research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6-amino-8-phenyl-1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcad. Sci. Republ. Tadzhikistan, Kh Yu Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 March 2021; accepted 3 April 2021; online 9 April 2021)

In the title compound, C16H15N5, the 1,4-di­hydro­pyridine ring has a shallow boat conformation, while the 1,3-diazinane ring adopts an envelope conformation. In the crystal, pairwise N—H⋯N hydrogen bonds generate centrosymmetric dimers featuring R22(12) motifs and C—H⋯N contacts connect these dimers to form double layers lying parallel to (001). Weak C—H⋯π and N—H⋯π inter­actions help to consolidate the double layers and van der Waals inter­actions occur between layers. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (38.5%), N⋯H/H⋯N (33.3%) and C⋯H/H⋯C (27.3%) contacts.

1. Chemical context

Being [6,6]-bicyclic heterocyclic nitro­gen-containing systems, pyrido[1,2-a]pyrimidine derivatives are classified as both natural and synthetic compounds and exhibit a broad spectrum of biological properties, such as analgesic, insecticidal, anti-inflammatory, anti­thrombotic, hypoglycaemic and anti­microbial activities (Hermecz & Mészáros, 1988[Hermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203-230.]). The pyrido[1,2-a]pyrimidine motif occurs in a number of drugs, such as pemirolast, pirenperone, ramastine, risperidone and paliperidone (Awouters et al., 1986[Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95-102.]; Blaton et al., 1995[Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533-535.]; Riva et al., 2011[Riva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). Eur. J. Org. Chem. pp. 2319-2325.]). Two-component and multi-component synthetic methodologies aimed at pyrido[1,2-a]pyrimidines as well as their reactions and structural features have been reviewed in the literature (Elattar et al., 2017[Elattar, K. M., Rabie, R. & Hammouda, M. M. (2017). Monatsh. Chem. 148, 601-627.]).

[Scheme 1]

As part of our ongoing studies in this area (Naghiyev et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), we now report the crystal structure and Hirshfeld surface analysis of the title compound, C16H15N5 (I)[link], obtained by a three-component synthesis (Naghiyev, 2019[Naghiyev, F. N. (2019). Chem. Probl. 17, 275-281.]).

2. Structural commentary

The 1,4-di­hydro­pyridine ring (N5/C6–C9/C9A) of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system (N1/N5/C2–C4/C6–C9/C9A) has a shallow boat conformation with C8 and N5 displaced by 0.094 (3) and 0.075 (2) Å, respectively, from the other four atoms (r.m.s. deviation = 0.011 Å). The 1,3-diazinane ring (N1/N5/C2–C4/C9A) adopts an envelope conformation with C3 displaced from the other five atoms (r.m.s. deviation = 0.050 Å) by 0.704 (3) Å. The pendant phenyl ring (C11–C16) subtends a dihedral angle of 89.45 (12)° with the mean plane of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system (Fig. 1[link]); C3 and the phenyl ring lie to the same side of the mol­ecule. In the arbitrarily chosen asymmetric mol­ecule, the stereogenic centre C8 has an R configuration but crystal symmetry generates a racemic mixture.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, pairwise N1—H1⋯N17 hydrogen bonds link the mol­ecules into centrosymmetric dimers with [R_{2}^{2}](12) motifs (Table 1[link]) and C8—H8⋯N10 contacts connect these dimers to form double layers lying parallel to (001) (Figs. 2[link] and 3[link]). The layers are consolidated by C—H⋯π and N—H⋯π inter­actions and weak van der Waals inter­actions occur between the layers.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A pyridine ring and the C11–C16 phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N17i 0.87 (3) 2.15 (3) 2.975 (4) 157 (3)
C8—H8⋯N10ii 1.00 2.57 3.447 (4) 146
C2—H2ACg2iii 0.99 2.67 3.620 (3) 161
N6—H6BCg3iv 0.92 (4) 2.98 (3) 3.633 (3) 129 (3)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [x-1, y, z].
[Figure 2]
Figure 2
A view of the N—H⋯N, C—H⋯N hydrogen bonds, C—H⋯π and N—H⋯π inter­actions in the extended structure of the title compound. The H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (a) −1 + x, y, z; (b) 1 − x, −y, 1 − z; (c) 1 − x, 1 − y, 1 − z; (d) 2 − x, 1 − y, 1 − z].
[Figure 3]
Figure 3
View down [100] showing the formation of (001) layers in the title compound by means of N—H⋯N, C—H⋯N, C—H⋯π and N—H⋯π inter­actions.

4. Hirshfeld surface analysis

The nature of the inter­molecular inter­actions in (I)[link] were examined with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]), using Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots. The Hirshfeld surfaces mapped over dnorm (Fig. 4[link]) show the inter­molecular contacts as red-coloured spots, which indicate the closer contacts of the N—H⋯N and C—H⋯N hydrogen bonds.

[Figure 4]
Figure 4
The three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.47 to +1.30 a.u.

The two-dimensional fingerprint plots are illustrated in Fig. 5[link]. H⋯H contacts comprise 38.5% of the total inter­actions, followed by N⋯H/H⋯N (33.3%) and C⋯H/H⋯C (27.3%). The percentage contributions of the N⋯N, C⋯C and C⋯N/N⋯C contacts are negligible, at 0.6, 0.3 and 0.2%, respectively. The predominance of H⋯H, N⋯H/H⋯N and C⋯H/H⋯C contacts indicate that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, and (d) C⋯H/H⋯C inter­actions.

5. Database survey

The four related compounds containing the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system found in the title compound are 11-(amino­methyl­idene)-8,9,10,11-tetra­hydro­pyrido[2′,3′:4,5]pyrimido[1,2-a]azepin-5(7H)-one (Cambridge Structural Database refcode HECLUZ; Khodjaniyazov et al., 2017[Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497-1500.]), 9-(4-nitro­benzyl­idene)-8,9-di­hydro­pyrido[2,3-d]pyrrolo­[1,2-a]pyrimidin-5(7H)-one (VAMBET; Khodjaniyazov & Ashurov, 2016[Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452-455.]), 7′-amino-1′H-spiro­[cyclo­heptane-1,2′-pyrim­ido[4,5-d]pyrimidin]-4′(3′H)-one (LEGLIU; Chen et al., 2012[Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.]) and 11-(2-oxopyrrolidin-1-ylmeth­yl)-1,2,3,4,5,6,11,11a-octa­hydro­pyrido[2,1-b]quinazolin-6-one dihydrate (KUTPEV; Samarov et al., 2010[Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890.]).

In the mol­ecule of HECLUZ, the seven-membered penta­methyl­ene ring adopts a twist-boat conformation. In the crystal, hydrogen bonds with a 16-membered ring and a chain motif are generated by N—H⋯N and N—H⋯O contacts. The hydrogen-bonded chains formed along [100] are connected by aromatic ππ stacking inter­actions observed between the pyridine and pyrimidine rings. In the crystal of VAMBET, the mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers lying parallel to (101). In LEGLIU, the mol­ecular structure is built up with two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing features N—H⋯O hydrogen bonds. In KUTPEV, the water mol­ecules are mutually O—H⋯O hydrogen bonded and form infinite chains propagating along the b-axis direction. Neighboring chains are linked by the quinazoline mol­ecules by means of O—H⋯O=C hydrogen bonds, forming a two-dimensional network.

6. Synthesis and crystallization

The title compound was synthesized using our previously reported procedure (Naghiyev, 2019[Naghiyev, F. N. (2019). Chem. Probl. 17, 275-281.]), and colourless prisms were obtained upon recrystallization from methanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in difference maps and their positions were freely refined with the constraint Uiso(H) = 1.2Ueq(N) applied.

Table 2
Experimental details

Crystal data
Chemical formula C16H15N5
Mr 277.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.2521 (6), 10.2774 (8), 16.2102 (12)
β (°) 92.070 (2)
V3) 1373.89 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.12 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.981, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 21387, 3146, 1519
Rint 0.104
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.172, 1.01
No. of reflections 3146
No. of parameters 200
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

6-Amino-8-phenyl-1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine-\ 7,9-dicarbonitrile top
Crystal data top
C16H15N5F(000) = 584
Mr = 277.33Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2521 (6) ÅCell parameters from 1452 reflections
b = 10.2774 (8) Åθ = 2.4–22.3°
c = 16.2102 (12) ŵ = 0.09 mm1
β = 92.070 (2)°T = 100 K
V = 1373.89 (18) Å3Prism, colourless
Z = 40.12 × 0.06 × 0.04 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
1519 reflections with I > 2σ(I)
φ and ω scansRint = 0.104
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.4°
Tmin = 0.981, Tmax = 0.990h = 1010
21387 measured reflectionsk = 1313
3146 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4109P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3146 reflectionsΔρmax = 0.30 e Å3
200 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.00309 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6921 (3)0.5239 (3)0.56852 (16)0.0325 (7)
H10.787 (4)0.541 (3)0.549 (2)0.039*
C20.6082 (4)0.6387 (3)0.5990 (2)0.0376 (8)
H2A0.53370.67400.55530.045*
H2B0.68790.70710.61480.045*
C30.5135 (4)0.5990 (3)0.6733 (2)0.0401 (9)
H3A0.58930.57370.71930.048*
H3B0.44740.67310.69180.048*
C40.4049 (4)0.4861 (3)0.6502 (2)0.0376 (8)
H4A0.34780.45640.69950.045*
H4B0.32240.51440.60820.045*
N50.5002 (3)0.3771 (2)0.61711 (15)0.0317 (6)
C60.4428 (4)0.2509 (3)0.62264 (19)0.0321 (8)
N60.2881 (3)0.2398 (3)0.65141 (19)0.0388 (7)
H6A0.211 (4)0.313 (4)0.650 (2)0.047*
H6B0.255 (4)0.155 (4)0.645 (2)0.047*
C70.5356 (4)0.1470 (3)0.60400 (19)0.0306 (7)
C80.7070 (4)0.1551 (3)0.57515 (18)0.0298 (7)
H80.71060.10950.52080.036*
C90.7468 (4)0.2969 (3)0.56112 (19)0.0315 (8)
C9A0.6496 (4)0.3993 (3)0.58218 (18)0.0309 (7)
C100.4710 (4)0.0202 (3)0.6141 (2)0.0340 (8)
N100.4207 (3)0.0837 (3)0.62453 (19)0.0443 (8)
C110.8298 (4)0.0898 (3)0.63415 (19)0.0297 (7)
C120.9153 (4)0.0185 (3)0.6105 (2)0.0363 (8)
H120.89570.05410.55700.044*
C131.0300 (4)0.0762 (3)0.6639 (2)0.0421 (9)
H131.09050.14920.64650.051*
C141.0550 (4)0.0269 (3)0.7422 (2)0.0431 (9)
H141.13180.06710.77910.052*
C150.9700 (4)0.0802 (3)0.7676 (2)0.0402 (9)
H150.98780.11390.82180.048*
C160.8582 (4)0.1383 (3)0.7135 (2)0.0355 (8)
H160.79980.21250.73090.043*
C170.8973 (4)0.3241 (3)0.5286 (2)0.0360 (8)
N171.0252 (4)0.3441 (3)0.5036 (2)0.0497 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0306 (16)0.0316 (16)0.0353 (16)0.0031 (12)0.0009 (12)0.0023 (12)
C20.041 (2)0.0356 (19)0.0359 (19)0.0034 (16)0.0041 (16)0.0013 (16)
C30.042 (2)0.042 (2)0.0356 (19)0.0054 (17)0.0035 (16)0.0043 (16)
C40.0335 (19)0.040 (2)0.0393 (19)0.0035 (15)0.0024 (15)0.0017 (16)
N50.0302 (15)0.0310 (16)0.0334 (15)0.0014 (12)0.0038 (12)0.0009 (12)
C60.0310 (18)0.0353 (19)0.0294 (17)0.0014 (15)0.0098 (14)0.0014 (14)
N60.0293 (17)0.0360 (17)0.0509 (19)0.0008 (13)0.0005 (13)0.0006 (15)
C70.0296 (18)0.0308 (18)0.0306 (17)0.0042 (14)0.0096 (14)0.0026 (14)
C80.0323 (18)0.0305 (18)0.0260 (17)0.0006 (14)0.0079 (13)0.0003 (13)
C90.0297 (18)0.0352 (19)0.0290 (17)0.0027 (14)0.0068 (14)0.0039 (14)
C9A0.0302 (18)0.035 (2)0.0269 (17)0.0024 (15)0.0100 (14)0.0016 (14)
C100.0317 (19)0.038 (2)0.0314 (18)0.0015 (16)0.0062 (14)0.0029 (15)
N100.0382 (17)0.0407 (18)0.053 (2)0.0013 (15)0.0098 (14)0.0078 (15)
C110.0287 (17)0.0282 (17)0.0316 (17)0.0019 (14)0.0062 (13)0.0024 (14)
C120.0342 (19)0.0344 (19)0.040 (2)0.0027 (15)0.0056 (15)0.0005 (15)
C130.038 (2)0.0316 (19)0.056 (2)0.0041 (15)0.0080 (17)0.0046 (17)
C140.038 (2)0.036 (2)0.054 (2)0.0006 (16)0.0195 (18)0.0087 (17)
C150.040 (2)0.041 (2)0.039 (2)0.0029 (17)0.0148 (16)0.0007 (16)
C160.0371 (19)0.0320 (18)0.0366 (19)0.0019 (15)0.0114 (15)0.0004 (15)
C170.040 (2)0.0296 (19)0.038 (2)0.0077 (15)0.0040 (16)0.0038 (15)
N170.0442 (19)0.0336 (18)0.072 (2)0.0075 (14)0.0096 (17)0.0112 (16)
Geometric parameters (Å, º) top
N1—C9A1.349 (4)C7—C81.508 (4)
N1—C21.463 (4)C8—C91.513 (4)
N1—H10.87 (3)C8—C111.524 (4)
C2—C31.515 (5)C8—H81.0000
C2—H2A0.9900C9—C9A1.373 (4)
C2—H2B0.9900C9—C171.395 (5)
C3—C41.505 (4)C10—N101.160 (4)
C3—H3A0.9900C11—C121.379 (4)
C3—H3B0.9900C11—C161.392 (4)
C4—N51.481 (4)C12—C131.393 (4)
C4—H4A0.9900C12—H120.9500
C4—H4B0.9900C13—C141.375 (5)
N5—C61.384 (4)C13—H130.9500
N5—C9A1.394 (4)C14—C151.376 (5)
C6—C71.355 (4)C14—H140.9500
C6—N61.379 (4)C15—C161.385 (4)
N6—H6A0.99 (4)C15—H150.9500
N6—H6B0.92 (4)C16—H160.9500
C7—C101.420 (5)C17—N171.162 (4)
C9A—N1—C2125.6 (3)C7—C8—C9108.2 (3)
C9A—N1—H1119 (2)C7—C8—C11113.0 (2)
C2—N1—H1114 (2)C9—C8—C11112.1 (2)
N1—C2—C3108.4 (3)C7—C8—H8107.8
N1—C2—H2A110.0C9—C8—H8107.8
C3—C2—H2A110.0C11—C8—H8107.8
N1—C2—H2B110.0C9A—C9—C17118.5 (3)
C3—C2—H2B110.0C9A—C9—C8124.6 (3)
H2A—C2—H2B108.4C17—C9—C8116.8 (3)
C4—C3—C2109.2 (3)N1—C9A—C9122.0 (3)
C4—C3—H3A109.8N1—C9A—N5117.4 (3)
C2—C3—H3A109.8C9—C9A—N5120.6 (3)
C4—C3—H3B109.8N10—C10—C7178.0 (3)
C2—C3—H3B109.8C12—C11—C16118.4 (3)
H3A—C3—H3B108.3C12—C11—C8121.1 (3)
N5—C4—C3110.8 (3)C16—C11—C8120.5 (3)
N5—C4—H4A109.5C11—C12—C13120.9 (3)
C3—C4—H4A109.5C11—C12—H12119.6
N5—C4—H4B109.5C13—C12—H12119.6
C3—C4—H4B109.5C14—C13—C12119.6 (3)
H4A—C4—H4B108.1C14—C13—H13120.2
C6—N5—C9A119.3 (3)C12—C13—H13120.2
C6—N5—C4119.9 (3)C13—C14—C15120.7 (3)
C9A—N5—C4120.8 (3)C13—C14—H14119.7
C7—C6—N6123.2 (3)C15—C14—H14119.7
C7—C6—N5121.8 (3)C14—C15—C16119.4 (3)
N6—C6—N5115.0 (3)C14—C15—H15120.3
C6—N6—H6A122 (2)C16—C15—H15120.3
C6—N6—H6B109 (2)C15—C16—C11121.1 (3)
H6A—N6—H6B122 (3)C15—C16—H16119.4
C6—C7—C10118.7 (3)C11—C16—H16119.4
C6—C7—C8124.7 (3)N17—C17—C9177.7 (4)
C10—C7—C8116.6 (3)
C9A—N1—C2—C322.3 (4)C2—N1—C9A—N510.5 (4)
N1—C2—C3—C454.1 (3)C17—C9—C9A—N13.4 (5)
C2—C3—C4—N555.8 (4)C8—C9—C9A—N1179.6 (3)
C3—C4—N5—C6154.4 (3)C17—C9—C9A—N5178.1 (3)
C3—C4—N5—C9A23.9 (4)C8—C9—C9A—N51.9 (5)
C9A—N5—C6—C77.8 (4)C6—N5—C9A—N1172.0 (3)
C4—N5—C6—C7170.5 (3)C4—N5—C9A—N19.7 (4)
C9A—N5—C6—N6174.6 (3)C6—N5—C9A—C96.6 (4)
C4—N5—C6—N67.1 (4)C4—N5—C9A—C9171.7 (3)
N6—C6—C7—C100.3 (5)C7—C8—C11—C12115.1 (3)
N5—C6—C7—C10177.6 (3)C9—C8—C11—C12122.4 (3)
N6—C6—C7—C8177.9 (3)C7—C8—C11—C1664.8 (4)
N5—C6—C7—C80.5 (5)C9—C8—C11—C1657.7 (4)
C6—C7—C8—C96.8 (4)C16—C11—C12—C131.4 (5)
C10—C7—C8—C9175.0 (3)C8—C11—C12—C13178.6 (3)
C6—C7—C8—C11117.8 (3)C11—C12—C13—C141.8 (5)
C10—C7—C8—C1160.3 (4)C12—C13—C14—C151.1 (5)
C7—C8—C9—C9A8.0 (4)C13—C14—C15—C160.0 (5)
C11—C8—C9—C9A117.3 (3)C14—C15—C16—C110.4 (5)
C7—C8—C9—C17175.7 (3)C12—C11—C16—C150.3 (5)
C11—C8—C9—C1759.1 (4)C8—C11—C16—C15179.7 (3)
C2—N1—C9A—C9170.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A pyridine ring and the C11–C16 phenyl ring, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···N17i0.87 (3)2.15 (3)2.975 (4)157 (3)
C8—H8···N10ii1.002.573.447 (4)146
C2—H2A···Cg2iii0.992.673.620 (3)161
N6—H6B···Cg3iv0.92 (4)2.98 (3)3.633 (3)129 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.
 

Acknowledgements

Authors contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, TAT and AAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.

Funding information

This work was supported by Baku State University, and RUDN University Strategic Academic Leadership Program.

References

First citationAwouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102.  CrossRef CAS Web of Science Google Scholar
First citationBlaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533–535.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.  CSD CrossRef IUCr Journals Google Scholar
First citationElattar, K. M., Rabie, R. & Hammouda, M. M. (2017). Monatsh. Chem. 148, 601–627.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203–230.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKhodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNaghiyev, F. N. (2019). Chem. Probl. 17, 275–281.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRiva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). Eur. J. Org. Chem. pp. 2319–2325.  Web of Science CSD CrossRef Google Scholar
First citationSamarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds