research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of [2-(1H-benzimidazol-2-yl-κN3)aniline-κN]di­chlorido­zinc(II) N,N-di­methyl­formamide monosolvate

crossmark logo

aDepartment of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, (UP), India, bPG Department of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar 842001, India, cDepartment of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of, Saudi Arabia, dOndokuz Mayis University, Arts and Sciences Faculty, Department of Physics, Atakum 55139 Samsun, Turkey, and eDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Yemen
*Correspondence e-mail: amusheer4@gmail.com, ashraf.yemen7@gmail.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 11 February 2021; accepted 5 April 2021; online 9 April 2021)

The title compound, [ZnCl2(C13H11N3)]·C3H7NO, crystallized in the monoclinic crystal system in space group P21/n. The asymmetric unit contains one neutral complex mol­ecule, which consists of a zinc ion, a bidentate ligand, and two chlorido ligands with di­methyl­formamide monosolvate. The ligand has two moieties, a benzimidazole and an aniline group. The benzimidazole and aniline planes are not coplanar, subtending a dihedral angle of 18.24 (8)°. The Zn(II) ion shows distorted tetra­hedral geometry, being coordinated by an imidazole N atom, the aniline N atom, and two chlorido ligands. The packing features N—H⋯O, N—H⋯Cl, C—H⋯Cl hydrogen bonding.

1. Chemical context

Benzimidazoles as organic ligands have attracted inter­est with regard to the synthesis of metal–organic frameworks, not only because of their coordination abilities to metal ions, but also their significant potential applications in biological systems (Ahmad & Bharadwaj; 2013[Ahmad, M. & Bharadwaj, P. K. (2013). Polyhedron, 52, 1145-1152.]; Sharma et al., 2016[Sharma, P., Reddy, T. S., Thummuri, D., Senwar, K. R., Kumar, N. P., Naidu, V. G. M., Bhargava, S. K. & Shankaraiah, N. (2016). Eur. J. Med. Chem. 124, 608-621.]; Gu et al., 2017[Gu, W., Miao, T.-T., Hua, D.-W., Jin, X.-Y., Tao, X.-B., Huang, C.-B. & Wang, S.-F. (2017). Bioorg. Med. Chem. Lett. 27, 1296-1300.]). Benzimidazole compounds and their metal complexes have been found to show diverse biological activity (Podunavac-Kuzmanovic & Cvetkovic, 2010[Podunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim. 55, 363-367.]), including inhibition against enteroviruses (Xue et al., 2011[Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641-2649.]) and potent anti­tumor activity (Galarce et al., 2008[Galarce, G. D., Foncea, R. E., Edwards, A. M., Pessoa-Mahana, H., Pessoa-Mahana, C. D. & Ebensperger, R. A. (2008). Biol. Res. 41, 43-50.]). The bidentate ligand 2-(1H-benzo[d]imidazol-2-yl) aniline (L) has been used to prepare a series of mononuclear transition-metal complexes with halide anions as the active leaving group in our catalytic research. In this work, a mononuclear zinc complex ZnLCl2 is reported. Zinc complexes bearing various ancillary ligands have been applied in the catalysis of the copolymerization of cyclo­hexene oxide and CO2 (Kember et al., 2009[Kember, M. R., Knight, P. D., Reung, P. T. R. & Williams, C. K. (2009). Angew. Chem. Int. Ed. 48, 931-933.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex (Fig. 1[link]) contains one neutral complex mol­ecule, which consists of one central zinc ion, one bidentate ligand, and two chlorido ligands with di­methyl­formamide solvent. The two ligand moieties, benzimidazole and aniline, are not coplanar structure, subtending a dihedral angle of 18.24 (8)°. The C1—N1 and C7—N2 bond lengths are 1.449 (2) and 1.335 (2) Å, respectively. The complex is a four-coordinated system by one imidazole nitro­gen atom N2, one aniline nitro­gen atom N1, and two chlorido ligands. The distances from the zinc(II) ion to the coordinating atoms are all in the expected ranges. The bond angles around the zinc(II) atom are in the range 88.64 (7) to 118.57 (3)°, of which the smallest angle N1—Zn1—N2 is formed by the two nitro­gen atoms from the bidentate ligand.

[Figure 1]
Figure 1
A view of the title complex with the atom labeling and displacement ellipsoids drawn at the 40% level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds (Table 1[link], Fig. 2[link]), forming sheets propagating along the b-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.11 2.923 (2) 152
N1—H1B⋯Cl2ii 0.89 2.48 3.3592 (17) 170
N3—H3⋯O1 0.86 1.99 2.807 (2) 157
C2—H2⋯Cl2ii 0.93 2.93 3.734 (2) 145
C14—H14⋯Cl1iii 0.93 2.95 3.836 (3) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+2, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing view approximately along [10[\overline1]] of the title complex. Hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Supra­molecular view along the b axis of the crystal structure of the title complex formed through C—H⋯π, hydrogen-bonding, and other weak inter­actions.

4. Hirshfeld Surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, A. M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was undertaken and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated using Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]) to investigate the inter­molecular inter­actions and surface morphology of the crystal structure. The Hirshfeld surface mapped over dnorm in the color range (_0.464 to 1.340 a.u.) from red (shorter than the sum of the van der Waals radii) and white to blue (longer distance than the sum of the van der Waals radii). The bright red spot on the dnorm surface (Fig. 4[link]a) indicates the N—H⋯O hydrogen bonding. C—H⋯Cl contacts are evident as distinct circular depressions (red spots) and other visible spots on the dnorm surface (Fig. 4[link]a) are due to H⋯H contacts. The surfaces of the title complex were also mapped over de (0.834 to 2.650 Å), shape-index (−1.0000 to 1.0000 Å), and curvedness (−4.0000 to 0.4000 Å) in the given ranges. The flat green region on the de surface represents similar contact distances (Fig. 4[link]b). The pattern of red and blue regions in the shape-index surface is characteristic of ring carbon atoms of the mol­ecule inside the surface. The shape of the blue outline on the curved surface shown in Fig. 4[link]d is evidence of the flat region toward the bottom of both sides of the mol­ecules.

[Figure 4]
Figure 4
The Hirshfeld surface of the title complex mapped over (a) dnorm, (b) de, (c) shape-index, and (d) curvedness. Red spots 1,2, and 3 in (a) and (b) correspond to N—H⋯O, N—H⋯Cl, and C—H⋯Cl hydrogen bonds.

Five types of major inter­actions in the crystal structure (H⋯Cl = 30%, C⋯H = 18.2%, O⋯H = 4.8%, N⋯H = 2.8%, N⋯C = 1.5%) are shown in the two-dimensional fingerprint plots (Fig. 5[link]). The inter­action order (H⋯Cl)> (C⋯H)> (O⋯H)> (N⋯H)> (N⋯C) of dnorm on the 2D fingerprint plot represents the nature of packing in the title crystal structure (Muslim et al., 2020[Muslim, M., Ali, A., Kamaal, S., Ahmad, M., Afzal, M. & Plutenko, M. O. (2020). Acta Cryst. E76, 905-908.]). The pattern of inter­molecular inter­actions (H⋯Cl/Cl⋯H, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯O, and N⋯C/C⋯N) governs the overall packing and qu­anti­fies the contribution of the non-covalent inter­action (C—H⋯Cl) to the extended supra­molecular network (Seth et al., 2011[Seth, S. K., Saha, I., Estarellas, C., Frontera, A., Kar, T. & Mukhopadhyay, S. (2011). Cryst. Growth Des. 11, 3250-3265.]; Seth, 2013[Seth, S. K. (2013). CrystEngComm, 15, 1772-1781.]; Manna et al., 2012[Manna, P., Seth, S. K., Das, A., Hemming, J., Prendergast, R., Helliwell, M., Choudhury, S. R., Frontera, A. & Mukhopadhyay, S. (2012). Inorg. Chem. 51, 3557-3571.]; Mitra et al., 2014[Mitra, M., Manna, P., Bauzá, A., Ballester, P., Seth, S. K., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014). J. Phys. Chem. B, 118, 14713-14726.]).

[Figure 5]
Figure 5
(a) A full two-dimensional fingerprint plot of the title complex, and delineated into (b) H⋯Cl/Cl⋯H (30%), (c) C⋯H/H⋯C (18.2%), and (d) O⋯H/H⋯O (4.8%) contacts, which are the major inter­actions present in the crystal structure.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave thirteen hits for the [2-(1H-benzimidazol-2-yl]aniline)zinc(II) moiety. Two compounds whose structures are very similar to that of the title compound are [2-(1H-benzimidazol-2-yl)aniline]di­chlorido­zinc(II) (AWOLEE; Eltayeb et al., 2011a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011a). Acta Cryst. E67, m1062-m1063.]) in which the di­methyl­formamide solvent is absent and di­chloro-[2-(1-methyl-1H-benzimidazol-2-yl)aniline]zinc(II) (ILELIW; Zhou et al., 2016[Zhou, T.-T., Zhang, D.-M., Li, J.-W. & Zhang, F. (2016). Z. Kristallogr. New Cryst. Struct. 231, 477-478.]) in which the NH group is replaced by an N—CH3 group. Zinc compounds with different ligands include (2-{[2-(1H-benzimidazol-2-yl-κN3)phen­yl]imino­methyl-κN}-5-meth­ylphenolato-κO)chlorido­zinc(II) (AYINEC; Eltayeb et al., 2011b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011b). Acta Cryst. E67, m1182-m1183.]) in which the zinc atom is surrounded by two imine nitro­gen, one phenolic oxygen and one chlorine atoms. Other complexes include bis­{N-[2-(1-butyl-5-nitro-1H-benzimidazol-2-yl)phen­yl]-4- methyl­benzene­sulfonamidato}zinc(II) with an unknown solvate (BUXDIJ; Burlov et al., 2016[Burlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. S. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7-13.]) and bis­{4-methyl-N-[2-(5-nitro-1-propyl-1H-benzimidazole-2-yl)phen­yl]benzene­sulfonamidato}zinc(II) chloro­form solvate (BUXDOP; Burlov et al., 2016[Burlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. S. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7-13.]), bis­{μ-[2-(5-amino-1-propyl-1H-benzimidazole-2-yl)phen­yl](4-methyl­benzene-1-sulfon­yl)amido}­bis­(pivalato)dizinc aceto­nitrile ethanol solvate dihydrate (EDOVUR; Nikolaevskii et al., 2014[Nikolaevskii, S. A., Koshchienko, Y. V., Chernyshev, A. V., Burlov, A. S., Cheprasov, A. S., Aleksandrov, M. A., Kiskin, M. A. & Metelitsa, A. V. (2014). Koord. Khim. 40, 410-411.]), bis­(μ2-3-{[2-(1H-benzimidazole-2-yl)phen­yl]carbonoimido­yl}benzene-1,2-diolato)dizinc(II) ethanol solvate (GABVUD; Wang et al., 2016[Wang, D., Zheng, J.-Q., Zheng, X.-J., Fang, D.-C., Yuan, D.-Q. & Jin, L.-P. (2016). Sens. Actuators B Chem. 228, 387-394.]), (acetato-O,O′)-[2-({[2-(1H-benzimidazole-2-yl)phen­yl]imino}­meth­yl)-5-(di­ethyl­amino)­phenolato]zinc(II) iso­pro­p­anol solvate (IKOYUE; Liao et al., 2016[Liao, P., Wang, D., Zheng, J. Q., Tan, H. W., Zheng, X. J. & Jin, L. P. (2016). RSC Adv. 6, 33798-33803.]).

6. Synthesis and crystallization

A mixture of 2-(2-amino­phenyl­benzimidazole) (0.05 g, 0.14 mmol) and ZnCl2·4H2O (0.125 g, 0.4 mmol) was dissolved in 5 ml of di­methyl­formamide (DMF) and then sealed in a Teflon-lined autoclave and heated under autogenous pressure to 453 K for 2 d and then allow to cool to room temperature at the rate of 1 K per minute. The resulting solution was filtered and kept for slow evaporation. After one week, block-shaped colorless crystals suitable for single-crystal X-ray diffraction data collection were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically (N—H = 0.86–0.89, C—H = 0.93–0.96 Å) included with Uiso(H) = 1.2Ueq(N, C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula [ZnCl2(C13H11N3)]·C3H7NO
Mr 418.61
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.9394 (9), 13.3041 (7), 13.1665 (11)
β (°) 106.140 (7)
V3) 1840.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.60 × 0.50 × 0.39
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.460, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 19616, 5643, 3891
Rint 0.036
(sin θ/λ)max−1) 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.04
No. of reflections 5643
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.62
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

[2-(1H-Benzimidazol-2-yl-κN3)aniline-κN]dichloridozinc(II) N,N-dimethylformamide monosolvate top
Crystal data top
[ZnCl2(C13H11N3)]·C3H7NOF(000) = 856
Mr = 418.61Dx = 1.511 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.9394 (9) ÅCell parameters from 22582 reflections
b = 13.3041 (7) Åθ = 1.5–31.0°
c = 13.1665 (11) ŵ = 1.64 mm1
β = 106.140 (7)°T = 296 K
V = 1840.7 (2) Å3Prism, yellow
Z = 40.60 × 0.50 × 0.39 mm
Data collection top
STOE IPDS 2
diffractometer
5643 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3891 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.036
Detector resolution: 6.67 pixels mm-1θmax = 30.7°, θmin = 2.2°
rotation method scansh = 1515
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1718
Tmin = 0.460, Tmax = 0.567l = 1818
19616 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0362P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5643 reflectionsΔρmax = 0.34 e Å3
219 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.40345 (2)0.83177 (2)0.52883 (2)0.04912 (8)
Cl20.61440 (5)0.84302 (4)0.60104 (5)0.06630 (16)
Cl10.27561 (6)0.87107 (5)0.62724 (5)0.07198 (17)
O10.41861 (16)0.45845 (14)0.17389 (14)0.0726 (5)
N10.35146 (16)0.90600 (12)0.38489 (13)0.0502 (4)
H1A0.2676340.9005990.3575900.060*
H1B0.3696500.9709810.3959800.060*
N30.37815 (15)0.58840 (12)0.32936 (13)0.0504 (4)
H30.3882100.5637740.2718250.060*
N20.36342 (15)0.70047 (12)0.44985 (13)0.0476 (3)
N40.5564 (2)0.35468 (17)0.12569 (17)0.0691 (5)
C70.38739 (18)0.68676 (14)0.35677 (15)0.0455 (4)
C10.41353 (18)0.86859 (16)0.30855 (15)0.0480 (4)
C130.34988 (17)0.53440 (15)0.40928 (16)0.0486 (4)
C80.33936 (18)0.60573 (14)0.48466 (16)0.0479 (4)
C60.42738 (18)0.76471 (15)0.29345 (15)0.0482 (4)
C120.3365 (2)0.43147 (16)0.42430 (19)0.0590 (5)
H120.3452240.3843080.3746410.071*
C20.4613 (2)0.93761 (18)0.25020 (18)0.0582 (5)
H20.4526801.0059940.2611680.070*
C90.3122 (2)0.57631 (17)0.57798 (18)0.0588 (5)
H90.3047690.6231640.6283340.071*
C100.2969 (2)0.47426 (18)0.5923 (2)0.0652 (6)
H100.2778200.4521740.6531410.078*
C110.3097 (2)0.40357 (18)0.5165 (2)0.0658 (6)
H110.2997850.3356850.5290710.079*
C50.4888 (2)0.73555 (19)0.21791 (18)0.0610 (5)
H50.4990200.6674380.2066310.073*
C140.5136 (2)0.4429 (2)0.1430 (2)0.0673 (6)
H140.5587340.4988510.1311040.081*
C30.5212 (2)0.9066 (2)0.1763 (2)0.0674 (6)
H3A0.5525870.9537410.1377850.081*
C40.5345 (2)0.8051 (2)0.1598 (2)0.0694 (6)
H40.5741240.7836700.1095660.083*
C150.4900 (4)0.2641 (2)0.1419 (3)0.0947 (9)
H15A0.4580460.2727890.2022290.142*
H15B0.5477140.2082000.1536890.142*
H15C0.4203360.2514820.0803510.142*
C160.6699 (3)0.3452 (3)0.0881 (3)0.1086 (13)
H16A0.7005660.4109050.0775030.163*
H16B0.6488540.3089460.0224410.163*
H16C0.7348250.3095310.1396030.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.05561 (14)0.04018 (13)0.05557 (14)0.00002 (10)0.02208 (10)0.00610 (10)
Cl20.0557 (3)0.0485 (3)0.0914 (4)0.0007 (2)0.0149 (3)0.0107 (3)
Cl10.0790 (4)0.0697 (4)0.0814 (4)0.0010 (3)0.0458 (3)0.0117 (3)
O10.0641 (9)0.0727 (11)0.0876 (11)0.0039 (8)0.0320 (9)0.0269 (9)
N10.0536 (9)0.0383 (8)0.0625 (10)0.0024 (7)0.0226 (8)0.0004 (7)
N30.0548 (9)0.0409 (9)0.0557 (9)0.0016 (7)0.0155 (7)0.0098 (7)
N20.0513 (8)0.0383 (8)0.0561 (9)0.0002 (7)0.0198 (7)0.0054 (7)
N40.0641 (11)0.0695 (13)0.0731 (12)0.0084 (10)0.0178 (10)0.0187 (10)
C70.0450 (9)0.0381 (10)0.0536 (10)0.0006 (7)0.0138 (8)0.0064 (8)
C10.0458 (9)0.0458 (10)0.0531 (10)0.0001 (8)0.0152 (8)0.0010 (8)
C130.0411 (9)0.0405 (10)0.0621 (11)0.0009 (7)0.0108 (8)0.0044 (8)
C80.0442 (9)0.0393 (9)0.0612 (11)0.0011 (7)0.0162 (8)0.0023 (8)
C60.0462 (9)0.0459 (10)0.0533 (10)0.0012 (8)0.0152 (8)0.0047 (8)
C120.0551 (11)0.0406 (11)0.0781 (14)0.0027 (9)0.0131 (10)0.0075 (10)
C20.0593 (12)0.0504 (12)0.0690 (13)0.0024 (9)0.0245 (10)0.0031 (10)
C90.0626 (12)0.0531 (12)0.0657 (12)0.0021 (10)0.0259 (10)0.0019 (10)
C100.0634 (13)0.0587 (14)0.0778 (15)0.0017 (11)0.0269 (11)0.0136 (11)
C110.0586 (12)0.0436 (11)0.0936 (17)0.0033 (10)0.0185 (12)0.0092 (11)
C50.0686 (13)0.0557 (13)0.0651 (12)0.0001 (10)0.0295 (11)0.0092 (10)
C140.0619 (13)0.0669 (15)0.0772 (14)0.0053 (11)0.0262 (11)0.0206 (12)
C30.0711 (14)0.0680 (15)0.0716 (14)0.0072 (12)0.0340 (12)0.0047 (12)
C40.0759 (15)0.0767 (16)0.0670 (14)0.0022 (13)0.0388 (12)0.0059 (12)
C150.122 (3)0.0664 (18)0.098 (2)0.0083 (18)0.0341 (19)0.0014 (16)
C160.0760 (19)0.124 (3)0.134 (3)0.0120 (18)0.0440 (19)0.051 (2)
Geometric parameters (Å, º) top
Zn1—N22.0177 (16)C6—C51.401 (3)
Zn1—N12.0715 (17)C12—C111.376 (3)
Zn1—Cl12.2171 (6)C12—H120.9300
Zn1—Cl22.2432 (7)C2—C31.379 (3)
O1—C141.234 (3)C2—H20.9300
N1—C11.449 (2)C9—C101.387 (3)
N1—H1A0.8900C9—H90.9300
N1—H1B0.8900C10—C111.406 (4)
N3—C71.354 (2)C10—H100.9300
N3—C131.378 (3)C11—H110.9300
N3—H30.8600C5—C41.380 (3)
N2—C71.335 (2)C5—H50.9300
N2—C81.391 (2)C14—H140.9300
N4—C141.307 (3)C3—C41.382 (4)
N4—C151.453 (4)C3—H3A0.9300
N4—C161.465 (3)C4—H40.9300
C7—C61.471 (3)C15—H15A0.9600
C1—C21.389 (3)C15—H15B0.9600
C1—C61.410 (3)C15—H15C0.9600
C13—C121.397 (3)C16—H16A0.9600
C13—C81.401 (3)C16—H16B0.9600
C8—C91.398 (3)C16—H16C0.9600
N2—Zn1—N188.64 (7)C13—C12—H12121.8
N2—Zn1—Cl1115.06 (5)C3—C2—C1121.2 (2)
N1—Zn1—Cl1111.40 (5)C3—C2—H2119.4
N2—Zn1—Cl2109.06 (5)C1—C2—H2119.4
N1—Zn1—Cl2110.14 (5)C10—C9—C8117.2 (2)
Cl1—Zn1—Cl2118.57 (3)C10—C9—H9121.4
C1—N1—Zn1114.12 (12)C8—C9—H9121.4
C1—N1—H1A108.7C9—C10—C11121.2 (2)
Zn1—N1—H1A108.7C9—C10—H10119.4
C1—N1—H1B108.7C11—C10—H10119.4
Zn1—N1—H1B108.7C12—C11—C10122.2 (2)
H1A—N1—H1B107.6C12—C11—H11118.9
C7—N3—C13108.43 (16)C10—C11—H11118.9
C7—N3—H3125.8C4—C5—C6121.8 (2)
C13—N3—H3125.8C4—C5—H5119.1
C7—N2—C8106.38 (16)C6—C5—H5119.1
C7—N2—Zn1121.43 (13)O1—C14—N4125.6 (3)
C8—N2—Zn1130.43 (13)O1—C14—H14117.2
C14—N4—C15120.1 (2)N4—C14—H14117.2
C14—N4—C16121.0 (3)C2—C3—C4119.7 (2)
C15—N4—C16118.9 (3)C2—C3—H3A120.2
N2—C7—N3110.96 (17)C4—C3—H3A120.2
N2—C7—C6126.08 (17)C5—C4—C3119.8 (2)
N3—C7—C6122.84 (17)C5—C4—H4120.1
C2—C1—C6119.87 (18)C3—C4—H4120.1
C2—C1—N1118.52 (18)N4—C15—H15A109.5
C6—C1—N1121.60 (17)N4—C15—H15B109.5
N3—C13—C12132.33 (19)H15A—C15—H15B109.5
N3—C13—C8105.54 (17)N4—C15—H15C109.5
C12—C13—C8122.1 (2)H15A—C15—H15C109.5
N2—C8—C9130.48 (18)H15B—C15—H15C109.5
N2—C8—C13108.66 (17)N4—C16—H16A109.5
C9—C8—C13120.83 (19)N4—C16—H16B109.5
C5—C6—C1117.58 (19)H16A—C16—H16B109.5
C5—C6—C7118.94 (18)N4—C16—H16C109.5
C1—C6—C7123.39 (17)H16A—C16—H16C109.5
C11—C12—C13116.5 (2)H16B—C16—H16C109.5
C11—C12—H12121.8
C8—N2—C7—N30.9 (2)N1—C1—C6—C73.5 (3)
Zn1—N2—C7—N3167.25 (13)N2—C7—C6—C5158.9 (2)
C8—N2—C7—C6175.14 (18)N3—C7—C6—C516.7 (3)
Zn1—N2—C7—C68.8 (3)N2—C7—C6—C117.5 (3)
C13—N3—C7—N21.5 (2)N3—C7—C6—C1166.93 (18)
C13—N3—C7—C6174.63 (18)N3—C13—C12—C11178.7 (2)
Zn1—N1—C1—C2135.94 (17)C8—C13—C12—C111.3 (3)
Zn1—N1—C1—C643.4 (2)C6—C1—C2—C30.7 (3)
C7—N3—C13—C12176.2 (2)N1—C1—C2—C3179.9 (2)
C7—N3—C13—C81.5 (2)N2—C8—C9—C10177.7 (2)
C7—N2—C8—C9178.2 (2)C13—C8—C9—C100.2 (3)
Zn1—N2—C8—C913.6 (3)C8—C9—C10—C110.7 (3)
C7—N2—C8—C130.1 (2)C13—C12—C11—C100.3 (3)
Zn1—N2—C8—C13164.58 (13)C9—C10—C11—C120.7 (4)
N3—C13—C8—N21.0 (2)C1—C6—C5—C40.0 (3)
C12—C13—C8—N2177.06 (18)C7—C6—C5—C4176.6 (2)
N3—C13—C8—C9179.33 (19)C15—N4—C14—O10.5 (4)
C12—C13—C8—C91.3 (3)C16—N4—C14—O1179.4 (3)
C2—C1—C6—C50.7 (3)C1—C2—C3—C40.1 (4)
N1—C1—C6—C5179.96 (19)C6—C5—C4—C30.7 (4)
C2—C1—C6—C7175.8 (2)C2—C3—C4—C50.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.112.923 (2)152
N1—H1B···Cl2ii0.892.483.3592 (17)170
N3—H3···O10.861.992.807 (2)157
C2—H2···Cl2ii0.932.933.734 (2)145
C14—H14···Cl1iii0.932.953.836 (3)160
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The Department of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, UP, India, is gratefully acknowledged for providing laboratory facilities. Author contributions are as follows. Conceptualization, AM, MA and MM; methodology, MA, AM and MSHF; investigation, ND, AA and MA; writing (original draft), MM and MSHF; writing (review and editing of the manuscript), MdA, MM and AA; visualization, MM, AA and MSHF; funding acquisition, AM; resources, ND and MA; supervision, AM and MA.

Funding information

MA and MSHF acknowledge the startup grant received from UGC, India.

References

First citationAhmad, M. & Bharadwaj, P. K. (2013). Polyhedron, 52, 1145–1152.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. S. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011a). Acta Cryst. E67, m1062–m1063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011b). Acta Cryst. E67, m1182–m1183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalarce, G. D., Foncea, R. E., Edwards, A. M., Pessoa-Mahana, H., Pessoa-Mahana, C. D. & Ebensperger, R. A. (2008). Biol. Res. 41, 43–50.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, W., Miao, T.-T., Hua, D.-W., Jin, X.-Y., Tao, X.-B., Huang, C.-B. & Wang, S.-F. (2017). Bioorg. Med. Chem. Lett. 27, 1296–1300.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKember, M. R., Knight, P. D., Reung, P. T. R. & Williams, C. K. (2009). Angew. Chem. Int. Ed. 48, 931–933.  Web of Science CrossRef CAS Google Scholar
First citationLiao, P., Wang, D., Zheng, J. Q., Tan, H. W., Zheng, X. J. & Jin, L. P. (2016). RSC Adv. 6, 33798–33803.  Web of Science CSD CrossRef CAS Google Scholar
First citationManna, P., Seth, S. K., Das, A., Hemming, J., Prendergast, R., Helliwell, M., Choudhury, S. R., Frontera, A. & Mukhopadhyay, S. (2012). Inorg. Chem. 51, 3557–3571.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMitra, M., Manna, P., Bauzá, A., Ballester, P., Seth, S. K., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014). J. Phys. Chem. B, 118, 14713–14726.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMuslim, M., Ali, A., Kamaal, S., Ahmad, M., Afzal, M. & Plutenko, M. O. (2020). Acta Cryst. E76, 905–908.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNikolaevskii, S. A., Koshchienko, Y. V., Chernyshev, A. V., Burlov, A. S., Cheprasov, A. S., Aleksandrov, M. A., Kiskin, M. A. & Metelitsa, A. V. (2014). Koord. Khim. 40, 410–411.  Web of Science CrossRef Google Scholar
First citationPodunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim. 55, 363–367.  CAS Google Scholar
First citationSeth, S. K. (2013). CrystEngComm, 15, 1772–1781.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeth, S. K., Saha, I., Estarellas, C., Frontera, A., Kar, T. & Mukhopadhyay, S. (2011). Cryst. Growth Des. 11, 3250–3265.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, P., Reddy, T. S., Thummuri, D., Senwar, K. R., Kumar, N. P., Naidu, V. G. M., Bhargava, S. K. & Shankaraiah, N. (2016). Eur. J. Med. Chem. 124, 608–621.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, A. M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWang, D., Zheng, J.-Q., Zheng, X.-J., Fang, D.-C., Yuan, D.-Q. & Jin, L.-P. (2016). Sens. Actuators B Chem. 228, 387–394.  Web of Science CSD CrossRef CAS Google Scholar
First citationXue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, T.-T., Zhang, D.-M., Li, J.-W. & Zhang, F. (2016). Z. Kristallogr. New Cryst. Struct. 231, 477–478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds