research communications
Chiral crystallization of a zinc(II) complex
aDepartment of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi-110025, India, bDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and cDepartment of Applied, Sciences and Humanities , Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi - 110025, India
*Correspondence e-mail: akitsu2@rs.tus.ac.jp
The compound, {6,6′-dimethoxy-2,2′-[(4-azaheptane-1,7-diyl)bis(nitrilomethanylidyne)]diphenolato}zinc(II) methanol monosolvate, [Zn(C22H27N3O4)]·CH3OH, at 298 K crystallizes in the orthorhombic Pna21. The Zn atom is coordinated by a pentadentate Schiff base ligand in a distorted trigonal–bipyramidal N3O2 geometry. The equatorial plane is formed by the two phenolic O and one amine N atom. The axial positions are occupied by two amine N atoms. The distorted bipyramidal geometry is also supported by the trigonality index (τ), which is found to be 0.85 for the molecule. In the crystal, methanol solvent molecule is connected to the complex molecule by an O—H⋯O hydrogen bond and the complex molecules are connected by weak supramolecular interactions, so achiral molecules generate a chiral crystal. The Hirshfeld surface analysis suggests that H⋯H contacts account for the largest percentage of all interactions.
Keywords: chiral crystallization; zinc(II); Hirshfeld analysis; crystal structure.
CCDC reference: 2075457
1. Chemical context
; Siddiqui et al., 2006; Sacconi, 1966). These ligands are able to coordinate a wide variety of metal ions and to stabilize them in various oxidation states. The coordination geometry of the complexes depends upon the chemical structure of the chosen ligand, the coordination geometry preferred by the metal, the metal-to-ligand ratio, the reaction time and temperature (Thakurta et al., 2010; Fleck et al., 2013; Sanmartín et al., 2001; Khalaji et al., 2011). A number of zinc(II) complexes with different Schiff base ligands and their potential applications in sensing and as antibacterial and anticancer agents have been documented in the literature (Lui et al.,2019; Niu et al., 2015; Tang et al., 2013; AlDamen et al., 2016; Iksi et al., 2020). In addition, lanthanide Schiff base compounds are the subject of immense research interest because of their unique structures and their potential applications in advanced materials such as undoped semiconductors, magnetic, catalytic and florescent and non-linear optical materials (Li et al., 2016; Ishikawa et al., 2003; Long et al., 2018b).
and their coordination compounds play an important role in metal coordination chemistry owing to their thermal stability, relevant biological properties and high synthesis flexibility (Bartyzel, 2018In a previous work, we reported the crystal and molecular structure of a CuII complex based on Schiff base ligand N1,N3-bis(3-methoxysalicylicylidene)diethylenetriamine where two Schiff base ligands join two CuII ions in a chelate–spacer–chelate mode, in which the protonated aliphatic secondary amine moieties represents the spacer to form a double helix (Noor et al., 2018). In an another report, we redetermined the of an organic–inorganic salt of an MnII–Schiff base ligand complex Mn(C18H18N2O4)(H2O)2]ClO4 at 100 K. In contrast to crystal-structure determinations at room temperature (Akitsu et al., 2005, Bermejo et al., 2007), positional disorder of the ethylene bridge in the Schiff base and the perchlorate anion was not observed at 100 K (Noor et al. 2016). We now report the chiral crystallization on a zinc(II) complex.
2. Structural commentary
In the title compound (Fig. 1), the Zn atom is coordinated by a pentadentate Schiff base ligand in distorted trigonal–bipyramidal [ONNNO] geometry. The equatorial plane is formed by the two phenolic O [Zn—O3 = 2.001 (2) Å; Zn—O2 = 1.975 (2) Å] and one amine N [Zn—N2 = 2.152 (3) Å]. The axial positions are occupied by amine N atoms [Zn—N1 = 2.094 (2) Å, Zn—N3; 2.107 (2) Å]. The trigonality index (τ) for the complex is calculated as τ = (β − α) /60 where α and β are the main opposing angles in the (Addison et al., 1984). For perfect square-pyramidal and trigonal–bipyramidal coordination geometries, the values of τ are zero and unity, respectively. In the present complex, for Zn, β = O2—Zn—O3 = 122.87 (10)° and α = N1—Zn—N3 = 173.91 (12)° so the trigonality index is 0.85. According to this value, the coordination geometry around the zinc ion is best described as distorted trigonal–bipyramidal. An intramolecular O—H⋯O hydrogen bond is observed between the methoxy function and the oxygen atom in the six-membered ring (Table 1). This molecule has neither an asymmetric carbon nor a helical structure, so it is an achiral compound.
3. Supramolecular features
In the crystal, molecules are connected by O—H⋯O hydrogen bonds (Fig. 2, Table 1). In addition, weak supramolecular C—H⋯O interactions are found (Table 1 and Fig. 3).
4. Hirshfeld Surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with CrystalExplorer17.5 (Turner et al., 2017). The fingerprint plot for this structure shows typical `wings' (Fig. 4i). The percentage contribution to the Hirshfeld surface area by close contacts with H atoms inside the surface and H atoms outside is 57.4% (Fig. 4ii), for O atoms inside the surface and H atoms outside it is 9.1% (Fig. 4iii), for H atoms inside the surface and O atoms outside it is 8.5% (Fig. 4iv), for C atoms inside the surface and H atoms outside it is 14.5% (Fig. 4v), and for H atoms inside the surface and C atoms outside it is 8.2% (Fig. 4vi). Hirshfeld surface analysis of the H⋯O interaction clearly shows the close intermolecular contact near methanol, (di is 1.1 Å and de is 0.75 Å).
5. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.41, update November 2019; Groom et al., 2016) for similar structures returned three relevant entries: (2,2′-bipyridine-κ2N,N′)[N-(2-oxido-1-naphthylidene)threoninato-κ3O1,N,O2]copper(II) (BIZGIB; Qiu et al., 2008), diaqua(N-salicylidene-L-threoninato)copper(II) (SLCDCU; Korhonen & Hämäläinen, 1981) and [N-(3-methoxy-2-oxidobenzylidene-κO2)threoninato-κ2O1,N](1,10-phenanthroline-κ2N,N′)copper(II) hemihydrate (UQUYUB; Jing et al., 2011). The metal atom in BIZGIB is five-coordinated by one N atom and two O atoms, and two N atoms from a distorted square-pyramidal 2,2-bipyridine ligand. In the crystal, a two-dimensional network is formed by a combination of intermolecular O—H⋯O and C—H⋯O hydrogen bonds. In SLCDCU, two molecules form square planes by two intermolecular hydrogen bonds. In UQUYUB, intermolecular O—H⋯O hydrogen bonds form a one-dimensional left-handed helical structure extending parallel to [001].
6. Synthesis and crystallization
The Schiff base ligand H2L was prepared according to a reported procedure (Matar et al., 2015) by a condensation reaction between 3-methoxy-2-hydroxybenzaldehyde (10 mmol, 1.52 mg) and dipropylenetriamine (5.0 mmol, 0.641 mL) in ethanol solution (30 cm3) under reflux conditions. After solvent removal, a yellow oil was obtained in 85% yield. ν(C=N) 1630 cm−1.
The title compound was synthesized by the reaction of H2L (1 mmol, 0.399 mg) with Zn(OAc)2·2H2O (1 mmol, 0.18 mg) in MeOH:H2O (v/v, 10:1) (50 cm3) with a few drops of LiOH (1%). The reaction mixture was heated to 343 K for 1 h. The yellow solid obtained was filtered off and dried. ν(C=N) 1618 cm−1. Single crystals suitable for X-ray crystallography were obtained several days after dissolving the solid in 40 cm3 of hot methanol.
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in geometrically calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The O-bound H atom was located in a difference-Fourier map and refined using a riding model [O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O)].
details are summarized in Table 2Supporting information
CCDC reference: 2075457
https://doi.org/10.1107/S2056989021003650/jy2006sup1.cif
contains datablocks 1R, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021003650/jy2006Isup2.hkl
Data collection: APEX3 (Bruker, 2017); cell
APEX3 (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C22H27N3O4)]·CH4O | Dx = 1.450 Mg m−3 |
Mr = 494.88 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 3270 reflections |
a = 14.5937 (6) Å | θ = 2.2–23.9° |
b = 11.4425 (5) Å | µ = 1.12 mm−1 |
c = 13.5794 (5) Å | T = 293 K |
V = 2267.60 (16) Å3 | Prism, yellow |
Z = 4 | 0.53 × 0.49 × 0.45 mm |
F(000) = 1040 |
Bruker APEXIII CCD diffractometer | 4682 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.035 |
φ and ω scans | θmax = 31.2°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | h = −21→20 |
Tmin = 0.53, Tmax = 0.63 | k = −16→16 |
28025 measured reflections | l = −18→18 |
6099 independent reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0516P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.035 | (Δ/σ)max = 0.001 |
wR(F2) = 0.087 | Δρmax = 0.56 e Å−3 |
S = 1.04 | Δρmin = −0.47 e Å−3 |
6099 reflections | Extinction correction: SHELXL-2016/6 (Sheldrick 2015b) |
294 parameters | Extinction coefficient: 0.0091 (12) |
1 restraint | Absolute structure: Flack x determined using 1852 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: 0.006 (5) |
Hydrogen site location: inferred from neighbouring sites |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.52170 (2) | 0.52816 (3) | 0.56294 (4) | 0.04284 (12) | |
O1 | 0.40493 (18) | 0.1936 (2) | 0.4333 (2) | 0.0724 (8) | |
N1 | 0.65984 (15) | 0.4787 (2) | 0.5612 (3) | 0.0493 (5) | |
C1 | 0.3627 (3) | 0.1110 (5) | 0.3702 (4) | 0.0857 (13) | |
H1A | 0.396883 | 0.10538 | 0.310017 | 0.129* | |
H1B | 0.301217 | 0.135516 | 0.355979 | 0.129* | |
H1C | 0.361408 | 0.036045 | 0.401999 | 0.129* | |
O2 | 0.48708 (13) | 0.3687 (2) | 0.52144 (19) | 0.0520 (5) | |
N2 | 0.5413 (2) | 0.5782 (3) | 0.7143 (2) | 0.0650 (8) | |
H2 | 0.529572 | 0.662482 | 0.715739 | 0.078* | |
C2 | 0.4980 (2) | 0.1835 (3) | 0.4463 (3) | 0.0549 (8) | |
O3 | 0.53164 (12) | 0.6620 (2) | 0.46866 (16) | 0.0457 (5) | |
N3 | 0.38225 (17) | 0.5711 (2) | 0.58014 (19) | 0.0486 (6) | |
C3 | 0.5487 (3) | 0.0903 (3) | 0.4162 (3) | 0.0693 (10) | |
H3 | 0.520034 | 0.028129 | 0.38465 | 0.083* | |
C4 | 0.6437 (3) | 0.0868 (3) | 0.4321 (3) | 0.0720 (10) | |
H4 | 0.677466 | 0.021275 | 0.414127 | 0.086* | |
O4 | 0.58178 (14) | 0.7754 (2) | 0.30994 (16) | 0.0545 (5) | |
C5 | 0.6856 (2) | 0.1802 (3) | 0.4741 (3) | 0.0610 (8) | |
H5 | 0.74875 | 0.179029 | 0.483288 | 0.073* | |
O5 | 0.5841 (3) | 0.8341 (4) | 0.5950 (4) | 0.140 (2) | |
H5A | 0.581512 | 0.801846 | 0.541104 | 0.21* | |
C6 | 0.5391 (2) | 0.2829 (3) | 0.4930 (2) | 0.0453 (6) | |
C7 | 0.6353 (2) | 0.2785 (3) | 0.5037 (2) | 0.0479 (6) | |
C8 | 0.68830 (19) | 0.3763 (3) | 0.54147 (19) | 0.0502 (7) | |
H8 | 0.750228 | 0.362278 | 0.552506 | 0.06* | |
C9 | 0.7273 (3) | 0.5641 (4) | 0.5954 (3) | 0.0735 (11) | |
H9A | 0.731688 | 0.625957 | 0.54678 | 0.088* | |
H9B | 0.786656 | 0.526017 | 0.59861 | 0.088* | |
C10 | 0.7079 (3) | 0.6176 (5) | 0.6924 (4) | 0.0995 (17) | |
H10A | 0.763926 | 0.615887 | 0.730831 | 0.119* | |
H10B | 0.692303 | 0.698978 | 0.681751 | 0.119* | |
C11 | 0.6358 (4) | 0.5649 (5) | 0.7506 (3) | 0.0890 (14) | |
H11A | 0.638748 | 0.597758 | 0.816366 | 0.107* | |
H11B | 0.648732 | 0.48201 | 0.756321 | 0.107* | |
C13 | 0.4737 (4) | 0.5284 (4) | 0.7786 (4) | 0.0809 (15) | |
H13A | 0.488874 | 0.551024 | 0.845482 | 0.097* | |
H13B | 0.47908 | 0.444052 | 0.774871 | 0.097* | |
C14 | 0.3754 (4) | 0.5598 (5) | 0.7606 (3) | 0.0848 (14) | |
H14A | 0.369652 | 0.644202 | 0.763231 | 0.102* | |
H14B | 0.338813 | 0.527906 | 0.81384 | 0.102* | |
C15 | 0.3349 (3) | 0.5172 (4) | 0.6626 (3) | 0.0708 (11) | |
H15A | 0.340711 | 0.432901 | 0.658309 | 0.085* | |
H15B | 0.270299 | 0.536678 | 0.659841 | 0.085* | |
C16 | 0.33585 (19) | 0.6329 (3) | 0.5196 (2) | 0.0491 (7) | |
H16 | 0.273212 | 0.638729 | 0.531279 | 0.059* | |
C17 | 0.37116 (18) | 0.6945 (3) | 0.4351 (2) | 0.0444 (6) | |
C18 | 0.46571 (18) | 0.7052 (3) | 0.4135 (2) | 0.0395 (6) | |
C19 | 0.3057 (2) | 0.7452 (3) | 0.3712 (3) | 0.0560 (8) | |
H19 | 0.243749 | 0.739602 | 0.386674 | 0.067* | |
C20 | 0.3314 (2) | 0.8021 (3) | 0.2878 (3) | 0.0606 (8) | |
H20 | 0.287289 | 0.833751 | 0.246236 | 0.073* | |
C21 | 0.4235 (2) | 0.8127 (3) | 0.2647 (2) | 0.0536 (8) | |
H21 | 0.440955 | 0.850523 | 0.207094 | 0.064* | |
C22 | 0.4898 (2) | 0.7674 (3) | 0.3267 (2) | 0.0432 (6) | |
C23 | 0.6092 (3) | 0.8324 (4) | 0.2225 (3) | 0.0684 (10) | |
H23A | 0.585095 | 0.791083 | 0.166649 | 0.103* | |
H23B | 0.674874 | 0.833728 | 0.218869 | 0.103* | |
H23C | 0.586221 | 0.910978 | 0.222502 | 0.103* | |
C24 | 0.5060 (6) | 0.8915 (6) | 0.6115 (6) | 0.123 (2) | |
H24A | 0.519332 | 0.971869 | 0.626096 | 0.185* | |
H24B | 0.47469 | 0.856789 | 0.666377 | 0.185* | |
H24C | 0.467835 | 0.887306 | 0.554073 | 0.185* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.04857 (18) | 0.04890 (19) | 0.03106 (16) | 0.00482 (12) | −0.00223 (18) | 0.00193 (18) |
O1 | 0.0517 (13) | 0.0781 (16) | 0.0876 (19) | −0.0119 (13) | 0.0060 (13) | −0.0318 (16) |
N1 | 0.0489 (10) | 0.0563 (13) | 0.0427 (11) | −0.0010 (10) | −0.0077 (17) | 0.0044 (15) |
C1 | 0.075 (3) | 0.101 (3) | 0.081 (3) | −0.025 (2) | 0.002 (2) | −0.032 (3) |
O2 | 0.0430 (9) | 0.0563 (12) | 0.0568 (13) | 0.0031 (9) | 0.0028 (9) | −0.0092 (11) |
N2 | 0.0852 (19) | 0.073 (2) | 0.0362 (14) | 0.0177 (17) | −0.0110 (14) | −0.0066 (15) |
C2 | 0.0546 (15) | 0.057 (2) | 0.0533 (19) | −0.0019 (15) | 0.0102 (15) | −0.0081 (17) |
O3 | 0.0393 (9) | 0.0580 (13) | 0.0399 (10) | 0.0031 (9) | −0.0055 (8) | 0.0109 (10) |
N3 | 0.0498 (12) | 0.0543 (13) | 0.0416 (15) | 0.0015 (11) | 0.0116 (11) | 0.0017 (11) |
C3 | 0.078 (2) | 0.056 (2) | 0.073 (2) | −0.0023 (18) | 0.011 (2) | −0.0154 (19) |
C4 | 0.075 (2) | 0.058 (2) | 0.083 (3) | 0.0167 (18) | 0.013 (2) | −0.010 (2) |
O4 | 0.0462 (10) | 0.0713 (14) | 0.0459 (11) | −0.0025 (10) | −0.0006 (9) | 0.0192 (11) |
C5 | 0.0577 (17) | 0.065 (2) | 0.0597 (19) | 0.0159 (16) | 0.0042 (15) | 0.0035 (17) |
O5 | 0.152 (4) | 0.088 (2) | 0.181 (5) | 0.016 (2) | −0.098 (4) | −0.033 (3) |
C6 | 0.0496 (14) | 0.0481 (16) | 0.0383 (14) | 0.0045 (13) | 0.0059 (12) | −0.0011 (13) |
C7 | 0.0490 (14) | 0.0536 (16) | 0.0411 (15) | 0.0061 (14) | 0.0025 (13) | 0.0063 (13) |
C8 | 0.0425 (12) | 0.0681 (18) | 0.0399 (18) | 0.0039 (13) | −0.0036 (11) | 0.0076 (13) |
C9 | 0.068 (2) | 0.072 (2) | 0.080 (3) | −0.0142 (19) | −0.0219 (19) | 0.007 (2) |
C10 | 0.085 (3) | 0.116 (4) | 0.097 (4) | −0.006 (3) | −0.036 (3) | −0.028 (3) |
C11 | 0.111 (4) | 0.109 (3) | 0.047 (2) | −0.009 (3) | −0.029 (2) | −0.002 (2) |
C13 | 0.115 (4) | 0.088 (4) | 0.041 (2) | 0.000 (2) | 0.009 (2) | 0.0057 (19) |
C14 | 0.108 (3) | 0.099 (3) | 0.047 (2) | 0.027 (3) | 0.028 (2) | 0.010 (2) |
C15 | 0.074 (2) | 0.075 (2) | 0.063 (2) | −0.0035 (19) | 0.026 (2) | 0.0137 (19) |
C16 | 0.0394 (12) | 0.0556 (16) | 0.0522 (15) | 0.0033 (13) | 0.0045 (13) | −0.0066 (15) |
C17 | 0.0406 (13) | 0.0490 (14) | 0.0436 (14) | 0.0035 (12) | −0.0033 (12) | −0.0017 (13) |
C18 | 0.0405 (12) | 0.0432 (14) | 0.0347 (13) | 0.0033 (11) | −0.0082 (10) | 0.0015 (11) |
C19 | 0.0407 (14) | 0.0634 (19) | 0.064 (2) | 0.0070 (14) | −0.0124 (15) | −0.0038 (17) |
C20 | 0.0544 (16) | 0.0613 (19) | 0.066 (2) | 0.0089 (15) | −0.0237 (16) | 0.0129 (17) |
C21 | 0.0617 (18) | 0.0544 (17) | 0.0446 (16) | −0.0014 (15) | −0.0120 (15) | 0.0125 (14) |
C22 | 0.0459 (14) | 0.0437 (15) | 0.0401 (15) | −0.0009 (12) | −0.0065 (12) | 0.0036 (13) |
C23 | 0.064 (2) | 0.083 (3) | 0.058 (2) | −0.002 (2) | 0.0065 (18) | 0.026 (2) |
C24 | 0.189 (6) | 0.083 (4) | 0.097 (4) | 0.033 (4) | −0.034 (4) | −0.016 (3) |
Zn1—O2 | 1.975 (2) | C9—C10 | 1.480 (7) |
Zn1—O3 | 2.001 (2) | C9—H9A | 0.97 |
Zn1—N1 | 2.094 (2) | C9—H9B | 0.97 |
Zn1—N3 | 2.107 (2) | C10—C11 | 1.448 (7) |
Zn1—N2 | 2.152 (3) | C10—H10A | 0.97 |
O1—C2 | 1.375 (4) | C10—H10B | 0.97 |
O1—C1 | 1.416 (5) | C11—H11A | 0.97 |
N1—C8 | 1.273 (4) | C11—H11B | 0.97 |
N1—C9 | 1.462 (5) | C13—C14 | 1.499 (7) |
C1—H1A | 0.96 | C13—H13A | 0.97 |
C1—H1B | 0.96 | C13—H13B | 0.97 |
C1—H1C | 0.96 | C14—C15 | 1.535 (7) |
O2—C6 | 1.300 (4) | C14—H14A | 0.97 |
N2—C13 | 1.435 (6) | C14—H14B | 0.97 |
N2—C11 | 1.473 (6) | C15—H15A | 0.97 |
N2—H2 | 0.98 | C15—H15B | 0.97 |
C2—C3 | 1.361 (5) | C16—C17 | 1.443 (4) |
C2—C6 | 1.432 (5) | C16—H16 | 0.93 |
O3—C18 | 1.316 (3) | C17—C19 | 1.415 (4) |
N3—C16 | 1.278 (4) | C17—C18 | 1.416 (4) |
N3—C15 | 1.453 (4) | C18—C22 | 1.421 (4) |
C3—C4 | 1.403 (6) | C19—C20 | 1.359 (5) |
C3—H3 | 0.93 | C19—H19 | 0.93 |
C4—C5 | 1.357 (6) | C20—C21 | 1.386 (5) |
C4—H4 | 0.93 | C20—H20 | 0.93 |
O4—C22 | 1.365 (4) | C21—C22 | 1.382 (4) |
O4—C23 | 1.413 (4) | C21—H21 | 0.93 |
C5—C7 | 1.402 (4) | C23—H23A | 0.96 |
C5—H5 | 0.93 | C23—H23B | 0.96 |
O5—C24 | 1.334 (8) | C23—H23C | 0.96 |
O5—H5A | 0.82 | C24—H24A | 0.96 |
C6—C7 | 1.413 (4) | C24—H24B | 0.96 |
C7—C8 | 1.453 (5) | C24—H24C | 0.96 |
C8—H8 | 0.93 | ||
O2—Zn1—O3 | 122.87 (10) | C9—C10—H10A | 108.1 |
O2—Zn1—N1 | 89.63 (9) | C11—C10—H10B | 108.1 |
O3—Zn1—N1 | 97.45 (10) | C9—C10—H10B | 108.1 |
O2—Zn1—N3 | 90.01 (9) | H10A—C10—H10B | 107.3 |
O3—Zn1—N3 | 87.84 (9) | C10—C11—N2 | 117.1 (4) |
N1—Zn1—N3 | 173.91 (12) | C10—C11—H11A | 108.0 |
O2—Zn1—N2 | 123.50 (13) | N2—C11—H11A | 108.0 |
O3—Zn1—N2 | 113.44 (12) | C10—C11—H11B | 108.0 |
N1—Zn1—N2 | 87.40 (13) | N2—C11—H11B | 108.0 |
N3—Zn1—N2 | 87.73 (11) | H11A—C11—H11B | 107.3 |
C2—O1—C1 | 116.9 (3) | N2—C13—C14 | 117.6 (4) |
C8—N1—C9 | 117.5 (3) | N2—C13—H13A | 107.9 |
C8—N1—Zn1 | 124.4 (2) | C14—C13—H13A | 107.9 |
C9—N1—Zn1 | 117.7 (2) | N2—C13—H13B | 107.9 |
O1—C1—H1A | 109.5 | C14—C13—H13B | 107.9 |
O1—C1—H1B | 109.5 | H13A—C13—H13B | 107.2 |
H1A—C1—H1B | 109.5 | C13—C14—C15 | 115.7 (4) |
O1—C1—H1C | 109.5 | C13—C14—H14A | 108.4 |
H1A—C1—H1C | 109.5 | C15—C14—H14A | 108.4 |
H1B—C1—H1C | 109.5 | C13—C14—H14B | 108.4 |
C6—O2—Zn1 | 129.32 (19) | C15—C14—H14B | 108.4 |
C13—N2—C11 | 113.5 (4) | H14A—C14—H14B | 107.4 |
C13—N2—Zn1 | 112.6 (3) | N3—C15—C14 | 110.5 (3) |
C11—N2—Zn1 | 114.6 (3) | N3—C15—H15A | 109.5 |
C13—N2—H2 | 105.0 | C14—C15—H15A | 109.5 |
C11—N2—H2 | 105.0 | N3—C15—H15B | 109.5 |
Zn1—N2—H2 | 105.0 | C14—C15—H15B | 109.5 |
C3—C2—O1 | 124.3 (4) | H15A—C15—H15B | 108.1 |
C3—C2—C6 | 121.8 (3) | N3—C16—C17 | 126.3 (3) |
O1—C2—C6 | 113.8 (3) | N3—C16—H16 | 116.8 |
C18—O3—Zn1 | 126.77 (18) | C17—C16—H16 | 116.8 |
C16—N3—C15 | 118.6 (3) | C19—C17—C18 | 119.8 (3) |
C16—N3—Zn1 | 124.7 (2) | C19—C17—C16 | 116.5 (3) |
C15—N3—Zn1 | 116.4 (2) | C18—C17—C16 | 123.7 (3) |
C2—C3—C4 | 120.9 (4) | O3—C18—C17 | 124.3 (3) |
C2—C3—H3 | 119.6 | O3—C18—C22 | 118.7 (2) |
C4—C3—H3 | 119.6 | C17—C18—C22 | 117.1 (2) |
C5—C4—C3 | 119.2 (3) | C20—C19—C17 | 121.3 (3) |
C5—C4—H4 | 120.4 | C20—C19—H19 | 119.3 |
C3—C4—H4 | 120.4 | C17—C19—H19 | 119.3 |
C22—O4—C23 | 116.7 (2) | C19—C20—C21 | 119.9 (3) |
C4—C5—C7 | 121.1 (3) | C19—C20—H20 | 120.0 |
C4—C5—H5 | 119.5 | C21—C20—H20 | 120.0 |
C7—C5—H5 | 119.5 | C22—C21—C20 | 120.5 (3) |
C24—O5—H5A | 109.5 | C22—C21—H21 | 119.7 |
O2—C6—C7 | 125.2 (3) | C20—C21—H21 | 119.7 |
O2—C6—C2 | 119.2 (3) | O4—C22—C21 | 124.1 (3) |
C7—C6—C2 | 115.7 (3) | O4—C22—C18 | 114.5 (2) |
C5—C7—C6 | 121.3 (3) | C21—C22—C18 | 121.4 (3) |
C5—C7—C8 | 116.1 (3) | O4—C23—H23A | 109.5 |
C6—C7—C8 | 122.6 (3) | O4—C23—H23B | 109.5 |
N1—C8—C7 | 127.6 (3) | H23A—C23—H23B | 109.5 |
N1—C8—H8 | 116.2 | O4—C23—H23C | 109.5 |
C7—C8—H8 | 116.2 | H23A—C23—H23C | 109.5 |
N1—C9—C10 | 115.4 (4) | H23B—C23—H23C | 109.5 |
N1—C9—H9A | 108.4 | O5—C24—H24A | 109.5 |
C10—C9—H9A | 108.4 | O5—C24—H24B | 109.5 |
N1—C9—H9B | 108.4 | H24A—C24—H24B | 109.5 |
C10—C9—H9B | 108.4 | O5—C24—H24C | 109.5 |
H9A—C9—H9B | 107.5 | H24A—C24—H24C | 109.5 |
C11—C10—C9 | 116.9 (4) | H24B—C24—H24C | 109.5 |
C11—C10—H10A | 108.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···O2i | 0.97 | 2.58 | 3.549 (6) | 172 |
C10—H10B···O5 | 0.97 | 2.50 | 3.340 (7) | 144 |
O5—H5A···O3 | 0.82 | 2.01 | 2.722 (5) | 144 |
Symmetry code: (i) −x+1, −y+1, z+1/2. |
Funding information
This work was partly supported by a Grant-in-Aid for Scientific Research (A) KAKENHI (20H00336).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324–m328. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
AlDamen, M. A., Charef, N., Juwhari, H. K., Sweidan, K., Mubarak, M. S. & Peters, D. G. (2016). J. Chem. Crystallogr. 46, 411–420. CSD CrossRef CAS Google Scholar
Bartyzel, A. (2018). J. Therm. Anal. Calorim. 131, 1221–1236. CSD CrossRef CAS Google Scholar
Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789–3797. Web of Science CSD CrossRef Google Scholar
Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fleck, M., Layek, M., Saha, R. & Bandyopadhyay, D. (2013). Transition Met. Chem. 38, 715–724. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Iksi, S., Guemmout, F. E., Reguero, M., Masdeu-Bulto, A. M. & Ghnux, A. (2020). J Chem Crystallogr. https://doi.org/10.1007/s10870-020-00865-y. Google Scholar
Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. Y. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694–8695. CrossRef PubMed CAS Google Scholar
Jing, B., Li, L., Dong, J. & Li, J. (2011). Acta Cryst. E67, m536. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D. & Triki, S. (2011). Russ. J. Coord. Chem. 37, 518–522. CrossRef CAS Google Scholar
Korhonen, K. & Hämäläinen, R. (1981). Acta Cryst. B37, 829–834. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, B., Wen, H. M., Cui, Y., Zhou, W., Qian, G. & Chen, B. (2016). Adv. Mater. 28, 8819–8860. CrossRef CAS PubMed Google Scholar
Long, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D. & Larionova, J. (2018b). Coord. Chem. Rev. 363, 57–70. CrossRef CAS Google Scholar
Lui, W., Li, G., Zhao, X. & Wang, L. (2019). ChemistrySelect, 4, 29, 9317-9321. Google Scholar
Matar, S. A., Talib, W. H., Mustafa, M. S., Mubarak, M. S. & AlDamen, M. A. (2015). Arab. J. Chem. 8, 850–857. CrossRef CAS Google Scholar
Niu, M. J., Li, Z., Chang, G. L., Kong, X. J., Hong, M. & Zhang, Q. F. (2015). PLOS ONE. https://doi.org/10.1317/journal.pone.0130922. Google Scholar
Noor, S., Goddard, R., Kumar, S., Ahmad, N., Sabir, S., Mitra, P. & Seidel, R. (2018). J. Chem. Crystallogr. 48, 164–169. CSD CrossRef CAS Google Scholar
Noor, S. W., Seidel, R. W., Goddard, R., Kumar, S. & Sabir, S. (2016). IUCrData, 1, x161735. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sacconi, L. (1966). Coord. Chem. Rev. 1, 126–132. CrossRef CAS Google Scholar
Sanmartín, J., Bermejo, M. R., García-Deibe, A. M., Nascimento, O. & Costa-Filho, A. J. (2001). Inorg. Chim. Acta, 318, 135–142. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206–211. CrossRef PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tang, B., Ma, H., Li, G., Wang, Y., Anwar, G., Shi, R. & Li, H. (2013). CrystEngComm, 15, 8069–8073. CSD CrossRef CAS Google Scholar
Thakurta, S., Rizzoli, C., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010). Inorg. Chim. Acta, 336, 1395–1403. CSD CrossRef Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.