research communications
H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile
and Hirshfeld surface analysis of 6-amino-8-phenyl-1,3,4,8-tetrahydro-2aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcad. Sci. Republ. Tadzhikistan, Kh Yu Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
In the title compound, C16H15N5, the 1,4-dihydropyridine ring has a shallow boat conformation, while the 1,3-diazinane ring adopts an In the crystal, pairwise N—H⋯N hydrogen bonds generate centrosymmetric dimers featuring R22(12) motifs and C—H⋯N contacts connect these dimers to form double layers lying parallel to (001). Weak C—H⋯π and N—H⋯π interactions help to consolidate the double layers and van der Waals interactions occur between layers. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (38.5%), N⋯H/H⋯N (33.3%) and C⋯H/H⋯C (27.3%) contacts.
Keywords: crystal structure; cycloaddition product; pyrido[1,2-a]pyrimidine; Hirshfeld surface analysis.
CCDC reference: 2075718
1. Chemical context
Being [6,6]-bicyclic heterocyclic nitrogen-containing systems, pyrido[1,2-a]pyrimidine derivatives are classified as both natural and synthetic compounds and exhibit a broad spectrum of biological properties, such as analgesic, insecticidal, anti-inflammatory, antithrombotic, hypoglycaemic and antimicrobial activities (Hermecz & Mészáros, 1988). The pyrido[1,2-a]pyrimidine motif occurs in a number of drugs, such as pemirolast, pirenperone, ramastine, risperidone and paliperidone (Awouters et al., 1986; Blaton et al., 1995; Riva et al., 2011). Two-component and multi-component synthetic methodologies aimed at pyrido[1,2-a]pyrimidines as well as their reactions and structural features have been reviewed in the literature (Elattar et al., 2017).
As part of our ongoing studies in this area (Naghiyev et al., 2021), we now report the and Hirshfeld surface analysis of the title compound, C16H15N5 (I), obtained by a three-component synthesis (Naghiyev, 2019).
2. Structural commentary
The 1,4-dihydropyridine ring (N5/C6–C9/C9A) of the 1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine ring system (N1/N5/C2–C4/C6–C9/C9A) has a shallow boat conformation with C8 and N5 displaced by 0.094 (3) and 0.075 (2) Å, respectively, from the other four atoms (r.m.s. deviation = 0.011 Å). The 1,3-diazinane ring (N1/N5/C2–C4/C9A) adopts an with C3 displaced from the other five atoms (r.m.s. deviation = 0.050 Å) by 0.704 (3) Å. The pendant phenyl ring (C11–C16) subtends a dihedral angle of 89.45 (12)° with the mean plane of the 1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine ring system (Fig. 1); C3 and the phenyl ring lie to the same side of the molecule. In the arbitrarily chosen asymmetric molecule, the stereogenic centre C8 has an R configuration but crystal symmetry generates a racemic mixture.
3. Supramolecular features
In the crystal, pairwise N1—H1⋯N17 hydrogen bonds link the molecules into centrosymmetric dimers with (12) motifs (Table 1) and C8—H8⋯N10 contacts connect these dimers to form double layers lying parallel to (001) (Figs. 2 and 3). The layers are consolidated by C—H⋯π and N—H⋯π interactions and weak van der Waals interactions occur between the layers.
4. Hirshfeld surface analysis
The nature of the intermolecular interactions in (I) were examined with CrystalExplorer17.5 (Turner et al., 2017), using Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots. The Hirshfeld surfaces mapped over dnorm (Fig. 4) show the intermolecular contacts as red-coloured spots, which indicate the closer contacts of the N—H⋯N and C—H⋯N hydrogen bonds.
The two-dimensional fingerprint plots are illustrated in Fig. 5. H⋯H contacts comprise 38.5% of the total interactions, followed by N⋯H/H⋯N (33.3%) and C⋯H/H⋯C (27.3%). The percentage contributions of the N⋯N, C⋯C and C⋯N/N⋯C contacts are negligible, at 0.6, 0.3 and 0.2%, respectively. The predominance of H⋯H, N⋯H/H⋯N and C⋯H/H⋯C contacts indicate that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Database survey
The four related compounds containing the 1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine ring system found in the title compound are 11-(aminomethylidene)-8,9,10,11-tetrahydropyrido[2′,3′:4,5]pyrimido[1,2-a]azepin-5(7H)-one (Cambridge Structural Database refcode HECLUZ; Khodjaniyazov et al., 2017), 9-(4-nitrobenzylidene)-8,9-dihydropyrido[2,3-d]pyrrolo[1,2-a]pyrimidin-5(7H)-one (VAMBET; Khodjaniyazov & Ashurov, 2016), 7′-amino-1′H-spiro[cycloheptane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (LEGLIU; Chen et al., 2012) and 11-(2-oxopyrrolidin-1-ylmethyl)-1,2,3,4,5,6,11,11a-octahydropyrido[2,1-b]quinazolin-6-one dihydrate (KUTPEV; Samarov et al., 2010).
In the molecule of HECLUZ, the seven-membered pentamethylene ring adopts a twist-boat conformation. In the crystal, hydrogen bonds with a 16-membered ring and a chain motif are generated by N—H⋯N and N—H⋯O contacts. The hydrogen-bonded chains formed along [100] are connected by aromatic π–π stacking interactions observed between the pyridine and pyrimidine rings. In the crystal of VAMBET, the molecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers lying parallel to (101). In LEGLIU, the molecular structure is built up with two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing features N—H⋯O hydrogen bonds. In KUTPEV, the water molecules are mutually O—H⋯O hydrogen bonded and form infinite chains propagating along the b-axis direction. Neighboring chains are linked by the quinazoline molecules by means of O—H⋯O=C hydrogen bonds, forming a two-dimensional network.
6. Synthesis and crystallization
The title compound was synthesized using our previously reported procedure (Naghiyev, 2019), and colourless prisms were obtained upon recrystallization from methanol solution.
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in difference maps and their positions were freely refined with the constraint Uiso(H) = 1.2Ueq(N) applied.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2075718
https://doi.org/10.1107/S2056989021003625/hb7972sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021003625/hb7972Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H15N5 | F(000) = 584 |
Mr = 277.33 | Dx = 1.341 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2521 (6) Å | Cell parameters from 1452 reflections |
b = 10.2774 (8) Å | θ = 2.4–22.3° |
c = 16.2102 (12) Å | µ = 0.09 mm−1 |
β = 92.070 (2)° | T = 100 K |
V = 1373.89 (18) Å3 | Prism, colourless |
Z = 4 | 0.12 × 0.06 × 0.04 mm |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 1519 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.104 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.5°, θmin = 2.4° |
Tmin = 0.981, Tmax = 0.990 | h = −10→10 |
21387 measured reflections | k = −13→13 |
3146 independent reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.172 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4109P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3146 reflections | Δρmax = 0.30 e Å−3 |
200 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.00309 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6921 (3) | 0.5239 (3) | 0.56852 (16) | 0.0325 (7) | |
H1 | 0.787 (4) | 0.541 (3) | 0.549 (2) | 0.039* | |
C2 | 0.6082 (4) | 0.6387 (3) | 0.5990 (2) | 0.0376 (8) | |
H2A | 0.5337 | 0.6740 | 0.5553 | 0.045* | |
H2B | 0.6879 | 0.7071 | 0.6148 | 0.045* | |
C3 | 0.5135 (4) | 0.5990 (3) | 0.6733 (2) | 0.0401 (9) | |
H3A | 0.5893 | 0.5737 | 0.7193 | 0.048* | |
H3B | 0.4474 | 0.6731 | 0.6918 | 0.048* | |
C4 | 0.4049 (4) | 0.4861 (3) | 0.6502 (2) | 0.0376 (8) | |
H4A | 0.3478 | 0.4564 | 0.6995 | 0.045* | |
H4B | 0.3224 | 0.5144 | 0.6082 | 0.045* | |
N5 | 0.5002 (3) | 0.3771 (2) | 0.61711 (15) | 0.0317 (6) | |
C6 | 0.4428 (4) | 0.2509 (3) | 0.62264 (19) | 0.0321 (8) | |
N6 | 0.2881 (3) | 0.2398 (3) | 0.65141 (19) | 0.0388 (7) | |
H6A | 0.211 (4) | 0.313 (4) | 0.650 (2) | 0.047* | |
H6B | 0.255 (4) | 0.155 (4) | 0.645 (2) | 0.047* | |
C7 | 0.5356 (4) | 0.1470 (3) | 0.60400 (19) | 0.0306 (7) | |
C8 | 0.7070 (4) | 0.1551 (3) | 0.57515 (18) | 0.0298 (7) | |
H8 | 0.7106 | 0.1095 | 0.5208 | 0.036* | |
C9 | 0.7468 (4) | 0.2969 (3) | 0.56112 (19) | 0.0315 (8) | |
C9A | 0.6496 (4) | 0.3993 (3) | 0.58218 (18) | 0.0309 (7) | |
C10 | 0.4710 (4) | 0.0202 (3) | 0.6141 (2) | 0.0340 (8) | |
N10 | 0.4207 (3) | −0.0837 (3) | 0.62453 (19) | 0.0443 (8) | |
C11 | 0.8298 (4) | 0.0898 (3) | 0.63415 (19) | 0.0297 (7) | |
C12 | 0.9153 (4) | −0.0185 (3) | 0.6105 (2) | 0.0363 (8) | |
H12 | 0.8957 | −0.0541 | 0.5570 | 0.044* | |
C13 | 1.0300 (4) | −0.0762 (3) | 0.6639 (2) | 0.0421 (9) | |
H13 | 1.0905 | −0.1492 | 0.6465 | 0.051* | |
C14 | 1.0550 (4) | −0.0269 (3) | 0.7422 (2) | 0.0431 (9) | |
H14 | 1.1318 | −0.0671 | 0.7791 | 0.052* | |
C15 | 0.9700 (4) | 0.0802 (3) | 0.7676 (2) | 0.0402 (9) | |
H15 | 0.9878 | 0.1139 | 0.8218 | 0.048* | |
C16 | 0.8582 (4) | 0.1383 (3) | 0.7135 (2) | 0.0355 (8) | |
H16 | 0.7998 | 0.2125 | 0.7309 | 0.043* | |
C17 | 0.8973 (4) | 0.3241 (3) | 0.5286 (2) | 0.0360 (8) | |
N17 | 1.0252 (4) | 0.3441 (3) | 0.5036 (2) | 0.0497 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0306 (16) | 0.0316 (16) | 0.0353 (16) | 0.0031 (12) | 0.0009 (12) | 0.0023 (12) |
C2 | 0.041 (2) | 0.0356 (19) | 0.0359 (19) | 0.0034 (16) | −0.0041 (16) | −0.0013 (16) |
C3 | 0.042 (2) | 0.042 (2) | 0.0356 (19) | 0.0054 (17) | −0.0035 (16) | −0.0043 (16) |
C4 | 0.0335 (19) | 0.040 (2) | 0.0393 (19) | 0.0035 (15) | −0.0024 (15) | −0.0017 (16) |
N5 | 0.0302 (15) | 0.0310 (16) | 0.0334 (15) | 0.0014 (12) | −0.0038 (12) | 0.0009 (12) |
C6 | 0.0310 (18) | 0.0353 (19) | 0.0294 (17) | 0.0014 (15) | −0.0098 (14) | 0.0014 (14) |
N6 | 0.0293 (17) | 0.0360 (17) | 0.0509 (19) | 0.0008 (13) | −0.0005 (13) | 0.0006 (15) |
C7 | 0.0296 (18) | 0.0308 (18) | 0.0306 (17) | −0.0042 (14) | −0.0096 (14) | 0.0026 (14) |
C8 | 0.0323 (18) | 0.0305 (18) | 0.0260 (17) | −0.0006 (14) | −0.0079 (13) | 0.0003 (13) |
C9 | 0.0297 (18) | 0.0352 (19) | 0.0290 (17) | 0.0027 (14) | −0.0068 (14) | 0.0039 (14) |
C9A | 0.0302 (18) | 0.035 (2) | 0.0269 (17) | 0.0024 (15) | −0.0100 (14) | 0.0016 (14) |
C10 | 0.0317 (19) | 0.038 (2) | 0.0314 (18) | 0.0015 (16) | −0.0062 (14) | −0.0029 (15) |
N10 | 0.0382 (17) | 0.0407 (18) | 0.053 (2) | −0.0013 (15) | −0.0098 (14) | −0.0078 (15) |
C11 | 0.0287 (17) | 0.0282 (17) | 0.0316 (17) | −0.0019 (14) | −0.0062 (13) | 0.0024 (14) |
C12 | 0.0342 (19) | 0.0344 (19) | 0.040 (2) | −0.0027 (15) | −0.0056 (15) | −0.0005 (15) |
C13 | 0.038 (2) | 0.0316 (19) | 0.056 (2) | 0.0041 (15) | −0.0080 (17) | 0.0046 (17) |
C14 | 0.038 (2) | 0.036 (2) | 0.054 (2) | 0.0006 (16) | −0.0195 (18) | 0.0087 (17) |
C15 | 0.040 (2) | 0.041 (2) | 0.039 (2) | −0.0029 (17) | −0.0148 (16) | 0.0007 (16) |
C16 | 0.0371 (19) | 0.0320 (18) | 0.0366 (19) | −0.0019 (15) | −0.0114 (15) | −0.0004 (15) |
C17 | 0.040 (2) | 0.0296 (19) | 0.038 (2) | 0.0077 (15) | −0.0040 (16) | 0.0038 (15) |
N17 | 0.0442 (19) | 0.0336 (18) | 0.072 (2) | 0.0075 (14) | 0.0096 (17) | 0.0112 (16) |
N1—C9A | 1.349 (4) | C7—C8 | 1.508 (4) |
N1—C2 | 1.463 (4) | C8—C9 | 1.513 (4) |
N1—H1 | 0.87 (3) | C8—C11 | 1.524 (4) |
C2—C3 | 1.515 (5) | C8—H8 | 1.0000 |
C2—H2A | 0.9900 | C9—C9A | 1.373 (4) |
C2—H2B | 0.9900 | C9—C17 | 1.395 (5) |
C3—C4 | 1.505 (4) | C10—N10 | 1.160 (4) |
C3—H3A | 0.9900 | C11—C12 | 1.379 (4) |
C3—H3B | 0.9900 | C11—C16 | 1.392 (4) |
C4—N5 | 1.481 (4) | C12—C13 | 1.393 (4) |
C4—H4A | 0.9900 | C12—H12 | 0.9500 |
C4—H4B | 0.9900 | C13—C14 | 1.375 (5) |
N5—C6 | 1.384 (4) | C13—H13 | 0.9500 |
N5—C9A | 1.394 (4) | C14—C15 | 1.376 (5) |
C6—C7 | 1.355 (4) | C14—H14 | 0.9500 |
C6—N6 | 1.379 (4) | C15—C16 | 1.385 (4) |
N6—H6A | 0.99 (4) | C15—H15 | 0.9500 |
N6—H6B | 0.92 (4) | C16—H16 | 0.9500 |
C7—C10 | 1.420 (5) | C17—N17 | 1.162 (4) |
C9A—N1—C2 | 125.6 (3) | C7—C8—C9 | 108.2 (3) |
C9A—N1—H1 | 119 (2) | C7—C8—C11 | 113.0 (2) |
C2—N1—H1 | 114 (2) | C9—C8—C11 | 112.1 (2) |
N1—C2—C3 | 108.4 (3) | C7—C8—H8 | 107.8 |
N1—C2—H2A | 110.0 | C9—C8—H8 | 107.8 |
C3—C2—H2A | 110.0 | C11—C8—H8 | 107.8 |
N1—C2—H2B | 110.0 | C9A—C9—C17 | 118.5 (3) |
C3—C2—H2B | 110.0 | C9A—C9—C8 | 124.6 (3) |
H2A—C2—H2B | 108.4 | C17—C9—C8 | 116.8 (3) |
C4—C3—C2 | 109.2 (3) | N1—C9A—C9 | 122.0 (3) |
C4—C3—H3A | 109.8 | N1—C9A—N5 | 117.4 (3) |
C2—C3—H3A | 109.8 | C9—C9A—N5 | 120.6 (3) |
C4—C3—H3B | 109.8 | N10—C10—C7 | 178.0 (3) |
C2—C3—H3B | 109.8 | C12—C11—C16 | 118.4 (3) |
H3A—C3—H3B | 108.3 | C12—C11—C8 | 121.1 (3) |
N5—C4—C3 | 110.8 (3) | C16—C11—C8 | 120.5 (3) |
N5—C4—H4A | 109.5 | C11—C12—C13 | 120.9 (3) |
C3—C4—H4A | 109.5 | C11—C12—H12 | 119.6 |
N5—C4—H4B | 109.5 | C13—C12—H12 | 119.6 |
C3—C4—H4B | 109.5 | C14—C13—C12 | 119.6 (3) |
H4A—C4—H4B | 108.1 | C14—C13—H13 | 120.2 |
C6—N5—C9A | 119.3 (3) | C12—C13—H13 | 120.2 |
C6—N5—C4 | 119.9 (3) | C13—C14—C15 | 120.7 (3) |
C9A—N5—C4 | 120.8 (3) | C13—C14—H14 | 119.7 |
C7—C6—N6 | 123.2 (3) | C15—C14—H14 | 119.7 |
C7—C6—N5 | 121.8 (3) | C14—C15—C16 | 119.4 (3) |
N6—C6—N5 | 115.0 (3) | C14—C15—H15 | 120.3 |
C6—N6—H6A | 122 (2) | C16—C15—H15 | 120.3 |
C6—N6—H6B | 109 (2) | C15—C16—C11 | 121.1 (3) |
H6A—N6—H6B | 122 (3) | C15—C16—H16 | 119.4 |
C6—C7—C10 | 118.7 (3) | C11—C16—H16 | 119.4 |
C6—C7—C8 | 124.7 (3) | N17—C17—C9 | 177.7 (4) |
C10—C7—C8 | 116.6 (3) | ||
C9A—N1—C2—C3 | 22.3 (4) | C2—N1—C9A—N5 | 10.5 (4) |
N1—C2—C3—C4 | −54.1 (3) | C17—C9—C9A—N1 | 3.4 (5) |
C2—C3—C4—N5 | 55.8 (4) | C8—C9—C9A—N1 | 179.6 (3) |
C3—C4—N5—C6 | 154.4 (3) | C17—C9—C9A—N5 | −178.1 (3) |
C3—C4—N5—C9A | −23.9 (4) | C8—C9—C9A—N5 | −1.9 (5) |
C9A—N5—C6—C7 | 7.8 (4) | C6—N5—C9A—N1 | 172.0 (3) |
C4—N5—C6—C7 | −170.5 (3) | C4—N5—C9A—N1 | −9.7 (4) |
C9A—N5—C6—N6 | −174.6 (3) | C6—N5—C9A—C9 | −6.6 (4) |
C4—N5—C6—N6 | 7.1 (4) | C4—N5—C9A—C9 | 171.7 (3) |
N6—C6—C7—C10 | 0.3 (5) | C7—C8—C11—C12 | 115.1 (3) |
N5—C6—C7—C10 | 177.6 (3) | C9—C8—C11—C12 | −122.4 (3) |
N6—C6—C7—C8 | −177.9 (3) | C7—C8—C11—C16 | −64.8 (4) |
N5—C6—C7—C8 | −0.5 (5) | C9—C8—C11—C16 | 57.7 (4) |
C6—C7—C8—C9 | −6.8 (4) | C16—C11—C12—C13 | −1.4 (5) |
C10—C7—C8—C9 | 175.0 (3) | C8—C11—C12—C13 | 178.6 (3) |
C6—C7—C8—C11 | 117.8 (3) | C11—C12—C13—C14 | 1.8 (5) |
C10—C7—C8—C11 | −60.3 (4) | C12—C13—C14—C15 | −1.1 (5) |
C7—C8—C9—C9A | 8.0 (4) | C13—C14—C15—C16 | 0.0 (5) |
C11—C8—C9—C9A | −117.3 (3) | C14—C15—C16—C11 | 0.4 (5) |
C7—C8—C9—C17 | −175.7 (3) | C12—C11—C16—C15 | 0.3 (5) |
C11—C8—C9—C17 | 59.1 (4) | C8—C11—C16—C15 | −179.7 (3) |
C2—N1—C9A—C9 | −170.9 (3) |
Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A pyridine ring and the C11–C16 phenyl ring, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N17i | 0.87 (3) | 2.15 (3) | 2.975 (4) | 157 (3) |
C8—H8···N10ii | 1.00 | 2.57 | 3.447 (4) | 146 |
C2—H2A···Cg2iii | 0.99 | 2.67 | 3.620 (3) | 161 |
N6—H6B···Cg3iv | 0.92 (4) | 2.98 (3) | 3.633 (3) | 129 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z. |
Acknowledgements
Authors contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, TAT and AAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.
Funding information
This work was supported by Baku State University, and RUDN University Strategic Academic Leadership Program.
References
Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102. CrossRef CAS Web of Science Google Scholar
Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533–535. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546. CSD CrossRef IUCr Journals Google Scholar
Elattar, K. M., Rabie, R. & Hammouda, M. M. (2017). Monatsh. Chem. 148, 601–627. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203–230. CrossRef CAS PubMed Web of Science Google Scholar
Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Naghiyev, F. N. (2019). Chem. Probl. 17, 275–281. Web of Science CrossRef Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Riva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). Eur. J. Org. Chem. pp. 2319–2325. Web of Science CSD CrossRef Google Scholar
Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.