research communications
Structural study and Hirshfeld surface analysis of (Z)-4-(2-methoxybenzylidene)-3-phenylisoxazol-5(4H)-one
aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bLaboratoire de Synthèse de Molécules, d'Intérêts Biologiques, Département de Chimie, Université Mentouri-Constantine, 25000 Constantine, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr
The title compound, C17H13NO3, adopts a Z configuration about the C=C bond. The isoxazole and methoxybenzylidene rings are almost coplanar with a dihedral angle of 9.63 (7)° between them. In contrast, the phenyl substituent is twisted significantly out of the plane of the oxazole ring, with the two rings inclined to each other by 46.22 (4)°. The features C—H⋯O, C—H⋯N and C—H⋯π hydrogen bonds and π–π contacts. An analysis of the Hirshfeld surfaces points to the importance of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts. The included surface areas of the title compound were compared to those of the isomeric structure (Z)-4-(4-methoxybenzylidene)-3-phenylisoxazol-5(4H)-one [Zhang et al. (2015). CrystEngComm, 17, 7316–7322].
Keywords: crystal structure; methoxybenzylidene; isoxazole; hydrogen bonding; π–π stacking; Hirshfeld surface analysis.
CCDC reference: 2079211
1. Chemical context
Isoxazolones are known to be inhibitors of the factorization of tumor necrosis alpha (TNF-α) (Laughlin et al., 2005), antimicrobial agents (Mazimba et al., 2014), as drugs for the treatment of cerebrovascular disorders and as muscle relaxants. In agriculture, they are used as herbicides (Guo, et al., 2020) and fungicides (Miyake et al., 2012). They undergo various chemical transformations (Batra et al., 1994) and are excellent intermediates in the synthesis of various heterocycles, including pyridopyrimidines (Tu et al., 2006), quinolines (Abbiati et al., 2003) and polycycles (Badrey & Gomha, 2014). Because of their importance, these compounds have been studied extensively and several procedures for their synthesis are described using a three-component between an aromatic aldehyde, ethyl acetoacetate and hydroxylamine hydrochloride under different conditions (Liu et al., 2011; Fozooni et al., 2013).
We report here on the use of K2CO3 as very inexpensive, highly available and safe catalyst in an organic medium for isoxazolone formation and we describe the synthesis, molecular and crystal structures, and Hirshfeld surface analysis of the title isoxazole derivative, 1 (Fig. 1).
2. Structural commentary
The Z configuration about the C8=C10 bond. The entire (Z)-4-(2-methoxybenzylideneisoxazolone) segment of the molecule is almost planar with an r.m.s. deviation from the mean plane through all 15 non-hydrogen atoms of the fragment of only 0.0927 Å. This conformation is supported by the formation of an intramolecular C12—H12⋯O1 hydrogen bond (Table 1), which links the isoxazole ring and the benzene ring of the 2-methoxybenzylidene substituent. These two rings are inclined to one another at an angle of 9.63 (7)°. The (C1–C6) phenyl substituent is twisted out of this plane, the phenyl and isoxazole rings being inclined to one another by 46.22 (4)°. Bond lengths and angles agree well with those found in the isomeric derivative 2 (Zhang et al., 2015) and also with the values observed for the related compound (4Z)-4-benzylidene-2-phenyl-1,3-oxazol5(4H)-one (Asiri et al., 2012).
contains one molecule and the molecule adopts a3. Supramolecular features
In the crystal, molecules stack along the b-axis direction (Fig. 2). Molecules are connected by C4—H4⋯O1i and C14—H14⋯N1iii hydrogen bonds, leading to the formation of sheets in the ac plane, Fig. 3. C—H⋯π contacts between the methoxymethyl group and the C1–C6 phenyl ring form double chains of molecules along the a-axis direction, supported by the above-mentioned C14—H14⋯N1iii hydrogen bonds, Fig. 4. Intermolecular H⋯O short contacts are also present [C17—H17A⋯O3iv = 2.78 Å and C5—H5⋯O2ii = 2.81 Å]. Two π–π contacts [3.7049 (9) and 3.9200 (9) Å] are found between the centroids of the isoxazolone ring and the methoxy-substituted benzene ring, which stack adjacent molecules in an obverse fashion along b.
4. Analysis of the Hirshfeld surfaces
Further details of the intermolecular interactions in 1 were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) with Hirshfeld surfaces and two-dimensional fingerprint plots (McKinnon et al., 2007) generated using CrystalExplorer (Turner et al. 2017). Fig. 5 shows the Hirshfeld surfaces for opposite faces of the of molecule 1. The bright red circles correspond to C—H⋯N and C—H⋯O hydrogen bonds while a weaker C—H⋯π contact appears as a faint red circle. Fingerprint plots for 1 are shown in Fig. 6. As the file for the isomeric molecule, 2, was available from the CCD, it was of interest to compare and contrast contributions to the included surface areas from the two isomers as shown in Table 2. As expected, H⋯H contacts are the most prolific in both cases. Other contributions were generally very similar, the sole exception being that the C⋯O/O⋯C contacts made up almost twice the surface area for 2 as for 1. The change from the 2- to the 4-position in 2 may allow the methoxy substituent in 2 to contribute more substantially to the surface of the molecule.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, V3.59, last update February 2019; Groom et al., 2016) for (Z)-4-benzylidene-3-phenylsoxazol-5(4H)-one yielded seventeen hits. Importantly, one of these, i.e. (Z)-4-(4-methoxybenzylidene)-3-phenylisoxazol-5(4H)-one (SULZAC; Zhang et al., 2015) is an isomer (2) of the title compound with the methoxy substituent in the 4-position of the benzene ring. Another paper (Jiang et al., 2013) included the closely related compound (Z)-4-(4-[dimethylamino)benzylidene]-3-phenylisoxazol-5(4H)-one (IDIBEE) together with two other related compounds, IDIBII and IDIBOO, that exhibit large second harmonic generation effects. The search also revealed four other structures in which the configuration about the C=C bond is Z, namely 4-(2-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one (AJESAK; Cheng et al., 2009), (4Z)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (YAXMUH; Asiri et al., 2012), (Z)-4-benzylidene-3-methylisoxazol-5(4H)-one [MBYIOZ (Meunier-Piret et al., 1972) and MBYIOZ01 (Chandra et al., 2012)] and a recent addition, (Z)-4-(4-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one (Zemamouche et al., 2018).
6. Synthesis and crystallization
2-Methoxybenzaldehyde (1 mmol), hydroxyamine hydrochloride (1 mmol), ethyl benzoylacetate (1 mmol) and K2CO3 (5 mol%) were mixed in a 25 ml flask equipped with a magnetic stirrer. The mixture was refluxed in 5 ml of water for 2.5 h (the reaction was monitored by TLC). On completion of the reaction, the mixture was gradually poured into ice-cold water. Stirring was maintained for a few minutes and the resulting solid was filtered and purified by crystallization from ethanol.
7. details
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2079211
https://doi.org/10.1107/S2056989021004308/ex2043sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021004308/ex2043Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021004308/ex2043Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: APEX2 (Bruker, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C17H13NO3 | F(000) = 1168 |
Mr = 279.28 | Dx = 1.339 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.3883 (6) Å | Cell parameters from 1218 reflections |
b = 7.5925 (2) Å | θ = 2.3–33.4° |
c = 17.9858 (5) Å | µ = 0.09 mm−1 |
β = 95.791 (1)° | T = 293 K |
V = 2769.96 (13) Å3 | Needle, white |
Z = 8 | 0.32 × 0.23 × 0.10 mm |
Bruker APEXII CCD diffractometer | 1548 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.12 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 25.3°, θmin = 2.3° |
Tmin = 0.98, Tmax = 0.99 | h = −24→24 |
35544 measured reflections | k = −9→9 |
2495 independent reflections | l = −21→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3 |
2495 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.09 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.63879 (5) | 0.40128 (15) | 0.44786 (5) | 0.0604 (3) | |
O2 | 0.53785 (6) | 0.34750 (15) | 0.39356 (6) | 0.0641 (4) | |
O3 | 0.44474 (6) | 0.07225 (16) | 0.65984 (6) | 0.0672 (4) | |
N1 | 0.67268 (6) | 0.40557 (18) | 0.52191 (7) | 0.0559 (4) | |
C11 | 0.45217 (7) | 0.17739 (18) | 0.53778 (8) | 0.0423 (4) | |
C10 | 0.51760 (7) | 0.23684 (17) | 0.56343 (8) | 0.0409 (4) | |
H10 | 0.528401 | 0.219863 | 0.614403 | 0.049* | |
C6 | 0.65205 (7) | 0.35594 (18) | 0.64799 (8) | 0.0419 (4) | |
C5 | 0.61267 (8) | 0.43223 (19) | 0.69787 (8) | 0.0499 (4) | |
H5 | 0.571966 | 0.479668 | 0.680373 | 0.060* | |
C8 | 0.56690 (7) | 0.31231 (18) | 0.52928 (7) | 0.0376 (4) | |
C7 | 0.63081 (7) | 0.35667 (18) | 0.56711 (8) | 0.0400 (4) | |
C12 | 0.42284 (8) | 0.1993 (2) | 0.46438 (9) | 0.0566 (5) | |
H12 | 0.446785 | 0.253003 | 0.429297 | 0.068* | |
C1 | 0.71264 (8) | 0.2846 (2) | 0.67501 (9) | 0.0518 (4) | |
H1 | 0.739346 | 0.232764 | 0.642170 | 0.062* | |
C16 | 0.41449 (8) | 0.0947 (2) | 0.58918 (9) | 0.0511 (4) | |
C3 | 0.69408 (9) | 0.3668 (2) | 0.79957 (9) | 0.0633 (5) | |
H3 | 0.708286 | 0.370488 | 0.850331 | 0.076* | |
C9 | 0.57442 (8) | 0.3509 (2) | 0.45076 (8) | 0.0474 (4) | |
C2 | 0.73315 (9) | 0.2905 (2) | 0.75030 (10) | 0.0632 (5) | |
H2 | 0.773723 | 0.242656 | 0.768033 | 0.076* | |
C4 | 0.63365 (9) | 0.4380 (2) | 0.77336 (9) | 0.0593 (5) | |
H4 | 0.607189 | 0.489740 | 0.806480 | 0.071* | |
C15 | 0.35023 (8) | 0.0404 (2) | 0.56730 (11) | 0.0633 (5) | |
H15 | 0.325381 | −0.013537 | 0.601461 | 0.076* | |
C14 | 0.32368 (9) | 0.0672 (2) | 0.49456 (12) | 0.0717 (6) | |
H14 | 0.280483 | 0.032695 | 0.480253 | 0.086* | |
C13 | 0.35978 (9) | 0.1436 (2) | 0.44307 (11) | 0.0710 (6) | |
H13 | 0.341624 | 0.157705 | 0.393888 | 0.085* | |
C17 | 0.41045 (9) | −0.0215 (3) | 0.71332 (9) | 0.0764 (6) | |
H17A | 0.437527 | −0.026963 | 0.760129 | 0.115* | |
H17B | 0.370029 | 0.038399 | 0.720143 | 0.115* | |
H17C | 0.400829 | −0.138807 | 0.695475 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0531 (8) | 0.0810 (9) | 0.0494 (6) | −0.0098 (6) | 0.0165 (5) | 0.0092 (5) |
O2 | 0.0606 (8) | 0.0864 (9) | 0.0452 (6) | −0.0005 (6) | 0.0045 (5) | 0.0073 (5) |
O3 | 0.0630 (8) | 0.0842 (9) | 0.0568 (7) | −0.0219 (6) | 0.0176 (6) | 0.0039 (6) |
N1 | 0.0455 (9) | 0.0667 (9) | 0.0564 (8) | −0.0096 (7) | 0.0101 (7) | 0.0045 (7) |
C11 | 0.0345 (9) | 0.0357 (8) | 0.0577 (9) | −0.0008 (7) | 0.0086 (7) | −0.0027 (7) |
C10 | 0.0416 (9) | 0.0378 (9) | 0.0437 (7) | 0.0012 (7) | 0.0055 (7) | −0.0010 (6) |
C6 | 0.0362 (9) | 0.0402 (9) | 0.0494 (8) | −0.0053 (7) | 0.0054 (7) | −0.0032 (7) |
C5 | 0.0447 (10) | 0.0503 (10) | 0.0545 (9) | −0.0012 (8) | 0.0036 (8) | −0.0042 (7) |
C8 | 0.0354 (9) | 0.0362 (8) | 0.0421 (7) | −0.0012 (7) | 0.0083 (6) | 0.0011 (6) |
C7 | 0.0353 (9) | 0.0371 (9) | 0.0490 (8) | −0.0024 (7) | 0.0103 (7) | 0.0008 (6) |
C12 | 0.0477 (11) | 0.0553 (11) | 0.0653 (10) | −0.0036 (8) | −0.0009 (8) | 0.0075 (8) |
C1 | 0.0401 (10) | 0.0558 (10) | 0.0593 (9) | −0.0014 (8) | 0.0042 (8) | −0.0076 (8) |
C16 | 0.0454 (11) | 0.0462 (10) | 0.0639 (10) | −0.0059 (8) | 0.0161 (8) | −0.0066 (8) |
C3 | 0.0719 (14) | 0.0657 (12) | 0.0499 (9) | −0.0098 (10) | −0.0056 (9) | −0.0071 (8) |
C9 | 0.0471 (11) | 0.0485 (10) | 0.0478 (8) | −0.0001 (8) | 0.0109 (8) | 0.0042 (7) |
C2 | 0.0525 (11) | 0.0653 (12) | 0.0680 (11) | −0.0018 (9) | −0.0123 (10) | −0.0009 (9) |
C4 | 0.0619 (13) | 0.0622 (12) | 0.0547 (9) | −0.0024 (9) | 0.0112 (9) | −0.0136 (8) |
C15 | 0.0442 (12) | 0.0619 (12) | 0.0865 (13) | −0.0126 (9) | 0.0204 (9) | −0.0081 (10) |
C14 | 0.0387 (11) | 0.0725 (13) | 0.1023 (15) | −0.0101 (9) | −0.0008 (11) | −0.0090 (11) |
C13 | 0.0491 (12) | 0.0754 (14) | 0.0847 (13) | −0.0095 (10) | −0.0118 (10) | 0.0106 (10) |
C17 | 0.0838 (14) | 0.0802 (14) | 0.0719 (11) | −0.0161 (11) | 0.0400 (10) | 0.0042 (10) |
O1—C9 | 1.3729 (18) | C12—C13 | 1.371 (2) |
O1—N1 | 1.4376 (15) | C12—H12 | 0.9300 |
O2—C9 | 1.2085 (17) | C1—C2 | 1.377 (2) |
O3—C16 | 1.3663 (18) | C1—H1 | 0.9300 |
O3—C17 | 1.4341 (18) | C16—C15 | 1.392 (2) |
N1—C7 | 1.2914 (18) | C3—C2 | 1.378 (2) |
C11—C12 | 1.403 (2) | C3—C4 | 1.384 (2) |
C11—C16 | 1.408 (2) | C3—H3 | 0.9300 |
C11—C10 | 1.4394 (19) | C2—H2 | 0.9300 |
C10—C8 | 1.3566 (19) | C4—H4 | 0.9300 |
C10—H10 | 0.9300 | C15—C14 | 1.379 (2) |
C6—C5 | 1.389 (2) | C15—H15 | 0.9300 |
C6—C1 | 1.391 (2) | C14—C13 | 1.369 (2) |
C6—C7 | 1.4754 (19) | C14—H14 | 0.9300 |
C5—C4 | 1.3824 (19) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C17—H17A | 0.9600 |
C8—C7 | 1.4475 (19) | C17—H17B | 0.9600 |
C8—C9 | 1.4654 (18) | C17—H17C | 0.9600 |
C9—O1—N1 | 110.05 (10) | C15—C16—C11 | 120.45 (16) |
C16—O3—C17 | 118.75 (13) | C2—C3—C4 | 119.86 (15) |
C7—N1—O1 | 106.87 (12) | C2—C3—H3 | 120.1 |
C12—C11—C16 | 117.50 (15) | C4—C3—H3 | 120.1 |
C12—C11—C10 | 123.89 (14) | O2—C9—O1 | 118.92 (13) |
C16—C11—C10 | 118.61 (14) | O2—C9—C8 | 134.47 (15) |
C8—C10—C11 | 133.82 (13) | O1—C9—C8 | 106.61 (12) |
C8—C10—H10 | 113.1 | C1—C2—C3 | 120.56 (16) |
C11—C10—H10 | 113.1 | C1—C2—H2 | 119.7 |
C5—C6—C1 | 119.18 (14) | C3—C2—H2 | 119.7 |
C5—C6—C7 | 120.26 (14) | C5—C4—C3 | 119.91 (16) |
C1—C6—C7 | 120.52 (14) | C5—C4—H4 | 120.0 |
C4—C5—C6 | 120.39 (15) | C3—C4—H4 | 120.0 |
C4—C5—H5 | 119.8 | C14—C15—C16 | 119.51 (17) |
C6—C5—H5 | 119.8 | C14—C15—H15 | 120.2 |
C10—C8—C7 | 123.95 (12) | C16—C15—H15 | 120.2 |
C10—C8—C9 | 132.47 (13) | C13—C14—C15 | 121.19 (17) |
C7—C8—C9 | 103.27 (12) | C13—C14—H14 | 119.4 |
N1—C7—C8 | 113.07 (13) | C15—C14—H14 | 119.4 |
N1—C7—C6 | 118.35 (13) | C14—C13—C12 | 119.65 (17) |
C8—C7—C6 | 128.56 (13) | C14—C13—H13 | 120.2 |
C13—C12—C11 | 121.68 (17) | C12—C13—H13 | 120.2 |
C13—C12—H12 | 119.2 | O3—C17—H17A | 109.5 |
C11—C12—H12 | 119.2 | O3—C17—H17B | 109.5 |
C2—C1—C6 | 120.10 (16) | H17A—C17—H17B | 109.5 |
C2—C1—H1 | 119.9 | O3—C17—H17C | 109.5 |
C6—C1—H1 | 119.9 | H17A—C17—H17C | 109.5 |
O3—C16—C15 | 123.35 (16) | H17B—C17—H17C | 109.5 |
O3—C16—C11 | 116.20 (14) | ||
C9—O1—N1—C7 | 1.14 (16) | C17—O3—C16—C15 | 4.0 (2) |
C12—C11—C10—C8 | −4.4 (3) | C17—O3—C16—C11 | −175.92 (14) |
C16—C11—C10—C8 | 176.65 (15) | C12—C11—C16—O3 | 178.84 (14) |
C1—C6—C5—C4 | 0.4 (2) | C10—C11—C16—O3 | −2.2 (2) |
C7—C6—C5—C4 | −177.39 (13) | C12—C11—C16—C15 | −1.1 (2) |
C11—C10—C8—C7 | −177.90 (14) | C10—C11—C16—C15 | 177.91 (14) |
C11—C10—C8—C9 | −5.5 (3) | N1—O1—C9—O2 | 176.89 (13) |
O1—N1—C7—C8 | 1.18 (17) | N1—O1—C9—C8 | −2.88 (15) |
O1—N1—C7—C6 | −177.58 (11) | C10—C8—C9—O2 | 10.1 (3) |
C10—C8—C7—N1 | 171.42 (14) | C7—C8—C9—O2 | −176.37 (17) |
C9—C8—C7—N1 | −2.85 (17) | C10—C8—C9—O1 | −170.22 (15) |
C10—C8—C7—C6 | −10.0 (2) | C7—C8—C9—O1 | 3.35 (15) |
C9—C8—C7—C6 | 175.75 (14) | C6—C1—C2—C3 | 0.0 (2) |
C5—C6—C7—N1 | 132.05 (16) | C4—C3—C2—C1 | 0.1 (2) |
C1—C6—C7—N1 | −45.7 (2) | C6—C5—C4—C3 | −0.3 (2) |
C5—C6—C7—C8 | −46.5 (2) | C2—C3—C4—C5 | 0.1 (2) |
C1—C6—C7—C8 | 135.77 (16) | O3—C16—C15—C14 | −179.53 (15) |
C16—C11—C12—C13 | 0.3 (2) | C11—C16—C15—C14 | 0.4 (2) |
C10—C11—C12—C13 | −178.59 (15) | C16—C15—C14—C13 | 1.1 (3) |
C5—C6—C1—C2 | −0.2 (2) | C15—C14—C13—C12 | −1.9 (3) |
C7—C6—C1—C2 | 177.52 (14) | C11—C12—C13—C14 | 1.1 (3) |
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.53 | 3.463 (2) | 176 |
C5—H5···O2ii | 0.93 | 2.81 | 3.728 (2) | 169 |
C10—H10···O3 | 0.93 | 2.26 | 2.7009 (18) | 108 |
C12—H12···O2 | 0.93 | 2.15 | 2.998 (2) | 151 |
C14—H14···N1iii | 0.93 | 2.58 | 3.396 (2) | 147 |
C17—H17A···O3iv | 0.96 | 2.78 | 3.615 (2) | 147 |
C17—H17C···Cgiv | 0.96 | 2.82 | 3.606 (2) | 139 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, y−1/2, z; (iv) −x+1, y, −z+3/2. |
Contact | 1 | 2 |
H···H | 40.8 | 40.5 |
H···C/C···H | 19.4 | 18.1 |
H···O/O···H | 19.7 | 19.6 |
H···N/N···H | 6.4 | 5.3 |
C···C | 7.9 | 6.5 |
C···O/O···C | 3.6 | 6.9 |
C···N/N···C | 1.8 | 2.9 |
O···O | 0.6 | 0.1 |
N···N | 0.1 |
Acknowledgements
The authors gratefully acknowledge Université Ferhat Abbas Setif 1 for assistance with the data collection.
References
Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893. Web of Science CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asiri, A. M., Faidallah, H. M., Sobahi, T. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1154. CSD CrossRef IUCr Journals Google Scholar
Badrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Pharm. Sci., 6, 236–239. CAS Google Scholar
Batra, S. & Bhaduri, A. P. (1994). J. Indian Inst. Sci., 74, 213–226. CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, S. N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091. CSD CrossRef IUCr Journals Google Scholar
Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fozooni, S., Hosseinzadeh, G. N., Hamidianc, H. & Akhgar, M. R. (2013). J. Braz. Chem. Soc., 24, 1649-1655. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, K. L., Zhao, L. X., Wang, Z. W., Gao, Y. C., Li, J. J., Gao, S., Fu, Y. & Ye, F. (2020). J. Agric. Food Chem. 68, 10550–10559. CrossRef CAS PubMed Google Scholar
Jiang, D., Xue, Z., Li, Y., Liu, H. & Yang, W. (2013) J. Mater. Chem. C, 1, 5694–5700. CSD CrossRef CAS Google Scholar
Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403. Web of Science CrossRef PubMed CAS Google Scholar
Liu, Q. & Zhang, Y.-N. (2011). Bull. Korean Chem. Soc. 32, 3559–3560. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564–6569. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814–3816. Google Scholar
Meunier-Piret, J., Piret, P., Germain, G., Putzeys, J.-P. & Van Meerssche, M. (1972). Acta Cryst. B28, 1308–1311. CSD CrossRef IUCr Journals Google Scholar
Miyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89–94. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem., 5, 1450–1453. CSD CrossRef Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Zemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926–930. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X., Jiang, X., Li, Y., Lin, Z., Zhang, G. & Wu, Y. (2015). CrystEngComm, 17, 7316–7322. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.