324 (10) | 0.0390 (12) | 0.0085 (9) | 0.0124 (9) | 0.0090 (9) |
N7 | 0.0447 (12) | 0.0340 (11) | 0.0402 (12) | 0.0093 (9) | 0.0125 (10) | 0.0104 (9) |
N8 | 0.0447 (12) | 0.0324 (11) | 0.0361 (11) | 0.0068 (9) | 0.0119 (9) | 0.0082 (9) |
N9 | 0.0538 (14) | 0.0530 (14) | 0.0625 (15) | 0.0297 (12) | 0.0297 (12) | 0.0242 (12) |
N10 | 0.0500 (14) | 0.0437 (12) | 0.0516 (14) | 0.0159 (11) | 0.0188 (11) | 0.0181 (11) |
C1 | 0.079 (2) | 0.072 (2) | 0.0385 (16) | 0.0090 (17) | 0.0176 (15) | 0.0089 (15) |
C2 | 0.0541 (18) | 0.0564 (18) | 0.0582 (18) | 0.0216 (14) | 0.0080 (15) | 0.0133 (15) |
C3 | 0.0466 (15) | 0.0469 (15) | 0.0328 (13) | 0.0131 (12) | 0.0118 (12) | 0.0075 (11) |
C4 | 0.0392 (14) | 0.0411 (14) | 0.0360 (13) | 0.0102 (11) | 0.0125 (11) | −0.0006 (11) |
C5 | 0.0345 (14) | 0.0369 (13) | 0.0413 (14) | 0.0027 (11) | 0.0086 (11) | 0.0031 (11) |
C6 | 0.0312 (13) | 0.0359 (13) | 0.0377 (13) | 0.0042 (10) | 0.0091 (11) | 0.0046 (11) |
C7 | 0.0322 (14) | 0.0458 (15) | 0.0391 (14) | −0.0006 (11) | 0.0081 (11) | 0.0022 (12) |
C8 | 0.0420 (15) | 0.0608 (17) | 0.0390 (14) | 0.0065 (13) | 0.0173 (12) | 0.0078 (13) |
C9 | 0.079 (3) | 0.138 (4) | 0.056 (2) | −0.011 (2) | 0.0318 (19) | −0.025 (2) |
C10 | 0.209 (6) | 0.103 (3) | 0.096 (3) | 0.043 (3) | 0.095 (4) | 0.051 (3) |
C11 | 0.063 (2) | 0.195 (5) | 0.072 (2) | 0.055 (3) | 0.034 (2) | 0.014 (3) |
C12 | 0.0479 (15) | 0.0437 (15) | 0.0394 (14) | 0.0078 (12) | 0.0188 (12) | 0.0114 (12) |
C13 | 0.0397 (14) | 0.0334 (13) | 0.0429 (14) | 0.0056 (11) | 0.0123 (11) | 0.0147 (11) |
C14 | 0.0328 (13) | 0.0313 (12) | 0.0388 (13) | 0.0076 (10) | 0.0121 (11) | 0.0096 (10) |
C15 | 0.0528 (16) | 0.0313 (13) | 0.0401 (14) | 0.0090 (12) | 0.0134 (12) | 0.0121 (11) |
C16 | 0.0617 (18) | 0.0425 (15) | 0.0342 (14) | 0.0104 (13) | 0.0118 (13) | 0.0069 (12) |
C17 | 0.094 (3) | 0.0498 (17) | 0.0418 (16) | −0.0047 (17) | 0.0119 (16) | 0.0000 (14) |
C18 | 0.088 (3) | 0.103 (3) | 0.059 (2) | 0.004 (2) | 0.039 (2) | −0.006 (2) |
C19 | 0.117 (3) | 0.079 (2) | 0.057 (2) | 0.032 (2) | −0.017 (2) | 0.0112 (18) |
C20 | 0.0338 (13) | 0.0346 (13) | 0.0487 (15) | 0.0130 (11) | 0.0141 (12) | 0.0202 (12) |
C21 | 0.0364 (14) | 0.0363 (13) | 0.0354 (14) | 0.0057 (11) | 0.0075 (11) | −0.0003 (12) |
Fe1—N1 | 2.182 (2) | C4—H4B | 0.9700 |
Fe1—N2 | 2.2733 (19) | C5—H5 | 0.9300 |
Fe1—N5 | 2.2422 (19) | C5—C6 | 1.445 (3) |
Fe1—N6 | 2.1619 (19) | C6—C7 | 1.367 (3) |
Fe1—N9 | 2.082 (2) | C7—H7 | 0.9300 |
Fe1—N10 | 2.066 (2) | C8—C9 | 1.489 (4) |
S1—C20 | 1.623 (3) | C8—C10 | 1.507 (4) |
S2—C21 | 1.628 (3) | C8—C11 | 1.502 (4) |
N1—C4 | 1.462 (3) | C9—H9A | 0.9600 |
N1—C5 | 1.273 (3) | C9—H9B | 0.9600 |
N2—N3 | 1.300 (3) | C9—H9C | 0.9600 |
N2—C6 | 1.361 (3) | C10—H10A | 0.9600 |
N3—N4 | 1.347 (3) | C10—H10B | 0.9600 |
N4—C7 | 1.345 (3) | C10—H10C | 0.9600 |
N4—C8 | 1.491 (3) | C11—H11A | 0.9600 |
N5—C12 | 1.463 (3) | C11—H11B | 0.9600 |
N5—C13 | 1.264 (3) | C11—H11C | 0.9600 |
N6—N7 | 1.307 (3) | C12—H12A | 0.9700 |
N6—C14 | 1.356 (3) | C12—H12B | 0.9700 |
N7—N8 | 1.348 (3) | C13—H13 | 0.9300 |
N8—C15 | 1.338 (3) | C13—C14 | 1.451 (3) |
N8—C16 | 1.498 (3) | C14—C15 | 1.370 (3) |
N9—C20 | 1.156 (3) | C15—H15 | 0.9300 |
N10—C21 | 1.149 (3) | C16—C17 | 1.513 (4) |
C1—H1A | 0.9600 | C16—C18 | 1.498 (4) |
C1—H1B | 0.9600 | C16—C19 | 1.519 (4) |
C1—H1C | 0.9600 | C17—H17A | 0.9600 |
C1—C3 | 1.535 (3) | C17—H17B | 0.9600 |
C2—H2A | 0.9600 | C17—H17C | 0.9600 |
C2—H2B | 0.9600 | C18—H18A | 0.9600 |
C2—H2C | 0.9600 | C18—H18B | 0.9600 |
C2—C3 | 1.529 (4) | C18—H18C | 0.9600 |
C3—C4 | 1.545 (3) | C19—H19A | 0.9600 |
C3—C12 | 1.531 (3) | C19—H19B | 0.9600 |
C4—H4A | 0.9700 | C19—H19C | 0.9600 |
N1—Fe1—N2 | 73.16 (7) | N4—C7—H7 | 127.5 |
N1—Fe1—N5 | 78.59 (7) | C6—C7—H7 | 127.5 |
N5—Fe1—N2 | 102.76 (7) | N4—C8—C10 | 106.5 (2) |
N6—Fe1—N1 | 141.68 (7) | N4—C8—C11 | 107.9 (2) |
N6—Fe1—N2 | 86.29 (7) | C9—C8—N4 | 109.4 (2) |
N6—Fe1—N5 | 74.84 (7) | C9—C8—C10 | 111.6 (3) |
N9—Fe1—N1 | 95.38 (8) | C9—C8—C11 | 111.7 (3) |
N9—Fe1—N2 | 164.79 (8) | C11—C8—C10 | 109.5 (3) |
N9—Fe1—N5 | 84.21 (8) | C8—C9—H9A | 109.5 |
N9—Fe1—N6 | 108.70 (8) | C8—C9—H9B | 109.5 |
N10—Fe1—N1 | 108.35 (8) | C8—C9—H9C | 109.5 |
N10—Fe1—N2 | 82.59 (8) | H9A—C9—H9B | 109.5 |
N10—Fe1—N5 | 172.39 (8) | H9A—C9—H9C | 109.5 |
N10—Fe1—N6 | 100.36 (8) | H9B—C9—H9C | 109.5 |
N10—Fe1—N9 | 91.91 (8) | C8—C10—H10A | 109.5 |
C4—N1—Fe1 | 122.55 (15) | C8—C10—H10B | 109.5 |
C5—N1—Fe1 | 118.20 (16) | C8—C10—H10C | 109.5 |
C5—N1—C4 | 118.5 (2) | H10A—C10—H10B | 109.5 |
N3—N2—Fe1 | 135.06 (16) | H10A—C10—H10C | 109.5 |
N3—N2—C6 | 110.07 (19) | H10B—C10—H10C | 109.5 |
C6—N2—Fe1 | 110.64 (15) | C8—C11—H11A | 109.5 |
N2—N3—N4 | 106.56 (18) | C8—C11—H11B | 109.5 |
N3—N4—C8 | 120.84 (19) | C8—C11—H11C | 109.5 |
C7—N4—N3 | 110.97 (19) | H11A—C11—H11B | 109.5 |
C7—N4—C8 | 128.1 (2) | H11A—C11—H11C | 109.5 |
C12—N5—Fe1 | 124.97 (15) | H11B—C11—H11C | 109.5 |
C13—N5—Fe1 | 115.10 (16) | N5—C12—C3 | 115.17 (19) |
C13—N5—C12 | 119.2 (2) | N5—C12—H12A | 108.5 |
N7—N6—Fe1 | 135.88 (15) | N5—C12—H12B | 108.5 |
N7—N6—C14 | 109.98 (18) | C3—C12—H12A | 108.5 |
C14—N6—Fe1 | 113.70 (15) | C3—C12—H12B | 108.5 |
N6—N7—N8 | 106.35 (18) | H12A—C12—H12B | 107.5 |
N7—N8—C16 | 119.69 (19) | N5—C13—H13 | 121.3 |
C15—N8—N7 | 111.10 (19) | N5—C13—C14 | 117.4 (2) |
C15—N8—C16 | 129.1 (2) | C14—C13—H13 | 121.3 |
C20—N9—Fe1 | 158.0 (2) | N6—C14—C13 | 118.2 (2) |
C21—N10—Fe1 | 175.3 (2) | N6—C14—C15 | 107.5 (2) |
H1A—C1—H1B | 109.5 | C15—C14—C13 | 134.2 (2) |
H1A—C1—H1C | 109.5 | N8—C15—C14 | 105.1 (2) |
H1B—C1—H1C | 109.5 | N8—C15—H15 | 127.5 |
C3—C1—H1A | 109.5 | C14—C15—H15 | 127.5 |
C3—C1—H1B | 109.5 | N8—C16—C17 | 108.3 (2) |
C3—C1—H1C | 109.5 | N8—C16—C19 | 107.8 (2) |
H2A—C2—H2B | 109.5 | C17—C16—C19 | 110.0 (3) |
H2A—C2—H2C | 109.5 | C18—C16—N8 | 107.2 (2) |
H2B—C2—H2C | 109.5 | C18—C16—C17 | 110.8 (3) |
C3—C2—H2A | 109.5 | C18—C16—C19 | 112.5 (3) |
C3—C2—H2B | 109.5 | C16—C17—H17A | 109.5 |
C3—C2—H2C | 109.5 | C16—C17—H17B | 109.5 |
C1—C3—C4 | 106.4 (2) | C16—C17—H17C | 109.5 |
C2—C3—C1 | 109.7 (2) | H17A—C17—H17B | 109.5 |
C2—C3—C4 | 111.0 (2) | H17A—C17—H17C | 109.5 |
C2—C3—C12 | 110.4 (2) | H17B—C17—H17C | 109.5 |
C12—C3—C1 | 106.8 (2) | C16—C18—H18A | 109.5 |
C12—C3—C4 | 112.4 (2) | C16—C18—H18B | 109.5 |
N1—C4—C3 | 110.89 (19) | C16—C18—H18C | 109.5 |
N1—C4—H4A | 109.5 | H18A—C18—H18B | 109.5 |
N1—C4—H4B | 109.5 | H18A—C18—H18C | 109.5 |
C3—C4—H4A | 109.5 | H18B—C18—H18C | 109.5 |
C3—C4—H4B | 109.5 | C16—C19—H19A | 109.5 |
H4A—C4—H4B | 108.1 | C16—C19—H19B | 109.5 |
N1—C5—H5 | 121.4 | C16—C19—H19C | 109.5 |
N1—C5—C6 | 117.1 (2) | H19A—C19—H19B | 109.5 |
C6—C5—H5 | 121.4 | H19A—C19—H19C | 109.5 |
N2—C6—C5 | 117.0 (2) | H19B—C19—H19C | 109.5 |
N2—C6—C7 | 107.4 (2) | N9—C20—S1 | 179.2 (2) |
C7—C6—C5 | 135.5 (2) | N10—C21—S2 | 178.1 (2) |
N4—C7—C6 | 105.0 (2) | ||
Fe1—N1—C4—C3 | 72.0 (2) | N7—N6—C14—C15 | 0.0 (3) |
Fe1—N1—C5—C6 | −4.9 (3) | N7—N8—C15—C14 | 1.3 (3) |
Fe1—N2—N3—N4 | 154.24 (17) | N7—N8—C16—C17 | −159.3 (2) |
Fe1—N2—C6—C5 | 20.5 (3) | N7—N8—C16—C18 | 81.1 (3) |
Fe1—N2—C6—C7 | −161.09 (17) | N7—N8—C16—C19 | −40.3 (3) |
Fe1—N5—C12—C3 | −55.6 (3) | C1—C3—C4—N1 | 178.3 (2) |
Fe1—N5—C13—C14 | −1.4 (3) | C1—C3—C12—N5 | 174.3 (2) |
Fe1—N6—N7—N8 | 172.44 (16) | C2—C3—C4—N1 | 59.1 (3) |
Fe1—N6—C14—C13 | 9.3 (3) | C2—C3—C12—N5 | −66.5 (3) |
Fe1—N6—C14—C15 | −173.69 (16) | C4—N1—C5—C6 | 165.5 (2) |
N1—C5—C6—N2 | −11.6 (3) | C4—C3—C12—N5 | 58.0 (3) |
N1—C5—C6—C7 | 170.7 (3) | C5—N1—C4—C3 | −97.9 (3) |
N2—N3—N4—C7 | −0.1 (3) | C5—C6—C7—N4 | 178.3 (3) |
N2—N3—N4—C8 | −177.5 (2) | C6—N2—N3—N4 | 0.4 (3) |
N2—C6—C7—N4 | 0.4 (3) | C7—N4—C8—C9 | 171.2 (3) |
N3—N2—C6—C5 | −178.9 (2) | C7—N4—C8—C10 | −68.0 (4) |
N3—N2—C6—C7 | −0.5 (3) | C7—N4—C8—C11 | 49.5 (4) |
N3—N4—C7—C6 | −0.2 (3) | C8—N4—C7—C6 | 177.0 (2) |
N3—N4—C8—C9 | −11.8 (4) | C12—N5—C13—C14 | 169.1 (2) |
N3—N4—C8—C10 | 108.9 (3) | C12—C3—C4—N1 | −65.1 (3) |
N3—N4—C8—C11 | −133.5 (3) | C13—N5—C12—C3 | 134.8 (2) |
N5—C13—C14—N6 | −5.3 (3) | C13—C14—C15—N8 | 175.5 (3) |
N5—C13—C14—C15 | 178.7 (3) | C14—N6—N7—N8 | 0.8 (2) |
N6—N7—N8—C15 | −1.3 (3) | C15—N8—C16—C17 | 25.7 (4) |
N6—N7—N8—C16 | −177.2 (2) | C15—N8—C16—C18 | −94.0 (3) |
N6—C14—C15—N8 | −0.7 (3) | C15—N8—C16—C19 | 144.7 (3) |
N7—N6—C14—C13 | −177.0 (2) | C16—N8—C15—C14 | 176.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···C21i | 0.97 | 2.84 | 3.786 (4) | 166 |
C5—H5···S1ii | 0.93 | 2.99 | 3.718 (4) | 137 |
C7—H7···S1i | 0.93 | 2.90 | 3.764 (4) | 155 |
C13—H13···S1iii | 0.93 | 2.99 | 3.724 (4) | 137 |
C13—H13···C20iii | 0.93 | 2.75 | 3.558 (4) | 146 |
C15—H15···S1iii | 0.93 | 2.84 | 3.573 (4) | 137 |
C17—H17A···S2iv | 0.96 | 2.94 | 3.873 (4) | 166 |
C17—H17B···S2v | 0.96 | 2.94 | 3.850 (4) | 158 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z. |
<Fe—N> | Σ | Θ | CShM (Oh) | CShM (D3h) | |
Title compound | 2.170 | 127.8 | 438.2 | 3.829 | 6.709 |
IQEFAO | 2.167 | 127.40 | 481.9 | 4.269 | 5.671 |
CUWQAP | 2.186 | 149.38 | 453.2 | 6.285 | 4.008 |
CABLOH | 1.899 | 178.16 | 725.74 | 12.735 | 0.525 |
BUNSAF | 2.218 | 201.07 | 703.65 | 13.084 | 1.887 |
OWIHAE | 2.202 | 206.57 | 894.48 | 16.909 | 0.602 |
OTANOOa | 2.191 | 183.24 | 697.3 | 12.065 | 1.098 |
Note: (a) Parameters averaged over five independent complex cations. |
Acknowledgements
Author contributions are as follows: Conceptualization, NUM and MS; methodology, KZ; formal analysis, NUM; synthesis, SOM; magnetic measurements, IAG; single-crystal measurements, SS; writing (original draft), NUM and MS; writing (review and editing of the manuscript), NUM, MS, KZ, SOM, IOG, TYS and SS; visualization and DFT calculations, VMA; funding acquisition, KZ.
References
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416–10423. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47. Google Scholar
Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006–6019. Web of Science CSD CrossRef CAS Google Scholar
Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952. Web of Science CSD CrossRef CAS Google Scholar
Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866–9880. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815–818. Web of Science CSD CrossRef CAS Google Scholar
Hagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132–17140. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49. Web of Science CrossRef Google Scholar
Kahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH. Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390. Web of Science CrossRef Google Scholar
Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef PubMed Google Scholar
Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254–5265. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. Google Scholar
Valverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. Google Scholar
Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Antipin, M. Y. & Polshin, E. V. (2001). Polyhedron, 20, 2721–2733. Web of Science CSD CrossRef CAS Google Scholar
Znovjyak, K., Seredyuk, M., Malinkin, S. O., Golenya, I. A., Sliva, T. Y., Shova, S. & Mulloev, N. U. (2021). Acta Cryst. E77, 495–499. CrossRef IUCr Journals Google Scholar
Znovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661–1664. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.