research communications
H-benzimidazol-2-yl-κN3)aniline-κN]dichloridozinc(II) N,N-dimethylformamide monosolvate
and Hirshfeld surface analysis of [2-(1aDepartment of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, (UP), India, bPG Department of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar 842001, India, cDepartment of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of, Saudi Arabia, dOndokuz Mayis University, Arts and Sciences Faculty, Department of Physics, Atakum 55139 Samsun, Turkey, and eDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Yemen
*Correspondence e-mail: amusheer4@gmail.com, ashraf.yemen7@gmail.com
The title compound, [ZnCl2(C13H11N3)]·C3H7NO, crystallized in the monoclinic in P21/n. The contains one neutral complex molecule, which consists of a zinc ion, a bidentate ligand, and two chlorido ligands with dimethylformamide monosolvate. The ligand has two moieties, a benzimidazole and an aniline group. The benzimidazole and aniline planes are not coplanar, subtending a dihedral angle of 18.24 (8)°. The Zn(II) ion shows distorted tetrahedral geometry, being coordinated by an imidazole N atom, the aniline N atom, and two chlorido ligands. The packing features N—H⋯O, N—H⋯Cl, C—H⋯Cl hydrogen bonding.
Keywords: crystal structure; benzimidazole; aniline; bidentate ligand; heterocyclic; zinc(II) complex.
CCDC reference: 2033195
1. Chemical context
Benzimidazoles as organic ligands have attracted interest with regard to the synthesis of metal–organic frameworks, not only because of their coordination abilities to metal ions, but also their significant potential applications in biological systems (Ahmad & Bharadwaj; 2013; Sharma et al., 2016; Gu et al., 2017). Benzimidazole compounds and their metal complexes have been found to show diverse biological activity (Podunavac-Kuzmanovic & Cvetkovic, 2010), including inhibition against enteroviruses (Xue et al., 2011) and potent antitumor activity (Galarce et al., 2008). The bidentate ligand 2-(1H-benzo[d]imidazol-2-yl) aniline (L) has been used to prepare a series of mononuclear transition-metal complexes with halide anions as the active in our catalytic research. In this work, a mononuclear zinc complex ZnLCl2 is reported. Zinc complexes bearing various ancillary ligands have been applied in the catalysis of the of cyclohexene oxide and CO2 (Kember et al., 2009).
2. Structural commentary
The ) contains one neutral complex molecule, which consists of one central zinc ion, one bidentate ligand, and two chlorido ligands with dimethylformamide solvent. The two ligand moieties, benzimidazole and aniline, are not coplanar structure, subtending a dihedral angle of 18.24 (8)°. The C1—N1 and C7—N2 bond lengths are 1.449 (2) and 1.335 (2) Å, respectively. The complex is a four-coordinated system by one imidazole nitrogen atom N2, one aniline nitrogen atom N1, and two chlorido ligands. The distances from the zinc(II) ion to the coordinating atoms are all in the expected ranges. The bond angles around the zinc(II) atom are in the range 88.64 (7) to 118.57 (3)°, of which the smallest angle N1—Zn1—N2 is formed by the two nitrogen atoms from the bidentate ligand.
of the title complex (Fig. 13. Supramolecular features
In the crystal, molecules are linked by N—H⋯Cl hydrogen bonds (Table 1, Fig. 2), forming sheets propagating along the b-axis direction (Fig. 3).
4. Hirshfeld Surface analysis
A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was undertaken and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007) generated using Crystal Explorer (Turner et al., 2017) to investigate the intermolecular interactions and surface morphology of the The Hirshfeld surface mapped over dnorm in the color range (_0.464 to 1.340 a.u.) from red (shorter than the sum of the van der Waals radii) and white to blue (longer distance than the sum of the van der Waals radii). The bright red spot on the dnorm surface (Fig. 4a) indicates the N—H⋯O hydrogen bonding. C—H⋯Cl contacts are evident as distinct circular depressions (red spots) and other visible spots on the dnorm surface (Fig. 4a) are due to H⋯H contacts. The surfaces of the title complex were also mapped over de (0.834 to 2.650 Å), shape-index (−1.0000 to 1.0000 Å), and curvedness (−4.0000 to 0.4000 Å) in the given ranges. The flat green region on the de surface represents similar contact distances (Fig. 4b). The pattern of red and blue regions in the shape-index surface is characteristic of ring carbon atoms of the molecule inside the surface. The shape of the blue outline on the curved surface shown in Fig. 4d is evidence of the flat region toward the bottom of both sides of the molecules.
Five types of major interactions in the ). The interaction order (H⋯Cl)> (C⋯H)> (O⋯H)> (N⋯H)> (N⋯C) of dnorm on the 2D fingerprint plot represents the nature of packing in the title (Muslim et al., 2020). The pattern of intermolecular interactions (H⋯Cl/Cl⋯H, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯O, and N⋯C/C⋯N) governs the overall packing and quantifies the contribution of the non-covalent interaction (C—H⋯Cl) to the extended supramolecular network (Seth et al., 2011; Seth, 2013; Manna et al., 2012; Mitra et al., 2014).
(H⋯Cl = 30%, C⋯H = 18.2%, O⋯H = 4.8%, N⋯H = 2.8%, N⋯C = 1.5%) are shown in the two-dimensional fingerprint plots (Fig. 55. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave thirteen hits for the [2-(1H-benzimidazol-2-yl]aniline)zinc(II) moiety. Two compounds whose structures are very similar to that of the title compound are [2-(1H-benzimidazol-2-yl)aniline]dichloridozinc(II) (AWOLEE; Eltayeb et al., 2011a) in which the dimethylformamide solvent is absent and dichloro-[2-(1-methyl-1H-benzimidazol-2-yl)aniline]zinc(II) (ILELIW; Zhou et al., 2016) in which the NH group is replaced by an N—CH3 group. Zinc compounds with different ligands include (2-{[2-(1H-benzimidazol-2-yl-κN3)phenyl]iminomethyl-κN}-5-methylphenolato-κO)chloridozinc(II) (AYINEC; Eltayeb et al., 2011b) in which the zinc atom is surrounded by two imine nitrogen, one phenolic oxygen and one chlorine atoms. Other complexes include bis{N-[2-(1-butyl-5-nitro-1H-benzimidazol-2-yl)phenyl]-4- methylbenzenesulfonamidato}zinc(II) with an unknown solvate (BUXDIJ; Burlov et al., 2016) and bis{4-methyl-N-[2-(5-nitro-1-propyl-1H-benzimidazole-2-yl)phenyl]benzenesulfonamidato}zinc(II) chloroform solvate (BUXDOP; Burlov et al., 2016), bis{μ-[2-(5-amino-1-propyl-1H-benzimidazole-2-yl)phenyl](4-methylbenzene-1-sulfonyl)amido}bis(pivalato)dizinc acetonitrile ethanol solvate dihydrate (EDOVUR; Nikolaevskii et al., 2014), bis(μ2-3-{[2-(1H-benzimidazole-2-yl)phenyl]carbonoimidoyl}benzene-1,2-diolato)dizinc(II) ethanol solvate (GABVUD; Wang et al., 2016), (acetato-O,O′)-[2-({[2-(1H-benzimidazole-2-yl)phenyl]imino}methyl)-5-(diethylamino)phenolato]zinc(II) isopropanol solvate (IKOYUE; Liao et al., 2016).
6. Synthesis and crystallization
A mixture of 2-(2-aminophenylbenzimidazole) (0.05 g, 0.14 mmol) and ZnCl2·4H2O (0.125 g, 0.4 mmol) was dissolved in 5 ml of dimethylformamide (DMF) and then sealed in a Teflon-lined autoclave and heated under autogenous pressure to 453 K for 2 d and then allow to cool to room temperature at the rate of 1 K per minute. The resulting solution was filtered and kept for slow evaporation. After one week, block-shaped colorless crystals suitable for single-crystal X-ray diffraction data collection were obtained.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (N—H = 0.86–0.89, C—H = 0.93–0.96 Å) included with Uiso(H) = 1.2Ueq(N, C) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 2033195
https://doi.org/10.1107/S2056989021003649/ex2042sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021003649/ex2042Isup4.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).[ZnCl2(C13H11N3)]·C3H7NO | F(000) = 856 |
Mr = 418.61 | Dx = 1.511 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9394 (9) Å | Cell parameters from 22582 reflections |
b = 13.3041 (7) Å | θ = 1.5–31.0° |
c = 13.1665 (11) Å | µ = 1.64 mm−1 |
β = 106.140 (7)° | T = 296 K |
V = 1840.7 (2) Å3 | Prism, yellow |
Z = 4 | 0.60 × 0.50 × 0.39 mm |
STOE IPDS 2 diffractometer | 5643 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 3891 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.036 |
Detector resolution: 6.67 pixels mm-1 | θmax = 30.7°, θmin = 2.2° |
rotation method scans | h = −15→15 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −17→18 |
Tmin = 0.460, Tmax = 0.567 | l = −18→18 |
19616 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0362P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5643 reflections | Δρmax = 0.34 e Å−3 |
219 parameters | Δρmin = −0.62 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.40345 (2) | 0.83177 (2) | 0.52883 (2) | 0.04912 (8) | |
Cl2 | 0.61440 (5) | 0.84302 (4) | 0.60104 (5) | 0.06630 (16) | |
Cl1 | 0.27561 (6) | 0.87107 (5) | 0.62724 (5) | 0.07198 (17) | |
O1 | 0.41861 (16) | 0.45845 (14) | 0.17389 (14) | 0.0726 (5) | |
N1 | 0.35146 (16) | 0.90600 (12) | 0.38489 (13) | 0.0502 (4) | |
H1A | 0.267634 | 0.900599 | 0.357590 | 0.060* | |
H1B | 0.369650 | 0.970981 | 0.395980 | 0.060* | |
N3 | 0.37815 (15) | 0.58840 (12) | 0.32936 (13) | 0.0504 (4) | |
H3 | 0.388210 | 0.563774 | 0.271825 | 0.060* | |
N2 | 0.36342 (15) | 0.70047 (12) | 0.44985 (13) | 0.0476 (3) | |
N4 | 0.5564 (2) | 0.35468 (17) | 0.12569 (17) | 0.0691 (5) | |
C7 | 0.38739 (18) | 0.68676 (14) | 0.35677 (15) | 0.0455 (4) | |
C1 | 0.41353 (18) | 0.86859 (16) | 0.30855 (15) | 0.0480 (4) | |
C13 | 0.34988 (17) | 0.53440 (15) | 0.40928 (16) | 0.0486 (4) | |
C8 | 0.33936 (18) | 0.60573 (14) | 0.48466 (16) | 0.0479 (4) | |
C6 | 0.42738 (18) | 0.76471 (15) | 0.29345 (15) | 0.0482 (4) | |
C12 | 0.3365 (2) | 0.43147 (16) | 0.42430 (19) | 0.0590 (5) | |
H12 | 0.345224 | 0.384308 | 0.374641 | 0.071* | |
C2 | 0.4613 (2) | 0.93761 (18) | 0.25020 (18) | 0.0582 (5) | |
H2 | 0.452680 | 1.005994 | 0.261168 | 0.070* | |
C9 | 0.3122 (2) | 0.57631 (17) | 0.57798 (18) | 0.0588 (5) | |
H9 | 0.304769 | 0.623164 | 0.628334 | 0.071* | |
C10 | 0.2969 (2) | 0.47426 (18) | 0.5923 (2) | 0.0652 (6) | |
H10 | 0.277820 | 0.452174 | 0.653141 | 0.078* | |
C11 | 0.3097 (2) | 0.40357 (18) | 0.5165 (2) | 0.0658 (6) | |
H11 | 0.299785 | 0.335685 | 0.529071 | 0.079* | |
C5 | 0.4888 (2) | 0.73555 (19) | 0.21791 (18) | 0.0610 (5) | |
H5 | 0.499020 | 0.667438 | 0.206631 | 0.073* | |
C14 | 0.5136 (2) | 0.4429 (2) | 0.1430 (2) | 0.0673 (6) | |
H14 | 0.558734 | 0.498851 | 0.131104 | 0.081* | |
C3 | 0.5212 (2) | 0.9066 (2) | 0.1763 (2) | 0.0674 (6) | |
H3A | 0.552587 | 0.953741 | 0.137785 | 0.081* | |
C4 | 0.5345 (2) | 0.8051 (2) | 0.1598 (2) | 0.0694 (6) | |
H4 | 0.574124 | 0.783670 | 0.109566 | 0.083* | |
C15 | 0.4900 (4) | 0.2641 (2) | 0.1419 (3) | 0.0947 (9) | |
H15A | 0.458046 | 0.272789 | 0.202229 | 0.142* | |
H15B | 0.547714 | 0.208200 | 0.153689 | 0.142* | |
H15C | 0.420336 | 0.251482 | 0.080351 | 0.142* | |
C16 | 0.6699 (3) | 0.3452 (3) | 0.0881 (3) | 0.1086 (13) | |
H16A | 0.700566 | 0.410905 | 0.077503 | 0.163* | |
H16B | 0.648854 | 0.308946 | 0.022441 | 0.163* | |
H16C | 0.734825 | 0.309531 | 0.139603 | 0.163* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.05561 (14) | 0.04018 (13) | 0.05557 (14) | −0.00002 (10) | 0.02208 (10) | −0.00610 (10) |
Cl2 | 0.0557 (3) | 0.0485 (3) | 0.0914 (4) | 0.0007 (2) | 0.0149 (3) | −0.0107 (3) |
Cl1 | 0.0790 (4) | 0.0697 (4) | 0.0814 (4) | 0.0010 (3) | 0.0458 (3) | −0.0117 (3) |
O1 | 0.0641 (9) | 0.0727 (11) | 0.0876 (11) | −0.0039 (8) | 0.0320 (9) | −0.0269 (9) |
N1 | 0.0536 (9) | 0.0383 (8) | 0.0625 (10) | 0.0024 (7) | 0.0226 (8) | −0.0004 (7) |
N3 | 0.0548 (9) | 0.0409 (9) | 0.0557 (9) | −0.0016 (7) | 0.0155 (7) | −0.0098 (7) |
N2 | 0.0513 (8) | 0.0383 (8) | 0.0561 (9) | 0.0002 (7) | 0.0198 (7) | −0.0054 (7) |
N4 | 0.0641 (11) | 0.0695 (13) | 0.0731 (12) | 0.0084 (10) | 0.0178 (10) | −0.0187 (10) |
C7 | 0.0450 (9) | 0.0381 (10) | 0.0536 (10) | 0.0006 (7) | 0.0138 (8) | −0.0064 (8) |
C1 | 0.0458 (9) | 0.0458 (10) | 0.0531 (10) | 0.0001 (8) | 0.0152 (8) | −0.0010 (8) |
C13 | 0.0411 (9) | 0.0405 (10) | 0.0621 (11) | 0.0009 (7) | 0.0108 (8) | −0.0044 (8) |
C8 | 0.0442 (9) | 0.0393 (9) | 0.0612 (11) | −0.0011 (7) | 0.0162 (8) | −0.0023 (8) |
C6 | 0.0462 (9) | 0.0459 (10) | 0.0533 (10) | −0.0012 (8) | 0.0152 (8) | −0.0047 (8) |
C12 | 0.0551 (11) | 0.0406 (11) | 0.0781 (14) | −0.0027 (9) | 0.0131 (10) | −0.0075 (10) |
C2 | 0.0593 (12) | 0.0504 (12) | 0.0690 (13) | −0.0024 (9) | 0.0245 (10) | 0.0031 (10) |
C9 | 0.0626 (12) | 0.0531 (12) | 0.0657 (12) | 0.0021 (10) | 0.0259 (10) | 0.0019 (10) |
C10 | 0.0634 (13) | 0.0587 (14) | 0.0778 (15) | −0.0017 (11) | 0.0269 (11) | 0.0136 (11) |
C11 | 0.0586 (12) | 0.0436 (11) | 0.0936 (17) | −0.0033 (10) | 0.0185 (12) | 0.0092 (11) |
C5 | 0.0686 (13) | 0.0557 (13) | 0.0651 (12) | 0.0001 (10) | 0.0295 (11) | −0.0092 (10) |
C14 | 0.0619 (13) | 0.0669 (15) | 0.0772 (14) | −0.0053 (11) | 0.0262 (11) | −0.0206 (12) |
C3 | 0.0711 (14) | 0.0680 (15) | 0.0716 (14) | −0.0072 (12) | 0.0340 (12) | 0.0047 (12) |
C4 | 0.0759 (15) | 0.0767 (16) | 0.0670 (14) | −0.0022 (13) | 0.0388 (12) | −0.0059 (12) |
C15 | 0.122 (3) | 0.0664 (18) | 0.098 (2) | 0.0083 (18) | 0.0341 (19) | −0.0014 (16) |
C16 | 0.0760 (19) | 0.124 (3) | 0.134 (3) | 0.0120 (18) | 0.0440 (19) | −0.051 (2) |
Zn1—N2 | 2.0177 (16) | C6—C5 | 1.401 (3) |
Zn1—N1 | 2.0715 (17) | C12—C11 | 1.376 (3) |
Zn1—Cl1 | 2.2171 (6) | C12—H12 | 0.9300 |
Zn1—Cl2 | 2.2432 (7) | C2—C3 | 1.379 (3) |
O1—C14 | 1.234 (3) | C2—H2 | 0.9300 |
N1—C1 | 1.449 (2) | C9—C10 | 1.387 (3) |
N1—H1A | 0.8900 | C9—H9 | 0.9300 |
N1—H1B | 0.8900 | C10—C11 | 1.406 (4) |
N3—C7 | 1.354 (2) | C10—H10 | 0.9300 |
N3—C13 | 1.378 (3) | C11—H11 | 0.9300 |
N3—H3 | 0.8600 | C5—C4 | 1.380 (3) |
N2—C7 | 1.335 (2) | C5—H5 | 0.9300 |
N2—C8 | 1.391 (2) | C14—H14 | 0.9300 |
N4—C14 | 1.307 (3) | C3—C4 | 1.382 (4) |
N4—C15 | 1.453 (4) | C3—H3A | 0.9300 |
N4—C16 | 1.465 (3) | C4—H4 | 0.9300 |
C7—C6 | 1.471 (3) | C15—H15A | 0.9600 |
C1—C2 | 1.389 (3) | C15—H15B | 0.9600 |
C1—C6 | 1.410 (3) | C15—H15C | 0.9600 |
C13—C12 | 1.397 (3) | C16—H16A | 0.9600 |
C13—C8 | 1.401 (3) | C16—H16B | 0.9600 |
C8—C9 | 1.398 (3) | C16—H16C | 0.9600 |
N2—Zn1—N1 | 88.64 (7) | C13—C12—H12 | 121.8 |
N2—Zn1—Cl1 | 115.06 (5) | C3—C2—C1 | 121.2 (2) |
N1—Zn1—Cl1 | 111.40 (5) | C3—C2—H2 | 119.4 |
N2—Zn1—Cl2 | 109.06 (5) | C1—C2—H2 | 119.4 |
N1—Zn1—Cl2 | 110.14 (5) | C10—C9—C8 | 117.2 (2) |
Cl1—Zn1—Cl2 | 118.57 (3) | C10—C9—H9 | 121.4 |
C1—N1—Zn1 | 114.12 (12) | C8—C9—H9 | 121.4 |
C1—N1—H1A | 108.7 | C9—C10—C11 | 121.2 (2) |
Zn1—N1—H1A | 108.7 | C9—C10—H10 | 119.4 |
C1—N1—H1B | 108.7 | C11—C10—H10 | 119.4 |
Zn1—N1—H1B | 108.7 | C12—C11—C10 | 122.2 (2) |
H1A—N1—H1B | 107.6 | C12—C11—H11 | 118.9 |
C7—N3—C13 | 108.43 (16) | C10—C11—H11 | 118.9 |
C7—N3—H3 | 125.8 | C4—C5—C6 | 121.8 (2) |
C13—N3—H3 | 125.8 | C4—C5—H5 | 119.1 |
C7—N2—C8 | 106.38 (16) | C6—C5—H5 | 119.1 |
C7—N2—Zn1 | 121.43 (13) | O1—C14—N4 | 125.6 (3) |
C8—N2—Zn1 | 130.43 (13) | O1—C14—H14 | 117.2 |
C14—N4—C15 | 120.1 (2) | N4—C14—H14 | 117.2 |
C14—N4—C16 | 121.0 (3) | C2—C3—C4 | 119.7 (2) |
C15—N4—C16 | 118.9 (3) | C2—C3—H3A | 120.2 |
N2—C7—N3 | 110.96 (17) | C4—C3—H3A | 120.2 |
N2—C7—C6 | 126.08 (17) | C5—C4—C3 | 119.8 (2) |
N3—C7—C6 | 122.84 (17) | C5—C4—H4 | 120.1 |
C2—C1—C6 | 119.87 (18) | C3—C4—H4 | 120.1 |
C2—C1—N1 | 118.52 (18) | N4—C15—H15A | 109.5 |
C6—C1—N1 | 121.60 (17) | N4—C15—H15B | 109.5 |
N3—C13—C12 | 132.33 (19) | H15A—C15—H15B | 109.5 |
N3—C13—C8 | 105.54 (17) | N4—C15—H15C | 109.5 |
C12—C13—C8 | 122.1 (2) | H15A—C15—H15C | 109.5 |
N2—C8—C9 | 130.48 (18) | H15B—C15—H15C | 109.5 |
N2—C8—C13 | 108.66 (17) | N4—C16—H16A | 109.5 |
C9—C8—C13 | 120.83 (19) | N4—C16—H16B | 109.5 |
C5—C6—C1 | 117.58 (19) | H16A—C16—H16B | 109.5 |
C5—C6—C7 | 118.94 (18) | N4—C16—H16C | 109.5 |
C1—C6—C7 | 123.39 (17) | H16A—C16—H16C | 109.5 |
C11—C12—C13 | 116.5 (2) | H16B—C16—H16C | 109.5 |
C11—C12—H12 | 121.8 | ||
C8—N2—C7—N3 | 0.9 (2) | N1—C1—C6—C7 | −3.5 (3) |
Zn1—N2—C7—N3 | 167.25 (13) | N2—C7—C6—C5 | 158.9 (2) |
C8—N2—C7—C6 | −175.14 (18) | N3—C7—C6—C5 | −16.7 (3) |
Zn1—N2—C7—C6 | −8.8 (3) | N2—C7—C6—C1 | −17.5 (3) |
C13—N3—C7—N2 | −1.5 (2) | N3—C7—C6—C1 | 166.93 (18) |
C13—N3—C7—C6 | 174.63 (18) | N3—C13—C12—C11 | 178.7 (2) |
Zn1—N1—C1—C2 | −135.94 (17) | C8—C13—C12—C11 | 1.3 (3) |
Zn1—N1—C1—C6 | 43.4 (2) | C6—C1—C2—C3 | 0.7 (3) |
C7—N3—C13—C12 | −176.2 (2) | N1—C1—C2—C3 | −179.9 (2) |
C7—N3—C13—C8 | 1.5 (2) | N2—C8—C9—C10 | −177.7 (2) |
C7—N2—C8—C9 | 178.2 (2) | C13—C8—C9—C10 | 0.2 (3) |
Zn1—N2—C8—C9 | 13.6 (3) | C8—C9—C10—C11 | 0.7 (3) |
C7—N2—C8—C13 | 0.1 (2) | C13—C12—C11—C10 | −0.3 (3) |
Zn1—N2—C8—C13 | −164.58 (13) | C9—C10—C11—C12 | −0.7 (4) |
N3—C13—C8—N2 | −1.0 (2) | C1—C6—C5—C4 | 0.0 (3) |
C12—C13—C8—N2 | 177.06 (18) | C7—C6—C5—C4 | −176.6 (2) |
N3—C13—C8—C9 | −179.33 (19) | C15—N4—C14—O1 | 0.5 (4) |
C12—C13—C8—C9 | −1.3 (3) | C16—N4—C14—O1 | 179.4 (3) |
C2—C1—C6—C5 | −0.7 (3) | C1—C2—C3—C4 | −0.1 (4) |
N1—C1—C6—C5 | −179.96 (19) | C6—C5—C4—C3 | 0.7 (4) |
C2—C1—C6—C7 | 175.8 (2) | C2—C3—C4—C5 | −0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.89 | 2.11 | 2.923 (2) | 152 |
N1—H1B···Cl2ii | 0.89 | 2.48 | 3.3592 (17) | 170 |
N3—H3···O1 | 0.86 | 1.99 | 2.807 (2) | 157 |
C2—H2···Cl2ii | 0.93 | 2.93 | 3.734 (2) | 145 |
C14—H14···Cl1iii | 0.93 | 2.95 | 3.836 (3) | 160 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) x+1/2, −y+3/2, z−1/2. |
Acknowledgements
The Department of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, UP, India, is gratefully acknowledged for providing laboratory facilities. Author contributions are as follows. Conceptualization, AM, MA and MM; methodology, MA, AM and MSHF; investigation, ND, AA and MA; writing (original draft), MM and MSHF; writing (review and editing of the manuscript), MdA, MM and AA; visualization, MM, AA and MSHF; funding acquisition, AM; resources, ND and MA; supervision, AM and MA.
Funding information
MA and MSHF acknowledge the startup grant received from UGC, India.
References
Ahmad, M. & Bharadwaj, P. K. (2013). Polyhedron, 52, 1145–1152. Web of Science CSD CrossRef CAS Google Scholar
Burlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. S. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7–13. Web of Science CSD CrossRef CAS Google Scholar
Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011a). Acta Cryst. E67, m1062–m1063. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011b). Acta Cryst. E67, m1182–m1183. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galarce, G. D., Foncea, R. E., Edwards, A. M., Pessoa-Mahana, H., Pessoa-Mahana, C. D. & Ebensperger, R. A. (2008). Biol. Res. 41, 43–50. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gu, W., Miao, T.-T., Hua, D.-W., Jin, X.-Y., Tao, X.-B., Huang, C.-B. & Wang, S.-F. (2017). Bioorg. Med. Chem. Lett. 27, 1296–1300. Web of Science CrossRef CAS PubMed Google Scholar
Kember, M. R., Knight, P. D., Reung, P. T. R. & Williams, C. K. (2009). Angew. Chem. Int. Ed. 48, 931–933. Web of Science CrossRef CAS Google Scholar
Liao, P., Wang, D., Zheng, J. Q., Tan, H. W., Zheng, X. J. & Jin, L. P. (2016). RSC Adv. 6, 33798–33803. Web of Science CSD CrossRef CAS Google Scholar
Manna, P., Seth, S. K., Das, A., Hemming, J., Prendergast, R., Helliwell, M., Choudhury, S. R., Frontera, A. & Mukhopadhyay, S. (2012). Inorg. Chem. 51, 3557–3571. Web of Science CSD CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mitra, M., Manna, P., Bauzá, A., Ballester, P., Seth, S. K., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014). J. Phys. Chem. B, 118, 14713–14726. Web of Science CSD CrossRef CAS PubMed Google Scholar
Muslim, M., Ali, A., Kamaal, S., Ahmad, M., Afzal, M. & Plutenko, M. O. (2020). Acta Cryst. E76, 905–908. Web of Science CrossRef IUCr Journals Google Scholar
Nikolaevskii, S. A., Koshchienko, Y. V., Chernyshev, A. V., Burlov, A. S., Cheprasov, A. S., Aleksandrov, M. A., Kiskin, M. A. & Metelitsa, A. V. (2014). Koord. Khim. 40, 410–411. Web of Science CrossRef Google Scholar
Podunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim. 55, 363–367. CAS Google Scholar
Seth, S. K. (2013). CrystEngComm, 15, 1772–1781. Web of Science CSD CrossRef CAS Google Scholar
Seth, S. K., Saha, I., Estarellas, C., Frontera, A., Kar, T. & Mukhopadhyay, S. (2011). Cryst. Growth Des. 11, 3250–3265. Web of Science CSD CrossRef CAS Google Scholar
Sharma, P., Reddy, T. S., Thummuri, D., Senwar, K. R., Kumar, N. P., Naidu, V. G. M., Bhargava, S. K. & Shankaraiah, N. (2016). Eur. J. Med. Chem. 124, 608–621. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, A. M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia. Google Scholar
Wang, D., Zheng, J.-Q., Zheng, X.-J., Fang, D.-C., Yuan, D.-Q. & Jin, L.-P. (2016). Sens. Actuators B Chem. 228, 387–394. Web of Science CSD CrossRef CAS Google Scholar
Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649. Web of Science CrossRef CAS PubMed Google Scholar
Zhou, T.-T., Zhang, D.-M., Li, J.-W. & Zhang, F. (2016). Z. Kristallogr. New Cryst. Struct. 231, 477–478. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.