research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural study and Hirshfeld surface analysis of (Z)-4-(2-meth­­oxy­benzyl­­idene)-3-phenyl­isoxazol-5(4H)-one

crossmark logo

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bLaboratoire de Synthèse de Molécules, d'Intérêts Biologiques, Département de Chimie, Université Mentouri-Constantine, 25000 Constantine, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 10 March 2021; accepted 21 April 2021; online 27 April 2021)

The title compound, C17H13NO3, adopts a Z configuration about the C=C bond. The isoxazole and meth­oxy­benzyl­idene rings are almost coplanar with a dihedral angle of 9.63 (7)° between them. In contrast, the phenyl substituent is twisted significantly out of the plane of the oxazole ring, with the two rings inclined to each other by 46.22 (4)°. The crystal structure features C—H⋯O, C—H⋯N and C—H⋯π hydrogen bonds and ππ contacts. An analysis of the Hirshfeld surfaces points to the importance of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts. The included surface areas of the title compound were compared to those of the isomeric structure (Z)-4-(4-meth­oxy­benzyl­idene)-3-phenyl­isoxazol-5(4H)-one [Zhang et al. (2015[Zhang, X., Jiang, X., Li, Y., Lin, Z., Zhang, G. & Wu, Y. (2015). CrystEngComm, 17, 7316-7322.]). CrystEngComm, 17, 7316–7322].

1. Chemical context

Isoxazolones are known to be inhibitors of the factorization of tumor necrosis alpha (TNF-α) (Laughlin et al., 2005[Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399-2403.]), anti­microbial agents (Mazimba et al., 2014[Mazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564-6569.]), as drugs for the treatment of cerebrovascular disorders and as muscle relaxants. In agriculture, they are used as herbicides (Guo, et al., 2020[Guo, K. L., Zhao, L. X., Wang, Z. W., Gao, Y. C., Li, J. J., Gao, S., Fu, Y. & Ye, F. (2020). J. Agric. Food Chem. 68, 10550-10559.]) and fungicides (Miyake et al., 2012[Miyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89-94.]). They undergo various chemical transformations (Batra et al., 1994[Batra, S. & Bhaduri, A. P. (1994). J. Indian Inst. Sci., 74, 213-226.]) and are excellent inter­mediates in the synthesis of various heterocycles, including pyrido­pyrimidines (Tu et al., 2006[Tu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem., 5, 1450-1453.]), quinolines (Abbiati et al., 2003[Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887-9893.]) and polycycles (Badrey & Gomha, 2014[Badrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Pharm. Sci., 6, 236-239.]). Because of their importance, these compounds have been studied extensively and several procedures for their synthesis are described using a three-component polycondensation between an aromatic aldehyde, ethyl aceto­acetate and hydrox­ylamine hydro­chloride under different conditions (Liu et al., 2011[Liu, Q. & Zhang, Y.-N. (2011). Bull. Korean Chem. Soc. 32, 3559-3560.]; Fozooni et al., 2013[Fozooni, S., Hosseinzadeh, G. N., Hamidianc, H. & Akhgar, M. R. (2013). J. Braz. Chem. Soc., 24, 1649-1655.]).

[Scheme 1]

We report here on the use of K2CO3 as very inexpensive, highly available and safe catalyst in an organic medium for isoxazolone formation and we describe the synthesis, mol­ecular and crystal structures, and Hirshfeld surface analysis of the title isoxazole derivative, 1 (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a black dashed line.

2. Structural commentary

The asymmetric unit contains one mol­ecule and the mol­ecule adopts a Z configuration about the C8=C10 bond. The entire (Z)-4-(2-meth­oxy­benzyl­ideneisoxazolone) segment of the mol­ecule is almost planar with an r.m.s. deviation from the mean plane through all 15 non-hydrogen atoms of the fragment of only 0.0927 Å. This conformation is supported by the formation of an intra­molecular C12—H12⋯O1 hydrogen bond (Table 1[link]), which links the isoxazole ring and the benzene ring of the 2-meth­oxy­benzyl­idene substituent. These two rings are inclined to one another at an angle of 9.63 (7)°. The (C1–C6) phenyl substituent is twisted out of this plane, the phenyl and isoxazole rings being inclined to one another by 46.22 (4)°. Bond lengths and angles agree well with those found in the isomeric derivative 2 (Zhang et al., 2015[Zhang, X., Jiang, X., Li, Y., Lin, Z., Zhang, G. & Wu, Y. (2015). CrystEngComm, 17, 7316-7322.]) and also with the values observed for the related compound (4Z)-4-benzyl­idene-2-phenyl-1,3-oxazol5(4H)-one (Asiri et al., 2012[Asiri, A. M., Faidallah, H. M., Sobahi, T. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1154.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.53 3.463 (2) 176
C5—H5⋯O2ii 0.93 2.81 3.728 (2) 169
C10—H10⋯O3 0.93 2.26 2.7009 (18) 108
C12—H12⋯O2 0.93 2.15 2.998 (2) 151
C14—H14⋯N1iii 0.93 2.58 3.396 (2) 147
C17—H17A⋯O3iv 0.96 2.78 3.615 (2) 147
C17—H17CCgiv 0.96 2.82 3.606 (2) 139
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+1, y, -z+{\script{3\over 2}}].

3. Supra­molecular features

In the crystal, mol­ecules stack along the b-axis direction (Fig. 2[link]). Mol­ecules are connected by C4—H4⋯O1i and C14—H14⋯N1iii hydrogen bonds, leading to the formation of sheets in the ac plane, Fig. 3[link]. C—H⋯π contacts between the meth­oxy­methyl group and the C1–C6 phenyl ring form double chains of mol­ecules along the a-axis direction, supported by the above-mentioned C14—H14⋯N1iii hydrogen bonds, Fig. 4[link]. Inter­molecular H⋯O short contacts are also present [C17—H17A⋯O3iv = 2.78 Å and C5—H5⋯O2ii = 2.81 Å]. Two ππ contacts [3.7049 (9) and 3.9200 (9) Å] are found between the centroids of the isoxazolone ring and the meth­oxy-substituted benzene ring, which stack adjacent mol­ecules in an obverse fashion along b.

[Figure 2]
Figure 2
Sheets of mol­ecules of 1 in the ac plane.
[Figure 3]
Figure 3
Double rows of mol­ecules of 1 along the a-axis direction. Cg2 is the centroid of the C1–C6 phenyl ring, shown here as an orange sphere, with the C—H⋯π contacts drawn as orange dashed lines.
[Figure 4]
Figure 4
ππ contacts for 1 stacking mol­ecules along the b-axis direction. Cg1 and Cg3 are the centroids of the N1/O2/C7–C9 isoxazole and the C11–C16 benzene rings, respectively. The two discrete ππ contacts Cg1⋯Cg3 = 3.7049 (9) and 3.9200 (9) Å are shown as green and blue dashed lines, respectively.

4. Analysis of the Hirshfeld surfaces

Further details of the inter­mol­ecular inter­actions in 1 were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with Hirshfeld surfaces and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814-3816.]) generated using CrystalExplorer (Turner et al. 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Fig. 5[link] shows the Hirshfeld surfaces for opposite faces of the asymmetric unit of mol­ecule 1. The bright red circles correspond to C—H⋯N and C—H⋯O hydrogen bonds while a weaker C—H⋯π contact appears as a faint red circle. Fingerprint plots for 1 are shown in Fig. 6[link]. As the CIF file for the isomeric mol­ecule, 2, was available from the CCD, it was of inter­est to compare and contrast contributions to the included surface areas from the two isomers as shown in Table 2[link]. As expected, H⋯H contacts are the most prolific in both cases. Other contributions were generally very similar, the sole exception being that the C⋯O/O⋯C contacts made up almost twice the surface area for 2 as for 1. The change from the 2- to the 4-position in 2 may allow the meth­oxy substituent in 2 to contribute more substanti­ally to the surface of the mol­ecule.

Table 2
Short contacts and contributions (%) to the Hirshfeld surface for 1 and 2

Contact 1 2
H⋯H 40.8 40.5
H⋯C/C⋯H 19.4 18.1
H⋯O/O⋯H 19.7 19.6
H⋯N/N⋯H 6.4 5.3
C⋯C 7.9 6.5
C⋯O/O⋯C 3.6 6.9
C⋯N/N⋯C 1.8 2.9
O⋯O 0.6 0.1
N⋯N 0.1  
[Figure 5]
Figure 5
Hirshfeld surfaces for opposite faces of the mol­ecule of 1, mapped over dnorm in the range −0.1701 to 1.4088 a.u.
[Figure 6]
Figure 6
(a) The two-dimensional fingerprint plot for all inter­actions, together with those (b)–(h) delineated into individual contact types with included surface areas for the major individual contacts. Minor contacts contributing less than 1% to the total surface area are not shown here but, for completeness, are included in Table 2[link].

5. Database survey

A search of the Cambridge Structural Database (CSD, V3.59, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for (Z)-4-benzyl­idene-3-phenyl­soxazol-5(4H)-one yielded seventeen hits. Importantly, one of these, i.e. (Z)-4-(4-meth­oxy­benzyl­idene)-3-phenyl­isoxazol-5(4H)-one (SULZAC; Zhang et al., 2015[Zhang, X., Jiang, X., Li, Y., Lin, Z., Zhang, G. & Wu, Y. (2015). CrystEngComm, 17, 7316-7322.]) is an isomer (2) of the title compound with the meth­oxy substituent in the 4-position of the benzene ring. Another paper (Jiang et al., 2013[Jiang, D., Xue, Z., Li, Y., Liu, H. & Yang, W. (2013) J. Mater. Chem. C, 1, 5694-5700.]) included the closely related compound (Z)-4-(4-[di­methyl­amino)benzyl­idene]-3-phenyl­isoxazol-5(4H)-one (IDIBEE) together with two other related compounds, IDIBII and IDIBOO, that exhibit large second harmonic generation effects. The search also revealed four other structures in which the configuration about the C=C bond is Z, namely 4-(2-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (AJESAK; Cheng et al., 2009[Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012.]), (4Z)-4-benzyl­idene-2-phenyl-1,3-oxazol-5(4H)-one (YAXMUH; Asiri et al., 2012[Asiri, A. M., Faidallah, H. M., Sobahi, T. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1154.]), (Z)-4-benzyl­idene-3-methyl­isoxazol-5(4H)-one [MBYIOZ (Meunier-Piret et al., 1972[Meunier-Piret, J., Piret, P., Germain, G., Putzeys, J.-P. & Van Meerssche, M. (1972). Acta Cryst. B28, 1308-1311.]) and MBYIOZ01 (Chandra et al., 2012[Chandra, S. N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091.])] and a recent addition, (Z)-4-(4-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (Zemamouche et al., 2018[Zemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926-930.]).

6. Synthesis and crystallization

2-Meth­oxy­benzaldehyde (1 mmol), hy­droxy­amine hydro­chloride (1 mmol), ethyl benzoyl­acetate (1 mmol) and K2CO3 (5 mol%) were mixed in a 25 ml flask equipped with a magnetic stirrer. The mixture was refluxed in 5 ml of water for 2.5 h (the reaction was monitored by TLC). On completion of the reaction, the mixture was gradually poured into ice-cold water. Stirring was maintained for a few minutes and the resulting solid was filtered and purified by crystallization from ethanol.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula C17H13NO3
Mr 279.28
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 20.3883 (6), 7.5925 (2), 17.9858 (5)
β (°) 95.791 (1)
V3) 2769.96 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.32 × 0.23 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.98, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 35544, 2495, 1548
Rint 0.12
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.101, 1.00
No. of reflections 2495
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.09, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: APEX2 (Bruker, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(Z)-4-(2-Methoxybenzylidene)-3-phenylisoxazol-5(4H)-one top
Crystal data top
C17H13NO3F(000) = 1168
Mr = 279.28Dx = 1.339 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.3883 (6) ÅCell parameters from 1218 reflections
b = 7.5925 (2) Åθ = 2.3–33.4°
c = 17.9858 (5) ŵ = 0.09 mm1
β = 95.791 (1)°T = 293 K
V = 2769.96 (13) Å3Needle, white
Z = 80.32 × 0.23 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1548 reflections with I > 2σ(I)
φ and ω scansRint = 0.12
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 25.3°, θmin = 2.3°
Tmin = 0.98, Tmax = 0.99h = 2424
35544 measured reflectionsk = 99
2495 independent reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
2495 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.09 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63879 (5)0.40128 (15)0.44786 (5)0.0604 (3)
O20.53785 (6)0.34750 (15)0.39356 (6)0.0641 (4)
O30.44474 (6)0.07225 (16)0.65984 (6)0.0672 (4)
N10.67268 (6)0.40557 (18)0.52191 (7)0.0559 (4)
C110.45217 (7)0.17739 (18)0.53778 (8)0.0423 (4)
C100.51760 (7)0.23684 (17)0.56343 (8)0.0409 (4)
H100.5284010.2198630.6144030.049*
C60.65205 (7)0.35594 (18)0.64799 (8)0.0419 (4)
C50.61267 (8)0.43223 (19)0.69787 (8)0.0499 (4)
H50.5719660.4796680.6803730.060*
C80.56690 (7)0.31231 (18)0.52928 (7)0.0376 (4)
C70.63081 (7)0.35667 (18)0.56711 (8)0.0400 (4)
C120.42284 (8)0.1993 (2)0.46438 (9)0.0566 (5)
H120.4467850.2530030.4292970.068*
C10.71264 (8)0.2846 (2)0.67501 (9)0.0518 (4)
H10.7393460.2327640.6421700.062*
C160.41449 (8)0.0947 (2)0.58918 (9)0.0511 (4)
C30.69408 (9)0.3668 (2)0.79957 (9)0.0633 (5)
H30.7082860.3704880.8503310.076*
C90.57442 (8)0.3509 (2)0.45076 (8)0.0474 (4)
C20.73315 (9)0.2905 (2)0.75030 (10)0.0632 (5)
H20.7737230.2426560.7680330.076*
C40.63365 (9)0.4380 (2)0.77336 (9)0.0593 (5)
H40.6071890.4897400.8064800.071*
C150.35023 (8)0.0404 (2)0.56730 (11)0.0633 (5)
H150.3253810.0135370.6014610.076*
C140.32368 (9)0.0672 (2)0.49456 (12)0.0717 (6)
H140.2804830.0326950.4802530.086*
C130.35978 (9)0.1436 (2)0.44307 (11)0.0710 (6)
H130.3416240.1577050.3938880.085*
C170.41045 (9)0.0215 (3)0.71332 (9)0.0764 (6)
H17A0.4375270.0269630.7601290.115*
H17B0.3700290.0383990.7201430.115*
H17C0.4008290.1388070.6954750.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0531 (8)0.0810 (9)0.0494 (6)0.0098 (6)0.0165 (5)0.0092 (5)
O20.0606 (8)0.0864 (9)0.0452 (6)0.0005 (6)0.0045 (5)0.0073 (5)
O30.0630 (8)0.0842 (9)0.0568 (7)0.0219 (6)0.0176 (6)0.0039 (6)
N10.0455 (9)0.0667 (9)0.0564 (8)0.0096 (7)0.0101 (7)0.0045 (7)
C110.0345 (9)0.0357 (8)0.0577 (9)0.0008 (7)0.0086 (7)0.0027 (7)
C100.0416 (9)0.0378 (9)0.0437 (7)0.0012 (7)0.0055 (7)0.0010 (6)
C60.0362 (9)0.0402 (9)0.0494 (8)0.0053 (7)0.0054 (7)0.0032 (7)
C50.0447 (10)0.0503 (10)0.0545 (9)0.0012 (8)0.0036 (8)0.0042 (7)
C80.0354 (9)0.0362 (8)0.0421 (7)0.0012 (7)0.0083 (6)0.0011 (6)
C70.0353 (9)0.0371 (9)0.0490 (8)0.0024 (7)0.0103 (7)0.0008 (6)
C120.0477 (11)0.0553 (11)0.0653 (10)0.0036 (8)0.0009 (8)0.0075 (8)
C10.0401 (10)0.0558 (10)0.0593 (9)0.0014 (8)0.0042 (8)0.0076 (8)
C160.0454 (11)0.0462 (10)0.0639 (10)0.0059 (8)0.0161 (8)0.0066 (8)
C30.0719 (14)0.0657 (12)0.0499 (9)0.0098 (10)0.0056 (9)0.0071 (8)
C90.0471 (11)0.0485 (10)0.0478 (8)0.0001 (8)0.0109 (8)0.0042 (7)
C20.0525 (11)0.0653 (12)0.0680 (11)0.0018 (9)0.0123 (10)0.0009 (9)
C40.0619 (13)0.0622 (12)0.0547 (9)0.0024 (9)0.0112 (9)0.0136 (8)
C150.0442 (12)0.0619 (12)0.0865 (13)0.0126 (9)0.0204 (9)0.0081 (10)
C140.0387 (11)0.0725 (13)0.1023 (15)0.0101 (9)0.0008 (11)0.0090 (11)
C130.0491 (12)0.0754 (14)0.0847 (13)0.0095 (10)0.0118 (10)0.0106 (10)
C170.0838 (14)0.0802 (14)0.0719 (11)0.0161 (11)0.0400 (10)0.0042 (10)
Geometric parameters (Å, º) top
O1—C91.3729 (18)C12—C131.371 (2)
O1—N11.4376 (15)C12—H120.9300
O2—C91.2085 (17)C1—C21.377 (2)
O3—C161.3663 (18)C1—H10.9300
O3—C171.4341 (18)C16—C151.392 (2)
N1—C71.2914 (18)C3—C21.378 (2)
C11—C121.403 (2)C3—C41.384 (2)
C11—C161.408 (2)C3—H30.9300
C11—C101.4394 (19)C2—H20.9300
C10—C81.3566 (19)C4—H40.9300
C10—H100.9300C15—C141.379 (2)
C6—C51.389 (2)C15—H150.9300
C6—C11.391 (2)C14—C131.369 (2)
C6—C71.4754 (19)C14—H140.9300
C5—C41.3824 (19)C13—H130.9300
C5—H50.9300C17—H17A0.9600
C8—C71.4475 (19)C17—H17B0.9600
C8—C91.4654 (18)C17—H17C0.9600
C9—O1—N1110.05 (10)C15—C16—C11120.45 (16)
C16—O3—C17118.75 (13)C2—C3—C4119.86 (15)
C7—N1—O1106.87 (12)C2—C3—H3120.1
C12—C11—C16117.50 (15)C4—C3—H3120.1
C12—C11—C10123.89 (14)O2—C9—O1118.92 (13)
C16—C11—C10118.61 (14)O2—C9—C8134.47 (15)
C8—C10—C11133.82 (13)O1—C9—C8106.61 (12)
C8—C10—H10113.1C1—C2—C3120.56 (16)
C11—C10—H10113.1C1—C2—H2119.7
C5—C6—C1119.18 (14)C3—C2—H2119.7
C5—C6—C7120.26 (14)C5—C4—C3119.91 (16)
C1—C6—C7120.52 (14)C5—C4—H4120.0
C4—C5—C6120.39 (15)C3—C4—H4120.0
C4—C5—H5119.8C14—C15—C16119.51 (17)
C6—C5—H5119.8C14—C15—H15120.2
C10—C8—C7123.95 (12)C16—C15—H15120.2
C10—C8—C9132.47 (13)C13—C14—C15121.19 (17)
C7—C8—C9103.27 (12)C13—C14—H14119.4
N1—C7—C8113.07 (13)C15—C14—H14119.4
N1—C7—C6118.35 (13)C14—C13—C12119.65 (17)
C8—C7—C6128.56 (13)C14—C13—H13120.2
C13—C12—C11121.68 (17)C12—C13—H13120.2
C13—C12—H12119.2O3—C17—H17A109.5
C11—C12—H12119.2O3—C17—H17B109.5
C2—C1—C6120.10 (16)H17A—C17—H17B109.5
C2—C1—H1119.9O3—C17—H17C109.5
C6—C1—H1119.9H17A—C17—H17C109.5
O3—C16—C15123.35 (16)H17B—C17—H17C109.5
O3—C16—C11116.20 (14)
C9—O1—N1—C71.14 (16)C17—O3—C16—C154.0 (2)
C12—C11—C10—C84.4 (3)C17—O3—C16—C11175.92 (14)
C16—C11—C10—C8176.65 (15)C12—C11—C16—O3178.84 (14)
C1—C6—C5—C40.4 (2)C10—C11—C16—O32.2 (2)
C7—C6—C5—C4177.39 (13)C12—C11—C16—C151.1 (2)
C11—C10—C8—C7177.90 (14)C10—C11—C16—C15177.91 (14)
C11—C10—C8—C95.5 (3)N1—O1—C9—O2176.89 (13)
O1—N1—C7—C81.18 (17)N1—O1—C9—C82.88 (15)
O1—N1—C7—C6177.58 (11)C10—C8—C9—O210.1 (3)
C10—C8—C7—N1171.42 (14)C7—C8—C9—O2176.37 (17)
C9—C8—C7—N12.85 (17)C10—C8—C9—O1170.22 (15)
C10—C8—C7—C610.0 (2)C7—C8—C9—O13.35 (15)
C9—C8—C7—C6175.75 (14)C6—C1—C2—C30.0 (2)
C5—C6—C7—N1132.05 (16)C4—C3—C2—C10.1 (2)
C1—C6—C7—N145.7 (2)C6—C5—C4—C30.3 (2)
C5—C6—C7—C846.5 (2)C2—C3—C4—C50.1 (2)
C1—C6—C7—C8135.77 (16)O3—C16—C15—C14179.53 (15)
C16—C11—C12—C130.3 (2)C11—C16—C15—C140.4 (2)
C10—C11—C12—C13178.59 (15)C16—C15—C14—C131.1 (3)
C5—C6—C1—C20.2 (2)C15—C14—C13—C121.9 (3)
C7—C6—C1—C2177.52 (14)C11—C12—C13—C141.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.533.463 (2)176
C5—H5···O2ii0.932.813.728 (2)169
C10—H10···O30.932.262.7009 (18)108
C12—H12···O20.932.152.998 (2)151
C14—H14···N1iii0.932.583.396 (2)147
C17—H17A···O3iv0.962.783.615 (2)147
C17—H17C···Cgiv0.962.823.606 (2)139
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y1/2, z; (iv) x+1, y, z+3/2.
Short contacts and contributions (%) to the Hirshfeld surface for 1 and 2 top
Contact12
H···H40.840.5
H···C/C···H19.418.1
H···O/O···H19.719.6
H···N/N···H6.45.3
C···C7.96.5
C···O/O···C3.66.9
C···N/N···C1.82.9
O···O0.60.1
N···N0.1
 

Acknowledgements

The authors gratefully acknowledge Université Ferhat Abbas Setif 1 for assistance with the data collection.

References

First citationAbbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Sobahi, T. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1154.  CSD CrossRef IUCr Journals Google Scholar
First citationBadrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Pharm. Sci., 6, 236–239.  CAS Google Scholar
First citationBatra, S. & Bhaduri, A. P. (1994). J. Indian Inst. Sci., 74, 213–226.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091.  CSD CrossRef IUCr Journals Google Scholar
First citationCheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFozooni, S., Hosseinzadeh, G. N., Hamidianc, H. & Akhgar, M. R. (2013). J. Braz. Chem. Soc., 24, 1649-1655.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, K. L., Zhao, L. X., Wang, Z. W., Gao, Y. C., Li, J. J., Gao, S., Fu, Y. & Ye, F. (2020). J. Agric. Food Chem. 68, 10550–10559.  CrossRef CAS PubMed Google Scholar
First citationJiang, D., Xue, Z., Li, Y., Liu, H. & Yang, W. (2013) J. Mater. Chem. C, 1, 5694–5700.  CSD CrossRef CAS Google Scholar
First citationLaughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Q. & Zhang, Y.-N. (2011). Bull. Korean Chem. Soc. 32, 3559–3560.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564–6569.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814–3816.  Google Scholar
First citationMeunier-Piret, J., Piret, P., Germain, G., Putzeys, J.-P. & Van Meerssche, M. (1972). Acta Cryst. B28, 1308–1311.  CSD CrossRef IUCr Journals Google Scholar
First citationMiyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89–94.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem., 5, 1450–1453.  CSD CrossRef Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926–930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Jiang, X., Li, Y., Lin, Z., Zhang, G. & Wu, Y. (2015). CrystEngComm, 17, 7316–7322.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds