research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium dipotassium citrate monohydrate, LiK2C6H5O7(H2O)

crossmark logo

aDepartment of Chemistry, North Central College, 131 S. Loomis St., Naperville IL 60540, USA
*Correspondence e-mail: kaduk@polycrystallograhy.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 February 2021; accepted 29 March 2021; online 9 April 2021)

The crystal structure of dilithium potassium citrate monohydrate, Li+·2K+·C6H5O73−·H2O or LiK2C6H5O7·H2O, has been solved by direct methods and refined against laboratory X-ray powder diffraction data, and optimized using density functional techniques. The complete citrate trianion is generated by a crystallographic mirror plane, with two C and three O atoms lying on the reflecting plane, and chelates to three different K cations. The KO8 and LiO4 coordination polyhedra share edges and corners to form layers lying parallel to the ac plane. An intra­molecular O—H⋯O hydrogen bond occurs between the hydroxyl group and the central carboxyl­ate group of the citrate anion as well as a charge-assisted inter­molecular O—H⋯O link between the water mol­ecule and the terminal carboxyl­ate group. There is also a weak C—H⋯O hydrogen bond.

1. Chemical context

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The study was extended to lithium hydrogen citrates in Cigler & Kaduk (2018[Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160-1170.]), to sodium hydrogen citrates in Cigler & Kaduk (2019a[Cigler, A. J. & Kaduk, J. A. (2019a). Acta Cryst. E75, 223-227.]), to sodium dirubidium citrates in Cigler & Kaduk (2019b[Cigler, A. J. & Kaduk, J. A. (2019b). Acta Cryst. E75, 432-437.]) and to dilithium potassium citrate (Cigler & Kaduk, 2019c[Cigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410-413.]). We now report the synthesis and structure of the title compound, LiK2C6H5O7(H2O), which represents a further extension to lithium dipotassium citrates.

[Scheme 1]

2. Structural commentary

The structure of LiK2C6H5O7(H2O) was solved and refined from powder data and optimized by density functional theory (DFT) calculations (see Experimental section) and is illustrated in Fig. 1[link]. The root-mean-square Cartesian displacement of the hon-hydrogen atoms in the refined and optimized structures is 0.047 Å (Fig. 2[link]). The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The citrate anion occurs in the trans,trans-conformation (about C2—C3 and the symmetry-related atoms), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). Since C3, the central C6/O15/O16 carboxyl­ate group and the O17—H18 hy­droxy group lie on the mirror plane, they exhibit the normal planar arrangement. The Mulliken overlap populations indicate that both the Li—O and K—O bonds have some covalent character, but that the Li—O bonds are more covalent.

[Figure 1]
Figure 1
The crystal structure of LiK2C6H5O7(H2O) with the atom numbering and 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of LiK2C6H5O7(H2O). The refined structure is in red, and the DFT-optimized structure is in blue.

The C6H5O73– citrate anion doubly chelates to three different K19 ions though O11/O16, O11/O15 and O12/O17. Each citrate oxygen atom bridges multiple metal atoms. K19 is eight-coordinate (irregular), with a bond-valence sum (in valence units) of 1.04 and Li20 (site symmetry m) is tetra­hedral with a bond-valence sum of 1.10. Atom O21 of the water mol­ecule of crystallization also lies on a (100) mirror plane.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) method suggests that we might expect a blocky morphology for lithium dipotassium citrate monohydrate. A 2nd order spherical harmonic preferred orientation model was included in the refinement; the texture index was 1.000, indicating that preferred orientation was not present for this rotated capillary specimen.

3. Supra­molecular features

The KO8 and LiO4 coordination polyhedra share edges and corners to form layers lying parallel to the ac plane (Fig. 3[link]). The only traditional hydrogen bonds are an intra­molecular O17—H18⋯O16 inter­action between the hydroxyl group and the central carboxyl­ate group (Table 1[link]), and a charge-assisted hydrogen bond between the water mol­ecule O21—H22 and O11. By the correlation of Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]), these hydrogen bonds contribute 13.2 and 13.4 kcal mol−1, respectively, to the crystal energy. There is also a weak C2—H7⋯O11 hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for kadu1697_DFT[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H22⋯O11 0.98 1.73 2.687 164
O17—H18⋯O16 0.98 1.90 2.581 124
C2—H7⋯O11i 1.09 2.47 3.396 142
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal structure of LiK2C6H5O7(H2O), viewed down the c axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). A reduced cell search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded two hits, but no citrate structures. A few weak unindexed peaks were identified as 2.0 wt% dilithium potassium citrate (Cigler & Kaduk, 2019c[Cigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410-413.]).

5. Synthesis and crystallization

Masses of 0.3777 g of Li2CO3 (5.00 mmol, Sigma-Aldrich) and 1.3851 g of K2CO3 (10.0 mmol, Sigma-Aldrich) were added to a solution of 2.0325 g of citric acid (10.0 mmol, Sigma–Aldrich) monohydrate in 15 ml of water. After the fizzing subsided, the clear solution was dried first at 450 K to yield a sticky solid. The solid was heated at 477 K to yield a white foam. Further heating at 505 K yielded additional expansion of the foam, and slight discoloration. This foam was amorphous. Storage of the foam under ambient conditions yielded a puddle. Heating this puddle to 394 K yielded a glassy solid. Adding two drops of water to this solid yielded a paste, which yielded the title compound as a crystalline white powder after heating to 394 K for 15 min.

6. Refinement

The pattern of LiK2C6H5O7(H2O) was indexed using Jade 9.8 (MDI, 2017[MDI. (2017). Jade 9.8. Materials Data Inc., Livermore, California, USA.]). EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]) suggested the space group Pmn21, which was confirmed by successful solution and refinement of the structure. The structure of LiK2C6H5O7(H2O) was solved by direct methods as implemented in EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]), which located all the non-hydrogen atoms including the lithium atom. The positions of H7 and H8 were calculated using Materials Studio (Dassault, 2018[Dassault Systems. (2018). Materials Studio. BIOVIA, San Diego, California, USA.]). The position of the active hydrogen atom H18 was deduced from the potential intra­molecular hydrogen-bonding pattern, and the position of H22 was deduced from the hydrogen-bonding pattern. Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) and the asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied and the microstrain broadening model of Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement using Materials Studio. Crystal data, data collection and structure refinement (Fig. 4[link]) details are summarized in Table 2[link]. The Uiso values for C2 and C3 were constrained to be equal, and those of H7 and H8 were constrained to be 1.3× that of these carbon atoms. The Uiso of C1, C5, C6 and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3× this value. The background was modeled by a three-term shifted Chebyshev polynomial. A ten-term diffuse scattering function was used to describe the scattering from the capillary and any amorphous material. The structure of dilithium potassium citrate, Li2KC6H5O7 (Cigler & Kaduk, 2019c[Cigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410-413.]), was included as a second phase in the Rietveld refinement but its atomic positional and displacement parameters were not refined.

Table 2
Experimental details

  KADU1697_phase_1
Crystal data
Chemical formula Li+·2K+·C6H5O73−·H2O
Mr 292.25
Crystal system, space group Orthorhombic, Pmn21
Temperature (K) 300
a, b, c (Å) 10.24878 (19), 5.86577 (14), 8.19290 (16)
V3) 492.53 (1)
Z 2
Radiation type Kα1, Kα2, λ = 0.709237, 0.713647 Å
Specimen shape, size (mm) Cylinder, 12 × 0.7
 
Data collection
Diffractometer PANalytical Empyrean
Specimen mounting Glass capillary
Data collection mode Transmission
Scan method Step
2θ values (°) 2θmin = 1.008, 2θmax = 49.988, 2θstep = 0.017
 
Refinement
R factors and goodness of fit Rp = 0.034, Rwp = 0.044, Rexp = 0.015, R(F2) = 0.04860, χ2 = 8.940
No. of parameters 56
No. of restraints 14
(Δ/σ)max 0.49
Computer programs: EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]), GSAS (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Observed, calculated, and difference patterns of LiK2C6H5O7(H2O). The red crosses represent the observed data points, the green solid line the calculated pattern, and the magenta line the difference (observed - calculated) pattern. The vertical scale is multiplied by a factor of 8 above 23° 2θ.

A density functional geometry optimization was carried out using CRYSTAL14 (Dovesi et al., 2014[Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287-1317.]). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for K was that of Peintinger et al. (2013[Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451-459.]). The calculation was run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, using 8 k-points and the B3LYP functional, and took two hours.

Supporting information


Computing details top

Program(s) used to solve structure: EXPO2014 (Altomare et al., 2013) for KADU1697_phase_1; known structure for KADU1697_phase_2. Molecular graphics: Mercury (Macrae et al., 2020), DIAMOND (Crystal Impact, 2015) for KADU1697_phase_1. Software used to prepare material for publication: publCIF (Westrip, 2010) for KADU1697_phase_1.

Lithium dipotassium citrate monohydrate (KADU1697_phase_1) top
Crystal data top
Li+·2K+·C6H5O73·H2Oc = 8.19290 (16) Å
Mr = 292.25V = 492.53 (1) Å3
Orthorhombic, Pmn21Z = 2
Hall symbol: P 2ac -2Dx = 1.971 Mg m3
a = 10.24878 (19) ÅT = 300 K
b = 5.86577 (14) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2488 (7)0.5454 (12)0.9115 (17)0.0155 (10)*
C20.1204 (5)0.6153 (14)0.8359 (11)0.010 (2)*
C30.00.5097 (15)0.91850.010 (2)*
C60.00.2480 (14)0.8941 (14)0.0155 (10)*
H70.1250.57840.70370.013 (3)*
H80.10910.82420.84670.013 (3)*
O110.2709 (4)0.3382 (8)0.9343 (12)0.0155 (10)*
O120.3320 (4)0.6995 (7)0.9364 (12)0.0155 (10)*
O150.00.1757 (12)0.7512 (12)0.0155 (10)*
O160.00.1310 (11)1.0247 (12)0.0155 (10)*
O170.00.5645 (12)1.0886 (8)0.0155 (10)*
H180.00.42311.11760.0201 (13)*
K190.20108 (18)0.0384 (3)1.1763 (10)0.0333 (7)*
Li200.00.213 (4)1.526 (3)0.04*
O210.50.1259 (10)0.9430 (16)0.018 (3)*
H220.42680.19370.94020.04*
Geometric parameters (Å, º) top
C1—C21.510 (3)O16—C61.271 (6)
C1—O111.250 (5)O16—K192.604 (4)
C1—O121.260 (6)O16—K19i2.604 (4)
C2—C11.510 (3)O17—C31.430 (7)
C2—C31.538 (3)O17—H180.863 (7)
C2—H71.105 (10)O17—K19iii3.192 (5)
C2—H81.234 (8)O17—K19viii3.192 (5)
C3—C21.538 (3)H18—O170.863 (7)
C3—C2i1.538 (3)K19—H8ix2.704 (4)
C3—C61.548 (3)K19—O113.053 (5)
C3—O171.430 (7)K19—O11x2.765 (5)
C6—C31.548 (3)K19—O12xi2.833 (5)
C6—O151.245 (7)K19—O12ix2.934 (5)
C6—O161.271 (6)K19—O15xii3.226 (3)
H7—C21.105 (10)K19—O162.604 (4)
H8—C21.234 (8)K19—O17xi3.192 (5)
O11—C11.250 (5)K19—O21xiii3.047 (7)
O11—K193.053 (5)Li20—O12xiv1.941 (12)
O11—K19ii2.765 (5)Li20—O12ix1.941 (12)
O12—C11.260 (6)Li20—O15xv1.86 (2)
O12—K19iii2.833 (5)Li20—O21xiii2.11 (2)
O12—K19iv2.934 (5)O21—K19xvi3.047 (7)
O12—Li20v1.941 (12)O21—K19ii3.047 (7)
O15—C61.245 (7)O21—Li20xvi2.11 (2)
O15—K19vi3.226 (3)O21—H22xvii0.908 (5)
O15—K19ii3.226 (3)O21—H22ix0.908 (5)
O15—Li20vii1.86 (2)H22—O21xviii0.908 (5)
C2—C1—O11118.9 (6)O11—K19—O12xi80.28 (12)
C2—C1—O12117.5 (6)O11—K19—O12ix90.49 (12)
O11—C1—O12123.4 (6)O11—K19—O15xii94.67 (13)
C1—C2—C3114.1 (5)O11—K19—O1666.39 (15)
C1—C2—H7108.2 (6)O11—K19—O17xi122.22 (14)
C1—C2—H8108.8 (6)O11—K19—O21xiii138.24 (16)
C3—C2—H7112.7 (6)O11x—K19—O12xi97.83 (17)
C3—C2—H8107.0 (6)O11x—K19—O12ix83.53 (13)
H7—C2—H8105.6 (5)O11x—K19—O15xii66.25 (14)
C2—C3—C2i106.8 (6)O11x—K19—O16133.62 (19)
C2—C3—C6110.0 (5)O11x—K19—O17xi77.00 (13)
C2—C3—O17109.8 (5)O11x—K19—O21xiii54.18 (14)
C2i—C3—C6110.0 (5)O12xi—K19—O12ix157.86 (7)
C2i—C3—O17109.8 (5)O12xi—K19—O15xii63.05 (15)
C6—C3—O17110.4 (7)O12xi—K19—O16104.54 (18)
C3—C6—O15117.3 (8)O12xi—K19—O17xi75.75 (14)
C3—C6—O16115.3 (8)O12xi—K19—O21xiii136.58 (15)
O15—C6—O16127.4 (9)O12ix—K19—O15xii98.08 (14)
C1—O11—K19139.3 (6)O12ix—K19—O1689.80 (17)
C1—O11—K19ii121.5 (6)O12ix—K19—O17xi125.68 (15)
K19—O11—K19ii93.48 (13)O12ix—K19—O21xiii61.00 (17)
C1—O12—K19iii100.4 (5)O15xii—K19—O16159.7 (2)
C1—O12—K19iv106.9 (5)O15xii—K19—O17xi118.28 (14)
C1—O12—Li20v148.3 (8)O15xii—K19—O21xiii117.64 (16)
K19iii—O12—K19iv94.68 (12)O16—K19—O17xi70.13 (18)
K19iii—O12—Li20v90.8 (7)O16—K19—O21xiii82.6 (2)
K19iv—O12—Li20v101.5 (7)O17xi—K19—O21xiii66.53 (17)
C6—O15—K19vi105.29 (16)O12xiv—Li20—O12ix125.0 (14)
C6—O15—K19ii105.29 (16)O12xiv—Li20—O15xv114.1 (8)
C6—O15—Li20vii153.2 (10)O12xiv—Li20—O21xiii97.2 (8)
K19vi—O15—K19ii143.4 (2)O12ix—Li20—O15xv114.1 (8)
K19vi—O15—Li20vii80.9 (3)O12ix—Li20—O21xiii97.2 (8)
K19ii—O15—Li20vii80.9 (3)O15xv—Li20—O21xiii102.1 (11)
C6—O16—K19127.43 (14)K19xvi—O21—K19ii85.1 (2)
C6—O16—K19i127.43 (14)K19xvi—O21—Li20xvi94.2 (5)
K19—O16—K19i104.7 (3)K19xvi—O21—H22xvii64.4 (7)
C3—O17—H1893.0 (6)K19xvi—O21—H22ix132.6 (7)
C3—O17—K19iii112.5 (4)K19ii—O21—Li20xvi94.2 (5)
C3—O17—K19viii112.5 (4)K19ii—O21—H22xvii132.6 (7)
H18—O17—K19iii129.8 (3)K19ii—O21—H22ix64.4 (7)
H18—O17—K19viii129.8 (3)Li20xvi—O21—H22xvii55.8 (4)
K19iii—O17—K19viii80.43 (16)Li20xvi—O21—H22ix55.8 (4)
O11—K19—O11x158.80 (9)H22xvii—O21—H22ix110.0 (8)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y, z1/2; (iii) x, y+1, z; (iv) x+1/2, y+1, z1/2; (v) x+1/2, y+1, z1/2; (vi) x1/2, y, z1/2; (vii) x, y, z1; (viii) x, y+1, z; (ix) x+1/2, y+1, z+1/2; (x) x+1/2, y, z+1/2; (xi) x, y1, z; (xii) x+1/2, y, z+1/2; (xiii) x1/2, y, z+1/2; (xiv) x1/2, y+1, z+1/2; (xv) x, y, z+1; (xvi) x+1/2, y, z1/2; (xvii) x+1/2, y+1, z+1/2; (xviii) x1/2, y+1, z1/2.
(KADU1697_phase_2) top
Crystal data top
C6H5KLi2O7β = 80.6064°
Mr = 242.08γ = 83.1095°
Triclinic, P1V = 416.59 Å3
a = 6.48415 ÅZ = 2
b = 6.68334 ÅDx = 1.930 Mg m3
c = 9.81709 ÅT = 300 K
α = 87.6373°
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.155310.066380.326850.05983*
C20.028510.232210.352910.02275*
C30.18690.251260.263270.02275*
C40.246280.429340.337750.02275*
C50.43470.528180.268170.05983*
C60.1180.348330.129210.05983*
H70.008190.215760.462760.02058*
H80.130900.381870.344660.02958*
H90.283510.376300.443790.02958*
H100.104500.549360.353010.02958*
O110.309290.024530.417390.05983*
O120.107540.033390.216220.05983*
O130.535820.667060.298830.05983*
O140.547420.430560.169090.05983*
O150.006120.520160.140520.05983*
O160.20830.214590.04170.05983*
O170.326950.072810.225140.05983*
H180.3940.17850.23310.06878*
K190.740520.186090.029710.04605*
Li200.743510.745840.162760.05*
Li210.551240.101130.637620.05*
Geometric parameters (Å, º) top
C1—C21.5101O15—K19i3.5935
C1—O111.2736O15—K19v2.7841
C1—O121.2730O15—Li20i2.1241
C2—C11.5101O16—C61.2859
C2—C31.5407O16—K19i3.2514
C3—C21.5407O16—K193.3912
C3—C41.5404O16—K19iii2.6637
C3—C61.5507O16—Li20v1.9919
C3—O171.4328O17—C31.4328
C4—C31.5404O17—K193.4878
C4—C51.5099O17—K19iii2.7561
C5—C41.5099O17—Li21vii1.9464
C5—O131.2711K19—O12viii3.0147
C5—O141.2695K19—O12iii2.8647
C6—C31.5507K19—O13v3.4733
C6—O151.2813K19—O142.6496
C6—O161.2859K19—O14v3.3644
O11—C11.2736K19—O15viii3.5935
O11—Li21i2.2575K19—O15v2.7841
O11—Li21ii2.0220K19—O163.3912
O12—C11.2730K19—O16viii3.2514
O12—K19i3.0147K19—O16iii2.6637
O12—K19iii2.8647K19—O173.4878
O12—Li20iv1.9891K19—O17iii2.7561
O13—C51.2711Li20—O12ix1.9891
O13—K19v3.4733Li20—O131.8439
O13—Li201.8439Li20—O142.582
O13—Li21vi1.6920Li20—O15viii2.1241
O14—C51.2695Li20—O16v1.9919
O14—O132.0573Li21—O11viii2.2575
O14—K192.6496Li21—O11ii2.0220
O14—K19v3.3644Li21—O13vi1.6920
O14—Li202.582Li21—O17vii1.9464
O15—C61.2813
C2—C1—O11119.5504C3—O17—H1867.1832
C2—C1—O12120.5205C3—O17—K19iii122.505
O11—C1—O12119.9213C3—O17—Li21vii121.6382
C1—C2—C3120.0207H18—O17—K19iii140.8897
C2—C3—C497.8299H18—O17—Li21vii97.505
C2—C3—C6100.9126K19iii—O17—Li21vii104.7899
C2—C3—O17119.4522O12viii—K19—O12iii93.0913
C4—C3—C6103.978O12viii—K19—O1480.1974
C4—C3—O17124.1292O12viii—K19—O15v112.4929
C6—C3—O17107.4222O12viii—K19—O16viii58.136
C3—C4—C5116.8773O12viii—K19—O16iii64.5695
C4—C5—O13135.3652O12viii—K19—O17iii112.5733
C4—C5—O14114.8354O12iii—K19—O14151.5549
O13—C5—O14108.1461O12iii—K19—O15v66.0201
C3—C6—O15116.7212O12iii—K19—O16viii59.37
C3—C6—O1699.9634O12iii—K19—O16iii66.8873
O15—C6—O16143.2807O12iii—K19—O17iii64.5387
C1—O11—Li21i138.7284O14—K19—O15v90.893
C1—O11—Li21ii120.5833O14—K19—O16viii94.4416
Li21i—O11—Li21ii99.3848O14—K19—O16iii131.1798
C1—O12—K19i113.4217O14—K19—O17iii143.4371
C1—O12—K19iii139.176O15v—K19—O16viii56.1366
C1—O12—Li20iv126.3908O15v—K19—O16iii132.5368
K19i—O12—K19iii86.9087O15v—K19—O17iii112.9108
K19i—O12—Li20iv83.8856O16viii—K19—O16iii94.3136
K19iii—O12—Li20iv89.1605O16viii—K19—O17iii121.6786
C5—O13—Li20116.3317O16iii—K19—O17iii48.0157
C5—O13—Li21vi130.5031O12ix—Li20—O13114.3245
Li20—O13—Li21vi96.8988O12ix—Li20—O15viii96.8417
C5—O14—K19171.2327O12ix—Li20—O16v99.9031
C6—O15—K19v108.1884O13—Li20—O15viii109.5957
C6—O15—Li20i161.8601O13—Li20—O16v138.1587
K19v—O15—Li20i88.7083O15viii—Li20—O16v88.3426
C6—O16—K19i85.8733O11viii—Li21—O11ii80.6152
C6—O16—K19iii137.0461O11viii—Li21—O13vi127.2048
C6—O16—Li20v125.4341O11viii—Li21—O17vii113.934
K19i—O16—K19iii85.6864O11ii—Li21—O13vi109.7009
K19i—O16—Li20v78.6777O11ii—Li21—O17vii109.0825
K19iii—O16—Li20v93.8091O13vi—Li21—O17vii110.782
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x1, y1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1; (viii) x+1, y, z; (ix) x+1, y+1, z.
(kadu1697_DFT) top
Crystal data top
C6H7K2LiO8b = 5.8658 Å
Mr = 292.25c = 8.1929 Å
Orthorhombic, Pmn21V = 492.53 Å3
Hall symbol: P 2ac -2Z = 2
a = 10.2488 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.250850.550390.911380.01550*
C20.121060.616560.833490.01010*
H70.124060.563320.705550.01310*
H80.109410.801470.835340.01310*
O110.271140.342380.942620.01550*
O120.331280.711100.937520.01550*
K190.195970.047781.182440.03330*
H220.423220.217150.957310.04000*
C30.000000.513420.915480.01010*
C60.000000.250950.898910.01550*
O150.000000.166650.757110.01550*
O160.000000.140351.030690.01550*
O170.000000.573681.085430.01550*
H180.000000.425461.140470.02010*
Li200.000000.194240.522180.04000*
O210.500000.118870.941740.01800*
Bond lengths (Å) top
C1—C21.525C3—C61.546
C1—O111.264C3—O171.437
C1—O121.270C6—O151.263
C2—C31.535C6—O161.260
C2—H71.094O15—Li201.932
C2—H81.091O16—K19vii2.607
O11—K19i2.765O17—H180.979
O12—K19ii2.889O17—K19iii3.098
O12—K19iii2.820O17—K19viii3.098
O12—Li20iv1.944Li20—O12ii1.944
K19—O12iv2.889Li20—O12ix1.944
K19—O162.607Li20—O21i1.951
K19—O11v2.765O21—Li20v1.951
K19—O17vi3.098O21—K19i2.953
K19—O12vi2.820O21—K19x2.953
K19—O21v2.953O21—H220.984
H22—O21ii0.984O21—H22xi0.984
C3—C2vii1.535
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x, y+1, z; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y, z+1/2; (vi) x, y1, z; (vii) x, y, z; (viii) x, y+1, z; (ix) x1/2, y+1, z1/2; (x) x+1/2, y, z1/2; (xi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H22···O110.981.732.687164
O17—H18···O160.981.902.581124
C2—H7···O11ii1.092.473.396142
Symmetry code: (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.

References

First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2019a). Acta Cryst. E75, 223–227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2019b). Acta Cryst. E75, 432–437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410–413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systems. (2018). Materials Studio. BIOVIA, San Diego, California, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.  Web of Science CrossRef CAS Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMDI. (2017). Jade 9.8. Materials Data Inc., Livermore, California, USA.  Google Scholar
First citationPeintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds