research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-2-amino-4-methyl­sulfanyl-6-oxo-1-(1-phenyl­ethyl­­idene­amino)-1,6-di­hydro­pyrimidine-5-carbo­nitrile and (E)-2-amino-4-methyl­sulfanyl-6-oxo-1-[1-(pyridin-2-yl)ethyl­­idene­amino]-1,6-di­hydro­pyrimidine-5-carbo­nitrile

crossmark logo

aChemistry of Natural & Microbial Products Department, National Research Center, Cairo, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by J. Reibenspies, Texas A & M University, USA (Received 7 April 2021; accepted 17 April 2021; online 23 April 2021)

The title compounds 3a, C14H13N5OS, and 3b, C13H12N6OS, both show an E configuration about the N=C bond and a planar NH2 group. The mol­ecules, which only differ in the presence of a phenyl (in 3a) or pyridyl (in 3b) substituent, are closely similar except for the different orientations of these groups. The amino hydrogen atoms form classical hydrogen bonds; in 3a the acceptors are the oxygen atom and the cyano nitro­gen atom, leading to ribbons of mol­ecules parallel to the b axis, whereas in 3b the acceptors are the oxygen atom and the pyridyl nitro­gen, leading to a layer structure perpendicular to ([\overline{1}]01).

1. Chemical context

Dimethyl N-cyano­dithio­imino­carbonate (2) is an important starting material for the synthesis of various classes of heterocycles (Elgemeie & Mohamed, 2014[Elgemeie, G. H. & Mohamed, R. A. (2014). Heterocycl. Commun. 20, 257-269, 313-331.]), e.g. azoles, azines and azoloazines (Thomae et al., 2009[Thomae, D., Perspicace, E., Xu, Z., Henryon, D., Schneider, S., Hesse, S., Kirsch, G. & Seck, P. (2009). Tetrahedron, 65, 2982-2988.]). It has been used effectively in the synthesis of a range of anti­bacterial (Paget et al., 2006[Paget, S. D., Boggs, C. M., Foleno, B. D., Goldschmidt, R. M., Hlasta, D. J., Weidner-Wells, M. A., Werblood, H. M., Bush, K. & Macielag, M. J. (2006). Bioorg. Med. Chem. Lett. 16, 4537-4542.]), anti­cancer (Hu et al., 2014[Hu, Z., Ou, L., Li, S. & Yang, L. (2014). Med. Chem. Res. 23, 3029-3038.]) and other biologically significant products (Marsault et al., 2007[Marsault, E., Benakli, K., Beaubien, S., Saint-Louis, C., Déziel, R. & Fraser, G. (2007). Bioorg. Med. Chem. Lett. 17, 4187-4190.]).

Pyrimidino­nes are multipurpose heterocyclic compounds that are common in nucleic acids and find diverse applications in drug planning (Elgemeie et al., 2019[Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 12-87.]; Elgemeie & Mohamed, 2019[Elgemeie, G. H. & Mohamed, R. A. (2019). J. Carbohydr. Chem. 38, 20-66.]); they are important in pharmaceutical chemistry because of their pharmacological potential (Galmarini et al., 2003[Galmarini, C. M., Jordheim, L. & Dumontet, C. (2003). Expert Rev. Anticancer Ther. 3, 717-728.]). Research in the pharmaceutical chemistry of pyrimidone derivatives has become an active field, since several pyrimidinone-based compounds have been extensively used as clinical drugs to treat numerous types of viruses with high therapeutic effectiveness (Simons et al., 2005[Simons, C., Wu, Q. & Htar, T. (2005). Curr. Top. Med. Chem. 5, 1191-1203.]); their biotic profile and synthetic availability have been attractive in their design and development as possible chemotherapeutics. In particular, pyrimid­inone derivatives have recently become significant in the improvement of anti-coronavirus agents (Pruijssers et al., 2019[Pruijssers, A. J. & Denison, M. R. (2019). Curr. Opin. Virol. 35, 57-62.]).

In order to access this class of compounds, a variety of new synthetic methods has been developed (Xu et al., 2004[Xu, Y.-Z., Zhang, X., Wu, H.-C., Massey, A. & Karran, P. (2004). Bioorg. Med. Chem. Lett. 14, 995-997.]). Recently, we have designed the syntheses of several pyrim­idinone derivatives starting from activated nitriles (Elgemeie et al., 2015a[Elgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015a). Acta Cryst. E71, 1319-1321.],b[Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015b). Acta Cryst. E71, 1322-1324.]; Abu-Zaied et al., 2020[Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 20042-20050.], 2021[Abu-Zaied, M. A., Elgemeie, G. H. & Mahmoud, N. M. (2021). Nucleosides Nucleotides Nucleic Acids, 40, 336-356.]). As part of this program, the reactions of 2-cyano-N′-(1-phenyl­ethyl­id­ene)acetohydrazide (1a) or 2-cyano-N′-(1-(pyridin-2-yl)ethyl­idene)acetohydrazide (1b) with 2 in KOH/EtOH were studied. These reactions gave products that were crystallized from DMF and identified by X-ray crystallography as the title compounds (3a,b). 1H NMR spectra of 3a showed SCH3 protons at δ 2.55 ppm and the free NH2 protons at δ 8.52 ppm. The formation of 3 from 1 and 2 is assumed to proceed via initial addition of the active methyl­ene group of 1 to the double bond of 2, followed by elimination of CH3SH and cyclization via addition of the NH group to the cyano group.

[Scheme 1]

2. Structural commentary

The structure determinations confirm the expected chemical structures of 3a and 3b; the respective mol­ecules are shown in Figs. 1[link] and 2[link]. In both compounds, the configuration about the double bond N2=C7 is E and the amino group is planar. The pyrimidine ring dimensions are closely similar; e.g. the shortest bonds are C2—N3, the narrowest angles are at C6 (which bears the oxo substituent) and the widest angles are at C4 (which bears the methyl­thio group). These and a selection of other dimensions are presented in Tables 1[link] and 2[link].

Table 1
Selected geometric parameters (Å, °) for 3a[link]

N1—N2 1.4248 (17) C4—S1 1.7522 (16)
C2—N3 1.333 (2) S1—C16 1.7918 (19)
       
C7—N2—N1 114.40 (13) C4—S1—C16 101.93 (8)
N3—C4—C5 124.02 (14) N1—C6—C5 112.55 (12)
       
N1—N2—C7—C9 176.69 (12) N2—C7—C9—C14 12.1 (2)
N2—C7—C9—C10 −166.23 (15)    

Table 2
Selected geometric parameters (Å, °) for 3b[link]

N1—N2 1.4191 (16) C4—S1 1.7473 (14)
C2—N3 1.3286 (17) S1—C15 1.8023 (16)
       
C7—N2—N1 115.53 (11) C4—S1—C15 102.47 (7)
N3—C4—C5 124.29 (12) N1—C6—C5 112.65 (11)
       
N1—N2—C7—C9 −177.94 (10) N2—C7—C9—C13 1.27 (18)
N2—C7—C9—N5 −178.88 (12)    
[Figure 1]
Figure 1
The structure of compound 3a in the crystal. Ellipsoids correspond to 50% probability levels.
[Figure 2]
Figure 2
The structure of compound 3b in the crystal. Ellipsoids correspond to 50% probability levels.

The compounds differ chemically only in the phen­yl/pyridyl substituents. A least-squares fit of the two mol­ecules shows a moderate difference in the orientation of these groups (Fig. 3[link], Tables 1[link] and 2[link]); this may be associated with the role of the pyridyl nitro­gen as a hydrogen-bond acceptor in 3b (see below).

[Figure 3]
Figure 3
A least-squares fit of the mol­ecules of 3a (solid bonds) and 3b (dashed bonds; mol­ecule inverted with respect to the deposited coordinates). Only the fitted atoms are labelled; their r.m.s. deviation is 0.16 Å.

Whereas the immediate substituent atoms of the pyrimidine rings lie close to the ring plane for 3a [maximum deviation of 0.103 (2) Å for N6], the substituents O1 and C15 of 3b are more significantly displaced [by 0.203 (2) and 0.179 (3) Å, respectively, to the same side of the ring]. The inter­planar angles between the six-membered rings are 56.49 (6)° for 3a and 63.12 (3)° for 3b.

Intra­molecular hydrogen bonds N6—H062⋯N2 (not shown explicitly in Figs. 1[link] and 2[link]) are observed in both mol­ecules (Tables 3[link] and 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 3a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H061⋯O1i 0.84 (2) 2.24 (3) 2.9899 (17) 149 (2)
N6—H062⋯N4i 0.84 (2) 2.33 (2) 3.054 (2) 144 (2)
C8—H8A⋯O1ii 0.98 2.52 3.279 (2) 134
N6—H062⋯N2 0.84 (2) 2.25 (2) 2.6273 (19) 108 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for 3b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H061⋯N5i 0.86 (2) 2.26 (2) 3.0122 (17) 146.2 (17)
N6—H062⋯O1ii 0.853 (19) 2.307 (19) 3.0886 (15) 152.4 (17)
C10—H10⋯O1iii 0.95 2.40 3.2351 (17) 147
N6—H062⋯N2 0.853 (19) 2.228 (18) 2.6091 (17) 107.1 (14)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z].

3. Supra­molecular features

In both structures, the hydrogen atoms of the amino groups act as hydrogen bond donors (Tables 3[link] and 4[link]). In 3a, neighbouring mol­ecules are connected via the same 21 operator, leading to ribbons of mol­ecules parallel to the b axis (Fig. 4[link]). In 3b, one hydrogen bond is formed via a 21 and one via an n glide operator, leading to layers parallel to ([\overline{1}]01) (Fig. 5[link]).

[Figure 4]
Figure 4
Packing diagram of compound 3a viewed perpendicular to (102) in the region z ≃ 0.25. Dashed lines indicate classical hydrogen bonds. Hydrogen atoms not involved in such bonds are omitted for clarity.
[Figure 5]
Figure 5
Packing diagram of compound 3b viewed perpendicular to ([\overline{1}]01). Dashed lines indicate classical hydrogen bonds. Hydrogen atoms not involved in such bonds are omitted for clarity.

4. Database survey

A search of the Cambridge Database (ConQuest Version 2.0.5) for 6-oxo­pyrimidines with the same substitution pattern (N at C2, S at C4, cyano at C5 and N at N1) revealed only our previous structures (Elgemeie et al., 2015a[Elgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015a). Acta Cryst. E71, 1319-1321.],b[Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015b). Acta Cryst. E71, 1322-1324.]; refcodes WUSMAA and WUSMUU); the substituents at N1 were NH-SO2-p-C6H4Br and N=CH-2-tht, respectively.

5. Synthesis and crystallization

General procedure for the synthesis of compounds 3: A mixture of the appropriate 2-cyano-N′-(1-aryl­ethyl­idene)acetohydrazide (1) (0.01 mol), dimethyl N-cyano­dithio­imino­carbonate (2) (0.01 mol) and anhydrous potassium hydroxide (0.01 mol) was refluxed in ethanol (10 mL). The reaction mixture was then poured onto ice–water; the solid product thus formed was filtered off and recrystallized from DMF.

3a: According to the general procedure, 2-cyano-N′-(1-phenyl­ethyl­idene)acetohydrazide (1a) was refluxed with 2 for 3 h. Compound 3a was afforded as a pale-yellow solid (92%); m.p. 498–501 K; IR (cm−1) υ 3719 and 3437 (NH2), 2202 (CN) and 1657 (C=O). 1H NMR (400 MHz, DMSO-d6): δ 2.20 (s, 3H, CH3), 2.55 (s, 3H, SCH3), 8.52 (s, br, 2H, NH2), 8.045–8.065 (d, J = 8 Hz, 2H, 2 CH), 7.59–7.62 (m, 1H, CH), 7.50–7.54 (m, 2H, 2 CH). Analysis calculated for C14H13N5OS (299.35): C, 56.17; H, 4.38; N, 23.40; O, 5.34; S, 10.71%. Found: C, 55.89; H, 4.25; N, 23.15; S, 10.52%.

3b: According to the general procedure, 2-cyano-N′-(1-(pyridin-2-yl)ethyl­idene)acetohydrazide (1b) was refluxed with 2 for 30 min. Compound 3b was afforded as a buff solid (80%); m.p. 649–652 K; IR (cm−1) υ 3774 (NH2), 2172 (CN) and 1635 (C=O). 1H NMR (400 MHz, DMSO-d6): δ 2.20 (s, 3H, CH3), 2.51 (s, 3H, SCH3), 8.54 (s, br, 2H, NH2), 8.73–8.74 (d, J = 4 Hz, 1H, CH), 8.29–8.31 (d, J = 8 Hz, 1H, CH), 7.95–8.00 (t, 1H, CH); 7.59–7.63 (t, J = 8 Hz, 1H, CH). Analysis calculated for C13H12N6OS (300.34): C, 51.99; H, 4.03; N, 27.98; O, 5.33; S, 10.68. Found: C, 51.73; H, 4.22; N, 27.71; S, 10.39%.

Crystals of 3a proved to be almost all twinned, by 180° rotation about c*. Data were collected from a twinned crystal, but the refinement using the `HKLF 5' method was no better than satisfactory (wR2 ca 0.11). Finally, an untwinned crystal was discovered. Despite its less regular reflection shape, the results proved to be slightly better in terms of the wR2 value, and the results quoted here are for this untwinned crystal.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The NH hydrogen atoms were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C—H 0.98 Å, H—C—H 109.5 °). The hydrogens of the aromatic rings were included using a riding model starting from calculated positions (C—Haromatic 0.95 Å). The U(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent Uiso value of the parent carbon atoms.

Table 5
Experimental details

  3a 3b
Crystal data
Chemical formula C14H13N5OS C13H12N6OS
Mr 299.35 300.35
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 12.15369 (18), 14.9466 (2), 7.68691 (16) 13.4774 (5), 7.6797 (3), 14.2755 (6)
β (°) 91.7607 (16) 112.401 (5)
V3) 1395.72 (4) 1366.04 (10)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.12 2.19
Crystal size (mm) 0.2 × 0.2 × 0.02 0.12 × 0.08 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB Synergy, Single source at home/near, HyPix Rigaku XtaLAB Synergy, Single source at home/near, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.636, 1.000 0.782, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 104992, 2958, 2842 54131, 2905, 2813
Rint 0.061 0.042
(sin θ/λ)max−1) 0.634 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06 0.036, 0.097, 1.07
No. of reflections 2958 2905
No. of parameters 200 200
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.35 0.33, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

(E)-2-Amino-4-methylsulfanyl-6-oxo-1-(1-phenylethylideneamino)-1,6-dihydropyrimidine-5-carbonitrile (3a) top
Crystal data top
C14H13N5OSF(000) = 624
Mr = 299.35Dx = 1.425 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.15369 (18) ÅCell parameters from 58984 reflections
b = 14.9466 (2) Åθ = 3.6–77.1°
c = 7.68691 (16) ŵ = 2.12 mm1
β = 91.7607 (16)°T = 100 K
V = 1395.72 (4) Å3Plate, pale yellow
Z = 40.2 × 0.2 × 0.02 mm
Data collection top
Rigaku XtaLAB Synergy, Single source at home/near, HyPix
diffractometer
2958 independent reflections
Radiation source: micro-focus sealed X-ray tube2842 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.061
ω scansθmax = 77.7°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1515
Tmin = 0.636, Tmax = 1.000k = 1818
104992 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.8822P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2958 reflectionsΔρmax = 0.40 e Å3
200 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.1729 (0.0067) x - 0.7702 (0.0093) y + 6.8408 (0.0022) z = 3.9095 (0.0048)

* -0.0400 (0.0011) N1 * 0.0328 (0.0011) C2 * -0.0019 (0.0010) N3 * -0.0193 (0.0011) C4 * 0.0105 (0.0011) C5 * 0.0178 (0.0010) C6 0.0930 (0.0023) N2 0.1026 (0.0023) N6 -0.0462 (0.0020) S1 -0.0028 (0.0025) C15 0.0557 (0.0021) O1

Rms deviation of fitted atoms = 0.0241

- 2.6471 (0.0093) x + 12.8703 (0.0066) y - 3.4786 (0.0058) z = 3.0019 (0.0051)

Angle to previous plane (with approximate esd) = 56.485 ( 0.063 )

* -0.0047 (0.0012) C9 * 0.0009 (0.0013) C10 * 0.0043 (0.0015) C11 * -0.0056 (0.0015) C12 * 0.0016 (0.0015) C13 * 0.0034 (0.0013) C14

Rms deviation of fitted atoms = 0.0038

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47431 (10)0.36271 (8)0.24782 (18)0.0248 (3)
N20.37697 (11)0.37729 (8)0.34251 (18)0.0264 (3)
C20.53906 (13)0.43583 (10)0.2177 (2)0.0253 (3)
N60.50093 (13)0.51489 (9)0.2657 (2)0.0299 (3)
H0610.5387 (18)0.5609 (17)0.251 (3)0.043 (6)*
H0620.441 (2)0.5174 (16)0.319 (3)0.050 (7)*
N30.63513 (11)0.43021 (8)0.13939 (17)0.0252 (3)
C40.67045 (12)0.34825 (10)0.1009 (2)0.0240 (3)
S10.79679 (3)0.33529 (3)0.00002 (6)0.03105 (14)
C50.61368 (12)0.26976 (9)0.1394 (2)0.0238 (3)
C60.50952 (13)0.27387 (9)0.2196 (2)0.0241 (3)
O10.45193 (9)0.21063 (7)0.26161 (15)0.0286 (3)
C70.28666 (13)0.35750 (9)0.2578 (2)0.0260 (3)
C80.27945 (15)0.32587 (13)0.0737 (2)0.0376 (4)
H8A0.3434750.3474750.0115700.056*
H8B0.2119660.3490480.0170320.056*
H8C0.2781910.2603230.0714990.056*
C90.18442 (13)0.36712 (10)0.3563 (2)0.0275 (3)
C100.08665 (16)0.33019 (13)0.2925 (3)0.0387 (4)
H100.0849140.3004210.1832680.046*
C110.00923 (16)0.33629 (15)0.3871 (3)0.0472 (5)
H110.0757700.3109970.3414500.057*
C120.00802 (16)0.37845 (15)0.5449 (3)0.0459 (5)
H120.0730840.3817510.6100180.055*
C130.08929 (16)0.41639 (15)0.6092 (3)0.0458 (5)
H130.0901300.4463230.7182420.055*
C140.18491 (15)0.41128 (12)0.5170 (2)0.0351 (4)
H140.2508190.4376670.5625520.042*
N40.68678 (12)0.11352 (9)0.0616 (2)0.0315 (3)
C150.65497 (12)0.18367 (10)0.0965 (2)0.0256 (3)
C160.83220 (16)0.44877 (12)0.0485 (3)0.0419 (4)
H16A0.7927000.4677420.1552360.063*
H16B0.9116810.4531200.0647280.063*
H16C0.8115910.4875120.0481020.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0263 (6)0.0142 (6)0.0343 (7)0.0000 (5)0.0071 (5)0.0012 (5)
N20.0272 (6)0.0182 (6)0.0342 (7)0.0009 (5)0.0066 (5)0.0017 (5)
C20.0304 (8)0.0157 (7)0.0300 (8)0.0013 (6)0.0013 (6)0.0014 (6)
N60.0334 (7)0.0140 (6)0.0427 (8)0.0005 (5)0.0080 (6)0.0015 (5)
N30.0277 (6)0.0172 (6)0.0307 (7)0.0014 (5)0.0036 (5)0.0010 (5)
C40.0250 (7)0.0202 (7)0.0268 (8)0.0008 (5)0.0001 (6)0.0017 (6)
S10.0273 (2)0.0258 (2)0.0404 (3)0.00045 (14)0.00645 (16)0.00140 (15)
C50.0268 (7)0.0155 (7)0.0292 (8)0.0015 (5)0.0020 (6)0.0003 (5)
C60.0281 (7)0.0151 (6)0.0293 (8)0.0011 (5)0.0024 (6)0.0004 (5)
O10.0321 (6)0.0147 (5)0.0395 (6)0.0013 (4)0.0085 (5)0.0017 (4)
C70.0326 (8)0.0133 (6)0.0323 (8)0.0012 (6)0.0022 (6)0.0009 (6)
C80.0372 (9)0.0407 (10)0.0347 (9)0.0056 (7)0.0016 (7)0.0074 (7)
C90.0293 (8)0.0177 (7)0.0357 (8)0.0006 (6)0.0024 (6)0.0042 (6)
C100.0386 (10)0.0376 (10)0.0398 (10)0.0085 (7)0.0007 (8)0.0043 (8)
C110.0309 (9)0.0582 (13)0.0523 (12)0.0121 (8)0.0017 (8)0.0152 (10)
C120.0310 (9)0.0529 (12)0.0544 (12)0.0046 (8)0.0113 (8)0.0105 (9)
C130.0400 (10)0.0495 (11)0.0485 (11)0.0038 (9)0.0118 (8)0.0079 (9)
C140.0317 (8)0.0314 (8)0.0423 (10)0.0003 (7)0.0055 (7)0.0062 (7)
N40.0328 (7)0.0215 (7)0.0404 (8)0.0024 (5)0.0059 (6)0.0005 (6)
C150.0254 (7)0.0206 (7)0.0310 (8)0.0006 (6)0.0029 (6)0.0020 (6)
C160.0404 (10)0.0290 (9)0.0571 (12)0.0104 (7)0.0146 (8)0.0067 (8)
Geometric parameters (Å, º) top
N1—C21.3705 (19)C11—C121.367 (3)
N1—C61.4138 (18)C12—C131.389 (3)
N1—N21.4248 (17)C13—C141.382 (3)
N2—C71.293 (2)N4—C151.152 (2)
C2—N61.326 (2)N6—H0610.84 (2)
C2—N31.333 (2)N6—H0620.84 (2)
N3—C41.3343 (19)C8—H8A0.9800
C4—C51.397 (2)C8—H8B0.9800
C4—S11.7522 (16)C8—H8C0.9800
S1—C161.7918 (19)C10—H100.9500
C5—C151.424 (2)C11—H110.9500
C5—C61.427 (2)C12—H120.9500
C6—O11.2253 (18)C13—H130.9500
C7—C91.482 (2)C14—H140.9500
C7—C81.492 (2)C16—H16A0.9800
C9—C101.386 (2)C16—H16B0.9800
C9—C141.401 (2)C16—H16C0.9800
C10—C111.395 (3)
C2—N1—C6123.03 (13)C13—C14—C9119.84 (17)
C2—N1—N2117.02 (12)N4—C15—C5178.96 (16)
C6—N1—N2118.81 (11)C2—N6—H061120.0 (16)
C7—N2—N1114.40 (13)C2—N6—H062119.2 (17)
N6—C2—N3120.02 (14)H061—N6—H062121 (2)
N6—C2—N1117.16 (14)C7—C8—H8A109.5
N3—C2—N1122.79 (13)C7—C8—H8B109.5
C2—N3—C4116.77 (13)H8A—C8—H8B109.5
N3—C4—C5124.02 (14)C7—C8—H8C109.5
N3—C4—S1119.47 (11)H8A—C8—H8C109.5
C5—C4—S1116.49 (11)H8B—C8—H8C109.5
C4—S1—C16101.93 (8)C9—C10—H10119.7
C4—C5—C15122.01 (14)C11—C10—H10119.7
C4—C5—C6120.40 (13)C12—C11—H11119.8
C15—C5—C6117.57 (13)C10—C11—H11119.8
O1—C6—N1120.40 (13)C11—C12—H12120.3
O1—C6—C5127.05 (13)C13—C12—H12120.3
N1—C6—C5112.55 (12)C14—C13—H13119.5
N2—C7—C9115.63 (14)C12—C13—H13119.5
N2—C7—C8125.04 (15)C13—C14—H14120.1
C9—C7—C8119.32 (15)C9—C14—H14120.1
C10—C9—C14118.69 (16)S1—C16—H16A109.5
C10—C9—C7120.25 (16)S1—C16—H16B109.5
C14—C9—C7121.04 (15)H16A—C16—H16B109.5
C9—C10—C11120.68 (19)S1—C16—H16C109.5
C12—C11—C10120.41 (18)H16A—C16—H16C109.5
C11—C12—C13119.33 (18)H16B—C16—H16C109.5
C14—C13—C12121.04 (19)
C2—N1—N2—C7118.94 (15)N2—N1—C6—C5173.87 (13)
C6—N1—N2—C772.88 (18)C4—C5—C6—O1179.25 (16)
C6—N1—C2—N6173.38 (14)C15—C5—C6—O12.5 (3)
N2—N1—C2—N65.7 (2)C4—C5—C6—N11.4 (2)
C6—N1—C2—N38.5 (2)C15—C5—C6—N1176.89 (14)
N2—N1—C2—N3176.15 (14)N1—N2—C7—C9176.69 (12)
N6—C2—N3—C4177.46 (15)N1—N2—C7—C82.8 (2)
N1—C2—N3—C44.5 (2)N2—C7—C9—C10166.23 (15)
C2—N3—C4—C50.7 (2)C8—C7—C9—C1013.2 (2)
C2—N3—C4—S1179.30 (11)N2—C7—C9—C1412.1 (2)
N3—C4—S1—C167.90 (16)C8—C7—C9—C14168.47 (16)
C5—C4—S1—C16173.40 (13)C14—C9—C10—C110.5 (3)
N3—C4—C5—C15179.67 (15)C7—C9—C10—C11177.85 (16)
S1—C4—C5—C151.0 (2)C9—C10—C11—C120.4 (3)
N3—C4—C5—C62.1 (3)C10—C11—C12—C131.0 (3)
S1—C4—C5—C6179.25 (12)C11—C12—C13—C140.7 (3)
C2—N1—C6—O1174.16 (15)C12—C13—C14—C90.1 (3)
N2—N1—C6—O16.7 (2)C10—C9—C14—C130.7 (3)
C2—N1—C6—C56.5 (2)C7—C9—C14—C13177.59 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H061···O1i0.84 (2)2.24 (3)2.9899 (17)149 (2)
N6—H062···N4i0.84 (2)2.33 (2)3.054 (2)144 (2)
C8—H8A···O1ii0.982.523.279 (2)134
N6—H062···N20.84 (2)2.25 (2)2.6273 (19)108 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
(E)-2-Amino-4-methylsulfanyl-6-oxo-1-[1-(pyridin-2-yl)ethylideneamino]-1,6-dihydropyrimidine-5-carbonitrile (3b) top
Crystal data top
C13H12N6OSF(000) = 624
Mr = 300.35Dx = 1.460 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 13.4774 (5) ÅCell parameters from 27720 reflections
b = 7.6797 (3) Åθ = 3.9–77.3°
c = 14.2755 (6) ŵ = 2.19 mm1
β = 112.401 (5)°T = 100 K
V = 1366.04 (10) Å3Plate, orange
Z = 40.12 × 0.08 × 0.02 mm
Data collection top
Rigaku XtaLAB Synergy, Single source at home/near, HyPix
diffractometer
2905 independent reflections
Radiation source: micro-focus sealed X-ray tube2813 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.042
ω scansθmax = 77.6°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1717
Tmin = 0.782, Tmax = 1.000k = 99
54131 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.8192P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2905 reflectionsΔρmax = 0.33 e Å3
200 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.6755 (0.0064) x + 6.5784 (0.0022) y + 0.7860 (0.0078) z = 2.0405 (0.0036)

* 0.0570 (0.0009) N1 * -0.0128 (0.0009) C2 * -0.0287 (0.0009) N3 * 0.0218 (0.0009) C4 * 0.0224 (0.0009) C5 * -0.0598 (0.0009) C6 -0.2034 (0.0018) O1 -0.1436 (0.0019) N2 -0.0415 (0.0019) N6 0.0815 (0.0018) S1 -0.1786 (0.0031) C15

Rms deviation of fitted atoms = 0.0383

6.7262 (0.0067) x + 6.5062 (0.0024) y - 0.3110 (0.0086) z = 4.9821 (0.0009)

Angle to previous plane (with approximate esd) = 63.117 ( 0.033 )

* -0.0062 (0.0009) C9 * -0.0031 (0.0009) N5 * 0.0095 (0.0010) C10 * -0.0064 (0.0011) C11 * -0.0026 (0.0011) C12 * 0.0087 (0.0010) C13

Rms deviation of fitted atoms = 0.0066

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24070 (9)0.52162 (15)0.34716 (8)0.0181 (2)
N20.25298 (10)0.51485 (15)0.25281 (9)0.0200 (2)
C20.32652 (10)0.58859 (17)0.42667 (10)0.0180 (3)
N60.40369 (9)0.66515 (16)0.40482 (9)0.0210 (2)
H0610.4563 (16)0.711 (3)0.4535 (15)0.034 (5)*
H0620.3927 (14)0.680 (2)0.3424 (15)0.026 (4)*
N30.33350 (9)0.58187 (16)0.52197 (8)0.0202 (2)
C40.25208 (11)0.50497 (18)0.53832 (10)0.0211 (3)
S10.25540 (3)0.50264 (6)0.66187 (3)0.03285 (13)
C50.16475 (10)0.42545 (18)0.46300 (10)0.0202 (3)
C60.15960 (10)0.41990 (17)0.36111 (10)0.0186 (3)
O10.09466 (7)0.34075 (13)0.28923 (7)0.0216 (2)
C70.17715 (10)0.58645 (17)0.17779 (10)0.0182 (3)
C80.08130 (10)0.68105 (18)0.17933 (10)0.0201 (3)
H8A0.0162820.6153190.1403830.030*
H8B0.0776860.7966600.1491460.030*
H8C0.0868580.6934000.2494890.030*
C90.19145 (10)0.57067 (17)0.07948 (10)0.0189 (3)
N50.11472 (9)0.64664 (16)0.00075 (8)0.0220 (3)
C100.12509 (11)0.6336 (2)0.09027 (11)0.0259 (3)
H100.0726320.6883180.1474220.031*
C110.20768 (12)0.5451 (2)0.10409 (11)0.0279 (3)
H110.2103580.5371260.1695000.034*
C120.28675 (12)0.4679 (2)0.02112 (12)0.0262 (3)
H120.3447610.4068110.0282700.031*
C130.27859 (11)0.48252 (18)0.07219 (11)0.0227 (3)
H130.3318790.4329580.1307820.027*
C140.08272 (11)0.33814 (19)0.48529 (10)0.0227 (3)
N40.01756 (10)0.26795 (19)0.50465 (10)0.0308 (3)
C150.38704 (14)0.5880 (3)0.73425 (12)0.0390 (4)
H15A0.3938740.7047060.7095430.058*
H15B0.4415620.5112180.7266680.058*
H15C0.3972650.5946360.8059060.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (5)0.0247 (6)0.0125 (5)0.0003 (4)0.0049 (4)0.0006 (4)
N20.0198 (5)0.0264 (6)0.0136 (5)0.0002 (4)0.0064 (4)0.0001 (4)
C20.0157 (6)0.0207 (6)0.0162 (6)0.0028 (5)0.0045 (5)0.0002 (5)
N60.0180 (5)0.0300 (6)0.0141 (5)0.0032 (5)0.0051 (4)0.0004 (5)
N30.0187 (5)0.0270 (6)0.0146 (5)0.0012 (4)0.0059 (4)0.0002 (4)
C40.0206 (6)0.0266 (7)0.0161 (6)0.0004 (5)0.0071 (5)0.0005 (5)
S10.0295 (2)0.0535 (3)0.0176 (2)0.01433 (17)0.01126 (16)0.00596 (15)
C50.0181 (6)0.0250 (7)0.0177 (6)0.0004 (5)0.0068 (5)0.0009 (5)
C60.0153 (6)0.0214 (6)0.0172 (6)0.0028 (5)0.0040 (5)0.0017 (5)
O10.0189 (4)0.0266 (5)0.0164 (4)0.0019 (4)0.0034 (4)0.0010 (4)
C70.0172 (6)0.0201 (6)0.0162 (6)0.0032 (5)0.0050 (5)0.0006 (5)
C80.0185 (6)0.0232 (6)0.0173 (6)0.0008 (5)0.0053 (5)0.0010 (5)
C90.0183 (6)0.0204 (6)0.0171 (6)0.0035 (5)0.0059 (5)0.0020 (5)
N50.0177 (5)0.0300 (6)0.0164 (5)0.0025 (5)0.0042 (4)0.0001 (4)
C100.0208 (6)0.0387 (8)0.0156 (6)0.0042 (6)0.0041 (5)0.0003 (6)
C110.0279 (7)0.0399 (8)0.0175 (6)0.0050 (6)0.0102 (6)0.0047 (6)
C120.0254 (7)0.0300 (7)0.0262 (7)0.0011 (6)0.0133 (6)0.0040 (6)
C130.0223 (7)0.0239 (7)0.0215 (7)0.0002 (5)0.0077 (5)0.0012 (5)
C140.0208 (6)0.0270 (7)0.0191 (6)0.0003 (5)0.0061 (5)0.0000 (5)
N40.0256 (6)0.0353 (7)0.0330 (7)0.0034 (5)0.0128 (5)0.0028 (6)
C150.0344 (8)0.0639 (12)0.0189 (7)0.0177 (8)0.0104 (6)0.0091 (7)
Geometric parameters (Å, º) top
N1—C21.3747 (17)N5—C101.3412 (18)
N1—C61.4179 (17)C10—C111.381 (2)
N1—N21.4191 (16)C11—C121.389 (2)
N2—C71.2883 (18)C12—C131.382 (2)
C2—N31.3286 (17)C14—N41.1503 (19)
C2—N61.3312 (17)N6—H0610.86 (2)
N3—C41.3425 (17)N6—H0620.853 (19)
C4—C51.3963 (19)C8—H8A0.9800
C4—S11.7473 (14)C8—H8B0.9800
S1—C151.8023 (16)C8—H8C0.9800
C5—C141.4287 (18)C10—H100.9500
C5—C61.4303 (18)C11—H110.9500
C6—O11.2263 (16)C12—H120.9500
C7—C81.4896 (18)C13—H130.9500
C7—C91.4925 (17)C15—H15A0.9800
C9—N51.3486 (17)C15—H15B0.9800
C9—C131.3934 (19)C15—H15C0.9800
C2—N1—C6122.76 (11)C13—C12—C11118.05 (14)
C2—N1—N2115.57 (10)C12—C13—C9119.36 (13)
C6—N1—N2119.21 (10)N4—C14—C5179.05 (15)
C7—N2—N1115.53 (11)C2—N6—H061118.1 (13)
N3—C2—N6120.03 (12)C2—N6—H062117.7 (12)
N3—C2—N1122.68 (12)H061—N6—H062123.4 (18)
N6—C2—N1117.28 (12)C7—C8—H8A109.5
C2—N3—C4116.84 (11)C7—C8—H8B109.5
N3—C4—C5124.29 (12)H8A—C8—H8B109.5
N3—C4—S1118.15 (10)C7—C8—H8C109.5
C5—C4—S1117.56 (10)H8A—C8—H8C109.5
C4—S1—C15102.47 (7)H8B—C8—H8C109.5
C4—C5—C14122.04 (12)N5—C10—H10118.1
C4—C5—C6119.75 (12)C11—C10—H10118.1
C14—C5—C6118.08 (12)C10—C11—H11120.4
O1—C6—N1119.88 (12)C12—C11—H11120.4
O1—C6—C5127.47 (12)C13—C12—H12121.0
N1—C6—C5112.65 (11)C11—C12—H12121.0
N2—C7—C8127.85 (12)C12—C13—H13120.3
N2—C7—C9113.66 (12)C9—C13—H13120.3
C8—C7—C9118.49 (11)S1—C15—H15A109.5
N5—C9—C13122.82 (12)S1—C15—H15B109.5
N5—C9—C7115.56 (12)H15A—C15—H15B109.5
C13—C9—C7121.62 (12)S1—C15—H15C109.5
C10—N5—C9116.89 (12)H15A—C15—H15C109.5
N5—C10—C11123.73 (13)H15B—C15—H15C109.5
C10—C11—C12119.12 (13)
C2—N1—N2—C7127.19 (13)N2—N1—C6—C5173.52 (11)
C6—N1—N2—C770.10 (15)C4—C5—C6—O1172.14 (13)
C6—N1—C2—N38.6 (2)C14—C5—C6—O13.8 (2)
N2—N1—C2—N3170.61 (12)C4—C5—C6—N18.43 (18)
C6—N1—C2—N6172.59 (12)C14—C5—C6—N1175.67 (12)
N2—N1—C2—N610.56 (17)N1—N2—C7—C82.8 (2)
N6—C2—N3—C4179.06 (12)N1—N2—C7—C9177.94 (10)
N1—C2—N3—C40.26 (19)N2—C7—C9—N5178.88 (12)
C2—N3—C4—C53.3 (2)C8—C7—C9—N50.50 (17)
C2—N3—C4—S1177.08 (10)N2—C7—C9—C131.27 (18)
N3—C4—S1—C157.55 (14)C8—C7—C9—C13179.35 (12)
C5—C4—S1—C15172.11 (12)C13—C9—N5—C100.3 (2)
N3—C4—C5—C14176.96 (13)C7—C9—N5—C10179.57 (12)
S1—C4—C5—C142.67 (19)C9—N5—C10—C111.3 (2)
N3—C4—C5—C61.2 (2)N5—C10—C11—C121.6 (2)
S1—C4—C5—C6178.41 (10)C10—C11—C12—C130.4 (2)
C2—N1—C6—O1168.41 (12)C11—C12—C13—C91.0 (2)
N2—N1—C6—O17.00 (18)N5—C9—C13—C121.4 (2)
C2—N1—C6—C512.11 (17)C7—C9—C13—C12178.41 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H061···N5i0.86 (2)2.26 (2)3.0122 (17)146.2 (17)
N6—H062···O1ii0.853 (19)2.307 (19)3.0886 (15)152.4 (17)
C10—H10···O1iii0.952.403.2351 (17)147
N6—H062···N20.853 (19)2.228 (18)2.6091 (17)107.1 (14)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z.
 

References

First citationAbu-Zaied, M. A., Elgemeie, G. H. & Mahmoud, N. M. (2021). Nucleosides Nucleotides Nucleic Acids, 40, 336–356.  CAS PubMed Google Scholar
First citationAbu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 20042–20050.  CAS Google Scholar
First citationElgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 12–87.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H. & Mohamed, R. A. (2014). Heterocycl. Commun. 20, 257–269, 313–331.  Google Scholar
First citationElgemeie, G. H. & Mohamed, R. A. (2019). J. Carbohydr. Chem. 38, 20–66.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015b). Acta Cryst. E71, 1322–1324.  CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015a). Acta Cryst. E71, 1319–1321.  CSD CrossRef IUCr Journals Google Scholar
First citationGalmarini, C. M., Jordheim, L. & Dumontet, C. (2003). Expert Rev. Anticancer Ther. 3, 717–728.  CrossRef PubMed CAS Google Scholar
First citationHu, Z., Ou, L., Li, S. & Yang, L. (2014). Med. Chem. Res. 23, 3029–3038.  CrossRef CAS Google Scholar
First citationMarsault, E., Benakli, K., Beaubien, S., Saint-Louis, C., Déziel, R. & Fraser, G. (2007). Bioorg. Med. Chem. Lett. 17, 4187–4190.  CrossRef PubMed CAS Google Scholar
First citationPaget, S. D., Boggs, C. M., Foleno, B. D., Goldschmidt, R. M., Hlasta, D. J., Weidner-Wells, M. A., Werblood, H. M., Bush, K. & Macielag, M. J. (2006). Bioorg. Med. Chem. Lett. 16, 4537–4542.  CrossRef PubMed CAS Google Scholar
First citationPruijssers, A. J. & Denison, M. R. (2019). Curr. Opin. Virol. 35, 57–62.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSimons, C., Wu, Q. & Htar, T. (2005). Curr. Top. Med. Chem. 5, 1191–1203.  CrossRef PubMed CAS Google Scholar
First citationThomae, D., Perspicace, E., Xu, Z., Henryon, D., Schneider, S., Hesse, S., Kirsch, G. & Seck, P. (2009). Tetrahedron, 65, 2982–2988.  CrossRef CAS Google Scholar
First citationXu, Y.-Z., Zhang, X., Wu, H.-C., Massey, A. & Karran, P. (2004). Bioorg. Med. Chem. Lett. 14, 995–997.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds