- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Hirshfeld surface analysis and two-dimensional fingerprint plots for H4L1_A, and H4L1_B
- 5. Energies frameworks for H4L1_A, and H4L1_B
- 6. Database survey
- 7. Synthesis and crystallization
- 8. Refinement
- Supporting information
- References
- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Hirshfeld surface analysis and two-dimensional fingerprint plots for H4L1_A, and H4L1_B
- 5. Energies frameworks for H4L1_A, and H4L1_B
- 6. Database survey
- 7. Synthesis and crystallization
- 8. Refinement
- Supporting information
- References
research communications
A new tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetrapropionic acid: crystal structures of two triclinic polymorphs and of two potassium–organic frameworks
aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
Two polymorphs of the title tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid, C20H28N2O8S4, (H4L1), have been obtained, H4L1_A and H4L1_B. Each structure crystallized with half a molecule in the of a triclinic P The whole molecules are generated by inversion symmetry, with the pyrazine rings being located about inversion centers. The crystals of H4L1_B were of poor quality, but the X-ray does show the change in conformation of the –CH2—S—CH2—CH2– side chains compared to those in polymorph H4L1_A. In the crystal of H4L1_A, molecules are linked by two pairs of O—H⋯O hydrogen bonds, enclosing R22(8) ring motifs forming layers parallel to plane (100), which are linked by C—H⋯O hydrogen bonds to form a supramolecular framework. In the crystal of H4L1_B, molecules are also linked by two pairs of O—H⋯O hydrogen bonds enclosing R22(8) ring motifs, however here, chains are formed propagating in the [001] direction and stacking up the a-axis. Reaction of H4L1 with Hg(NO3)2 in the presence of a potassium acetate buffer did not produce the expected binuclear complex, instead crystals of a potassium–organic framework were obtained, poly[(μ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium], [K(C20H27N2O8S4)]n (KH3L1). The organic mono-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. A carboxy H atom is disordered by symmetry and the charge is compensated for by a potassium ion. A similar reaction with Zn(NO3)2 resulted in the formation of crystals of a dipotassium-organic framework, poly[(μ-3,3′-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium], [K2(C20H26N2O8S4)]n (K2H2L1). Here, the organic di-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. Two symmetry-related acid groups are deprotonated and the charges are compensated for by two potassium ions.
1. Chemical context
The title tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl)]tetrapropionic acid (H4L1), is to the best of our knowledge, only the third pyrazine tetrakis-substituted carboxylic acid ligand to have been synthesized. The first is pyrazine-2,3,5,6-tetracarboxylic acid (pztca), which was originally synthesized by Wolff at the end of the 19th century (Wolff, 1887, 1893), while the second is 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetrayl)tetrabenzoic acid (pztba), which was first synthesized by Jiang et al. (2017). Pztca (Fig. 1) has been used to synthesize a number of coordination polymers, the first being poly{[(2,5-dicarboxypyrazine-3,6-dicarboxylato)transdiaquairon(II) dihydrate]} (Marioni et al., 1986), while pztba (Fig. 1) has been shown to form a series of metal–organic frameworks (Jiang et al., 2017; Wang et al., 2019).
The title ligand was synthesized to study its coordination behaviour with various transition metal ions (Pacifico, 2003). Potentially the ligand can coordinate in a bis-pentadentate manner, as was shown to be the case for a similar ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetrakis(ethan-1-amine) (H4L2), for which two nickel(II) binuclear complexes, I and II, were synthesized (Pacifico, 2003; Pacifico & Stoeckli-Evans, 2020); see Fig. 2.
2. Structural commentary
The title tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl)]tetrapropionic acid (H4L1_A), crystallized with half a molecule in the (Fig. 3). The whole molecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center.
In an attempt to form a H4L1 and terephthalic acid were mixed in methanol. On slow evaporation of the solvent, colourless plate-like crystals were obtained. X-ray revealed their structure to be that of a second triclinic P polymorph, H4L1_B (Fig. 4). It crystallized with half a molecule in the and the whole molecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center. The crystals were of poor quality with one CH2—CH2—CO2H side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B) of the centrosymmetric molecule being positionally disordered (Fig. 4b). The difference in the two polymorphs is essentially in the orientation of the –CH2—S—CH2—CH2—C– side arms, as shown in Fig. 5a and b. Selected torsion angles are given in Table 1.
equimolar amounts of
|
Reaction of H4L1 with Hg(NO3)2 in the presence a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a potassium–organic framework (KH3L1); see Fig. 6. The consists of half a mono-deprotonated ligand molecule located about an inversion center, and half a potassium ion located on an inversion center. The carboxy H atom is disordered by symmetry. The K+ ion is linked to the O atoms of the acid groups and has a of eight (KO8) and a distorted dodecahedral geometry (Fig. 7a). The K⋯O bond lengths vary between 2.682 (2) and 3.069 (3) Å (Table 2). Interestingly, here there is a significant difference between the K⋯O(C=O) and K⋯O(O−) distances: 2.6823 (2) and 2.828 (2) Å compared to 3.056 (3) and 3.069 (3) Å, respectively.
|
Reaction of H4L1 with Zn(NO3)2 in the presence of a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a dipotassium–organic framework (K2H2L1); see Fig. 8. The consists of half a di-deprotonated ligand molecule located about an inversion center, and two half potassium ions located on inversion centers. The K+ ions are linked to the O atoms of the acid groups and both K+ ions have a of six (KO6) and have edge-sharing bipyramidal geometries. The K+ ions are bridged by atoms O1 and O3, forming chains propagating along the b-axis direction (Fig. 7b). The K⋯O bond lengths vary between 2.6682 (12) and 2.8099 (14) Å (Table 3). Here, the difference between the K⋯O(C=O) and K⋯O(O−) bond lengths is much less significant (Table 3).
|
The K⋯O bond lengths in the KH3L1 and K2H2L1 frameworks are close to those observed for similar compounds; see §6 Database survey. The conformation of one of the –CH2—S—CH2—CH2– side chains (involving atom S1) of the organic anion are similar, and similar to that in H4L1_B (Fig. 5b), while the conformation of the second (involving atom S2) differs significantly (Fig. 5c and d, and Table 1).
3. Supramolecular features
In the crystal of H4L1_A, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carboxylic acid inversion dimers enclosing R22(8) loops (Fig. 9 and Table 4). These interactions lead to the formation of layers lying parallel to the bc plane. The layers are linked by C—H⋯O hydrogen bonds (Table 4), forming a supramolecular framework.
In the crystal of H4L1_B, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction and enclosing R22(8) loops (Fig. 10 and Table 5). There are no other significant directional contacts present in the crystal.
|
In both KH3L1 and K2H2L1, the organic anions are arranged as rungs of parallel ladders, so forming the framework structures, as shown in Figs. 11 and 12, respectively. The frameworks are reinforced by O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds (Tables 6 and 7, respectively).
|
4. Hirshfeld surface analysis and two-dimensional fingerprint plots for H4L1_A, and H4L1_B
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017) following the protocol of Tiekink and collaborators (Tan et al., 2019).
The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of H4L1_A, and H4L1_B mapped over dnorm are given in Fig. 13. The most significant short contacts in the crystal structures of the two polymorphs are given in Table 8. The large red spots in Fig. 13a and b concern the O—H⋯O hydrogen bonds in the crystal structures of both compounds.
|
The percentage contributions of inter-atomic contacts to the HS for both compounds are compared in Table 9. The two-dimensional fingerprint plots for compounds H4L1_A, and H4L1_B are shown in Fig. 14. They reveal that the principal contributions to the overall HS involve H⋯H contacts at 37.2 and 36.3%, respectively, and O⋯H/H⋯O contacts at, respectively, 37.7 and 32.2%.
|
The third most important contribution to the HS is from the S⋯H/H⋯S contacts at 13.4 and 16.1%, for H4L1_A, and H4L1_B, respectively. These are followed by C⋯H/H⋯H contacts at, respectively, 4.5 and 4.9%. The N⋯H/H⋯N contacts contribute, respectively, 3.0 and 2.5%.
5. Energies frameworks for H4L1_A, and H4L1_B
The colour-coded interaction mappings within a radius of 6 Å of a central reference molecule for H4L1_A, and H4L1_B, are given in Fig. 15. Full details of the various contributions to the total energy (Etot) are also included there; see Tan et al. (2019) for an explanation of the various parameters.
A comparison of the energy frameworks calculated for H4L1_A, and H4L1_B, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 16. The energies were obtained by using the wave function at the HF/3-21G level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Turner et al., 2017; Tan et al., 2019). They have been adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å of a central reference molecule. It can be seen that for both polymorphs the major contribution to the intermolecular interactions is from electrostatic potential forces (Eele), reflecting the presence of the classical O—H⋯O hydrogen bonds.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) for tetrakis-substituted pyrazine carboxylic acids gave results for only two such ligands, viz. 2,3,5,6-pyrazinetetracarboxylic acid (pztca) and 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (pztba). Ligand pztba has been shown to be extremely successful in forming metal–organic frameworks (Jiang et al., 2017; Wang et al., 2019).
Potassium salts of carboxylic acids are relatively common. A search for potassium salts of purely organic carboxylic acids and excluding hydrates, yielded over 200 hits. The potassium salt of pztca has been reported, viz. catena-[(μ4-3,5,6-tricarboxypyrazine-2-carboxylato)potassium] (CSD refcode UBUPAK; Masci et al., 2010). The structure of UBUPAK is that of a potassium–organic framework (Fig. 17a). The consists of half a mono-deprotonated ligand molecule located about an inversion center, and half a potassium ion. The carboxy H atom is disordered by symmetry, similar to the situation in the structure of KH3L1. Here the K⋯O bond lengths vary from 2.7951 (11) to 2.8668 (13) Å. The K+ cation has a of 8 (KO8) and a distorted dodecahedral geometry as in KH3L1 (Fig. 7a and 11).
The structure of the potassium salt of pyrazine-2,3-dicarboxylic acid (pzdca; Fig. 1), catena-[(μ2-3-carboxypyrazine-2-carboxylato)-(μ2-pyrazine-2,3-dicarboxylic acid)diaquapotassium], has been reported (RISYIC; Tombul et al., 2008). It has a polymer chain structure with the chains linked by O—H⋯O hydrogen bonds, forming a supramolecular framework. Here the K⋯O bond lengths vary from 2.8772 (14) to 3.0898 (14) Å.
The structures of two potassium salts of 2,6-pyridine-dicarboxylic acid (pydca; Fig. 1) have been reported. They include, bis(μ2-pyridine-2,6-dicarboxylic acid-N,O,O′:O′)-hexaaquabis(6-carboxypyridine-2-carboxylato-O)dipotassium (HAMBEE; Santra et al., 2011; HAMBEE01; Hayati et al., 2017), and catena-[(μ-6-carboxypyridine-2-carboxylato)potassium] (MUMPIW; Li et al., 2020). HAMBEE is a binuclear complex, which is linked by O—H⋯O hydrogen bonds to form supramolecular chains. The K⋯O bond lengths vary from 2.721 (2) to 3.054 (3) Å.
The structure of MUMPIW is that of a potassium-organic framework (Fig. 17b), with the K⋯O bonds lengths varying from 2.8197 (14) to 3.0449 (15) Å. The K+ ion has a of seven (KO6N) and has an edge-sharing pentagonal antiprism geometry, forming chains (Fig. 17b). This structure can be compared to that of K2H2L1 where the two independent K+ ions, each with a of six (KO6), have edge-sharing bipyramidal geometries, also forming chains (Fig. 7b and 12).
7. Synthesis and crystallization
The synthesis and et al., 1994; Assoumatine & Stoeckli-Evans, 2014 [CSD refcode: TOJXUN]).
of the reagent tetra-2,3,5,6-bromomethyl-pyrazine (TBr) have been reported (FerigoSynthesis of 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetrapropionic acid (H4L1):
Mercaptopropionic acid (1.8795 g, 1.77 mol, 4 eq) was dissolved in 50 ml THF. A minimum amount of water (a few ml) was added to dissolve 1.4166 g (3.54 mol, 8 eq) of NaOH. The volume of the mixture was increased to 100 ml by adding THF and the reaction was stirred under reflux for 1 h. Then TBr (2 g, 4.42 mol, 1 eq) dissolved in 50 ml THF was added dropwise using an addition funnel. The mixture was stirred under reflux for 6 h. After drying under vacuum, the residue was dissolved in 50 ml of deionized water, and HCl puriss. was added dropwise until a clearly acid pH was obtained. This mixture was stirred at room temperature for 1–2 h. The yellow precipitate that formed was filtered off and washed with a minimum amount of water and then CHCl3. It was then dried under vacuum conditions. Recrystallization carried out with methanol gave pale-yellow crystals of H4L1 (yield 88%, m.p. 466 K) that X-ray indicated to be triclinic polymorph H4L1_A.
The presence of terephthalic acid in an equimolar quantity with H4L1 in methanol gave colourless crystals of rather poor quality. However, X-ray indicated that a second triclinic (P) polymorph, H4L1_B, had been obtained.
Spectroscopic and elemental analyses:
Rf: 0.77 (solvent: CH3OH).
1H NMR (CD3OD, 400 MHz), δ(ppm): 4.03 (s, 8H, H2), 2.78 (t, 8H, 3J(3,4) = 7.0, H3), 2.62 (t, 8H, 3J(4,3) = 7.0, H4).
13C NMR (CD3OD, 50 MHz), δ(ppm): 174.54 (4C, C5), 150.12 (4C, C1), 34.29 (4C, C4), 33.64 (4C, C2), 26.65 (4C, C3).
Elemental Analysis for C20H28N2O8S4, Mw = 552.71 g mol−1: Calculated: C 43.46, H 5.11, N 5.07%. Found: C 43.40, H 5.17, N 4.87%.
ESI–MS, m/z: 591.04 [M + K]+; 575.06 [M + Na]+; 553.08 [M + H]+; 471.07; 449.09.
IR (KBr disc, cm−1) ν: 2926(s), 2666(m), 2590(s), 1693(s), 1429(s), 1406(s), 1340(m), 1270(s), 1200(s), 1163(m), 1134(s), 1107(m), 1055(w), 918(s), 658(m), 489(m).
Synthesis of poly[(μ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoate)potassium] (KH3L1):
Hg(NO3)2 (45.0 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1 eq) were mixed together in 20 ml of a 1 M potassium acetate buffer. The mixture was left at 323 K under stirring and nitrogen conditions for 1 h. The mixture was then filtered and left to evaporate in air for six weeks. Colourless plate-like crystals were obtained, which were shown to be a potassium–organic framework.
IR (KBr disc, cm−1) ν: 3422(m), 2922(m), 1713(m), 1580(s), 1399(s), 1247(m), 1190(m), 1152(m), 1114(m), 811(m), 787(m).
Synthesis of poly[(μ-3,3′-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1):
Zn(NO3)2 (28.4 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1eq) were mixed together in 20 ml of a 1M potassium acetate buffer. The mixture was left at 323 K under stirring and nitrogen for 1 h. The mixture was then filtered and left to evaporate in air for 6 weeks. Colourless plate-like crystals were obtained, which proved to be a dipotassium-organic framework.
IR (KBr disc, cm−1) ν: 3401(m), 1579(s), 1401(s), 1303(m).
8. Refinement
Crystal data, data collection and structure .
details are summarized in Table 10
|
For H4L1_A, KH3L1 and K2H2L1, the various –CO2H H atoms were located in difference-Fourier maps and freely refined. For H4L1_B, the –CO2H H atoms were difficult to locate, probably due to the poor quality of the crystal and the disorder in the side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B; Fig. 4b). They were therefore included in calculated positions assuming the formation of carboxylic acid dimers; O—H = 0.82 Å and refined as riding with Uiso(H) = 1.5Ueq(O).
As in the K+ salt of pyrazine tetracarboxylic acid (UBUPAK; Masci et al., 2010), the carboxy H atom in KH3L1 is disordered by symmetry, hence the H atom on O3 was given an occupancy factor of 0.5 to balance the charges.
For all four compounds, the C-bound H atoms were included in calculated positions and treated as riding on their parent C atom with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).
For H4L1_A and H4L1_B, the alert _diffrn_reflns_point_group_measured_fraction_full value (0.94 and 0.93, respectively) below minimum (0.95) was given. For H4L1_A it involves 131 random reflections out of a total of 2180, viz. 6.0%, while for H4L1_B it involves 158 random reflections out of a total of 2184, viz. 7.2%.
For H4L1_A, H4L1_B and K2H2L1 the multiplicity of reflections was 2 or less and so an empirical absorption correction was applied.
Supporting information
https://doi.org/10.1107/S2056989021003479/pk2656sup1.cif
contains datablocks H4L1A, H4L1B, KH3L1, K2H2L1, Global. DOI:Structure factors: contains datablock H4L1A. DOI: https://doi.org/10.1107/S2056989021003479/pk2656H4L1Asup2.hkl
Structure factors: contains datablock H4L1B. DOI: https://doi.org/10.1107/S2056989021003479/pk2656H4L1Bsup3.hkl
Structure factors: contains datablock KH3L1. DOI: https://doi.org/10.1107/S2056989021003479/pk2656KH3L1sup4.hkl
Structure factors: contains datablock K2H2L1. DOI: https://doi.org/10.1107/S2056989021003479/pk2656K2H2L1sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021003479/pk2656H4L1Asup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021003479/pk2656H4L1Bsup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021003479/pk2656KH3L1sup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021003479/pk2656K2H2L1sup9.cml
Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000) for H4L1A; X-AREA (Stoe & Cie, 2002) for H4L1B, KH3L1, K2H2L1. Cell
CELL in IPDS-I (Stoe & Cie, 2000) for H4L1A; X-AREA (Stoe & Cie, 2002) for H4L1B, KH3L1, K2H2L1. Data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2000) for H4L1A; X-RED32 (Stoe & Cie, 2002) for H4L1B, KH3L1, K2H2L1. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015). Molecular graphics: Mercury (Macrae et al., 2020) for H4L1A; PLATON (Spek, 2020) and Mercury (Macrae et al., 2020) for H4L1B, KH3L1, K2H2L1. For all structures, software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C20H28N2O8S4 | Z = 1 |
Mr = 552.68 | F(000) = 290 |
Triclinic, P1 | Dx = 1.517 Mg m−3 |
a = 5.5843 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.0061 (14) Å | Cell parameters from 3225 reflections |
c = 12.739 (2) Å | θ = 2.4–25.9° |
α = 101.537 (18)° | µ = 0.44 mm−1 |
β = 94.313 (18)° | T = 293 K |
γ = 103.701 (17)° | Plate, pale-yellow |
V = 604.80 (17) Å3 | 0.35 × 0.30 × 0.05 mm |
STOE IPDS 1 diffractometer | 2194 independent reflections |
Radiation source: fine-focus sealed tube | 1452 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.058 |
φ rotation scans | θmax = 25.9°, θmin = 2.4° |
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) | h = −6→6 |
Tmin = 0.647, Tmax = 0.897 | k = −11→11 |
4709 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0478P)2] where P = (Fo2 + 2Fc2)/3 |
2194 reflections | (Δ/σ)max < 0.001 |
162 parameters | Δρmax = 0.35 e Å−3 |
2 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.40170 (15) | 0.39121 (9) | 0.29698 (6) | 0.0312 (2) | |
S2 | 1.27548 (15) | 0.86290 (9) | 0.37908 (6) | 0.0288 (2) | |
O1 | −0.3381 (5) | 0.0716 (3) | 0.12207 (17) | 0.0435 (6) | |
O2 | −0.2098 (5) | 0.1064 (3) | −0.03567 (17) | 0.0409 (6) | |
H2O | −0.363 (5) | 0.052 (5) | −0.059 (4) | 0.098 (19)* | |
O3 | 0.7761 (4) | 0.5277 (3) | 0.08084 (16) | 0.0379 (6) | |
O4 | 0.5045 (5) | 0.6736 (3) | 0.09232 (19) | 0.0422 (6) | |
H4O | 0.422 (8) | 0.607 (4) | 0.039 (3) | 0.087 (17)* | |
N1 | 0.8353 (4) | 0.5540 (3) | 0.44074 (17) | 0.0198 (5) | |
C1 | 0.7859 (5) | 0.4024 (3) | 0.4451 (2) | 0.0194 (6) | |
C2 | 1.0447 (5) | 0.6523 (3) | 0.4952 (2) | 0.0183 (6) | |
C3 | 0.5460 (5) | 0.2957 (3) | 0.3850 (2) | 0.0248 (6) | |
H3A | 0.434405 | 0.264980 | 0.436177 | 0.030* | |
H3B | 0.577409 | 0.201607 | 0.342827 | 0.030* | |
C4 | 0.1473 (6) | 0.2234 (4) | 0.2308 (2) | 0.0328 (7) | |
H4A | 0.202811 | 0.128008 | 0.222673 | 0.039* | |
H4B | 0.011542 | 0.214305 | 0.274306 | 0.039* | |
C5 | 0.0600 (6) | 0.2449 (4) | 0.1219 (2) | 0.0347 (8) | |
H5A | 0.041788 | 0.350865 | 0.129466 | 0.042* | |
H5B | 0.186183 | 0.233148 | 0.074799 | 0.042* | |
C6 | −0.1807 (6) | 0.1321 (3) | 0.0698 (2) | 0.0291 (7) | |
C7 | 1.0877 (6) | 0.8196 (3) | 0.4857 (2) | 0.0239 (6) | |
H7A | 1.170302 | 0.887935 | 0.554088 | 0.029* | |
H7B | 0.928434 | 0.841937 | 0.471163 | 0.029* | |
C8 | 1.0935 (6) | 0.7220 (4) | 0.2615 (2) | 0.0277 (7) | |
H8A | 1.187763 | 0.725553 | 0.200717 | 0.033* | |
H8B | 1.068152 | 0.617707 | 0.275367 | 0.033* | |
C9 | 0.8427 (6) | 0.7491 (3) | 0.2307 (2) | 0.0290 (7) | |
H9A | 0.742172 | 0.735720 | 0.288698 | 0.035* | |
H9B | 0.866452 | 0.856524 | 0.223186 | 0.035* | |
C10 | 0.7046 (6) | 0.6407 (4) | 0.1277 (2) | 0.0283 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0292 (5) | 0.0246 (4) | 0.0348 (4) | −0.0018 (3) | −0.0101 (3) | 0.0109 (3) |
S2 | 0.0243 (5) | 0.0241 (4) | 0.0376 (4) | −0.0013 (3) | 0.0027 (3) | 0.0156 (3) |
O1 | 0.0333 (15) | 0.0501 (14) | 0.0362 (13) | −0.0022 (12) | −0.0093 (10) | 0.0054 (11) |
O2 | 0.0322 (16) | 0.0486 (14) | 0.0345 (13) | 0.0001 (13) | −0.0099 (10) | 0.0099 (10) |
O3 | 0.0400 (15) | 0.0425 (13) | 0.0341 (12) | 0.0216 (12) | −0.0002 (10) | 0.0039 (10) |
O4 | 0.0345 (15) | 0.0519 (15) | 0.0396 (13) | 0.0217 (13) | −0.0064 (11) | 0.0004 (12) |
N1 | 0.0182 (14) | 0.0159 (11) | 0.0242 (11) | 0.0010 (10) | −0.0009 (9) | 0.0072 (9) |
C1 | 0.0184 (16) | 0.0158 (13) | 0.0222 (13) | 0.0006 (12) | 0.0005 (10) | 0.0055 (10) |
C2 | 0.0182 (16) | 0.0125 (12) | 0.0226 (13) | 0.0011 (12) | 0.0009 (10) | 0.0047 (10) |
C3 | 0.0191 (17) | 0.0189 (14) | 0.0327 (15) | −0.0025 (13) | −0.0028 (11) | 0.0085 (11) |
C4 | 0.0259 (19) | 0.0290 (16) | 0.0359 (16) | −0.0069 (14) | −0.0053 (13) | 0.0097 (13) |
C5 | 0.032 (2) | 0.0279 (16) | 0.0404 (18) | 0.0008 (15) | −0.0080 (14) | 0.0114 (13) |
C6 | 0.0228 (19) | 0.0264 (16) | 0.0360 (17) | 0.0048 (15) | −0.0074 (13) | 0.0083 (13) |
C7 | 0.0251 (18) | 0.0155 (13) | 0.0313 (15) | 0.0028 (13) | 0.0021 (12) | 0.0088 (11) |
C8 | 0.0263 (18) | 0.0316 (16) | 0.0293 (15) | 0.0092 (14) | 0.0066 (12) | 0.0132 (12) |
C9 | 0.0281 (19) | 0.0276 (16) | 0.0324 (16) | 0.0074 (15) | 0.0008 (12) | 0.0097 (12) |
C10 | 0.0262 (18) | 0.0385 (17) | 0.0254 (15) | 0.0125 (15) | 0.0068 (12) | 0.0129 (13) |
S1—C3 | 1.796 (3) | C3—H3B | 0.9700 |
S1—C4 | 1.818 (3) | C4—C5 | 1.500 (4) |
S2—C8 | 1.813 (3) | C4—H4A | 0.9700 |
S2—C7 | 1.825 (3) | C4—H4B | 0.9700 |
O1—C6 | 1.233 (4) | C5—C6 | 1.493 (4) |
O2—C6 | 1.307 (4) | C5—H5A | 0.9700 |
O2—H2O | 0.87 (2) | C5—H5B | 0.9700 |
O3—C10 | 1.240 (4) | C7—H7A | 0.9700 |
O4—C10 | 1.294 (4) | C7—H7B | 0.9700 |
O4—H4O | 0.830 (19) | C8—C9 | 1.514 (4) |
N1—C2 | 1.332 (3) | C8—H8A | 0.9700 |
N1—C1 | 1.341 (3) | C8—H8B | 0.9700 |
C1—C2i | 1.406 (3) | C9—C10 | 1.499 (4) |
C1—C3 | 1.499 (4) | C9—H9A | 0.9700 |
C2—C7 | 1.500 (3) | C9—H9B | 0.9700 |
C3—H3A | 0.9700 | ||
C3—S1—C4 | 97.53 (13) | C4—C5—H5B | 108.8 |
C8—S2—C7 | 101.68 (14) | H5A—C5—H5B | 107.7 |
C6—O2—H2O | 108 (3) | O1—C6—O2 | 123.6 (3) |
C10—O4—H4O | 113 (3) | O1—C6—C5 | 122.7 (3) |
C2—N1—C1 | 119.1 (2) | O2—C6—C5 | 113.7 (3) |
N1—C1—C2i | 120.3 (2) | C2—C7—S2 | 112.8 (2) |
N1—C1—C3 | 117.7 (2) | C2—C7—H7A | 109.0 |
C2i—C1—C3 | 122.0 (2) | S2—C7—H7A | 109.0 |
N1—C2—C1i | 120.6 (2) | C2—C7—H7B | 109.0 |
N1—C2—C7 | 115.9 (2) | S2—C7—H7B | 109.0 |
C1i—C2—C7 | 123.4 (2) | H7A—C7—H7B | 107.8 |
C1—C3—S1 | 110.88 (18) | C9—C8—S2 | 114.2 (2) |
C1—C3—H3A | 109.5 | C9—C8—H8A | 108.7 |
S1—C3—H3A | 109.5 | S2—C8—H8A | 108.7 |
C1—C3—H3B | 109.5 | C9—C8—H8B | 108.7 |
S1—C3—H3B | 109.5 | S2—C8—H8B | 108.7 |
H3A—C3—H3B | 108.1 | H8A—C8—H8B | 107.6 |
C5—C4—S1 | 109.2 (2) | C10—C9—C8 | 113.5 (2) |
C5—C4—H4A | 109.8 | C10—C9—H9A | 108.9 |
S1—C4—H4A | 109.8 | C8—C9—H9A | 108.9 |
C5—C4—H4B | 109.8 | C10—C9—H9B | 108.9 |
S1—C4—H4B | 109.8 | C8—C9—H9B | 108.9 |
H4A—C4—H4B | 108.3 | H9A—C9—H9B | 107.7 |
C6—C5—C4 | 113.8 (3) | O3—C10—O4 | 122.8 (3) |
C6—C5—H5A | 108.8 | O3—C10—C9 | 122.4 (3) |
C4—C5—H5A | 108.8 | O4—C10—C9 | 114.8 (3) |
C6—C5—H5B | 108.8 | ||
C2—N1—C1—C2i | −1.2 (4) | C4—C5—C6—O1 | 26.8 (4) |
C2—N1—C1—C3 | 178.6 (2) | C4—C5—C6—O2 | −154.4 (3) |
C1—N1—C2—C1i | 1.2 (4) | N1—C2—C7—S2 | −94.0 (3) |
C1—N1—C2—C7 | 179.6 (2) | C1i—C2—C7—S2 | 84.3 (3) |
N1—C1—C3—S1 | 11.3 (3) | C8—S2—C7—C2 | 57.6 (2) |
C2i—C1—C3—S1 | −168.8 (2) | C7—S2—C8—C9 | 65.7 (2) |
C4—S1—C3—C1 | 174.1 (2) | S2—C8—C9—C10 | 174.8 (2) |
C3—S1—C4—C5 | −155.3 (2) | C8—C9—C10—O3 | 8.8 (4) |
S1—C4—C5—C6 | −167.9 (2) | C8—C9—C10—O4 | −171.8 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O1ii | 0.87 (2) | 1.80 (2) | 2.667 (3) | 172 (5) |
O4—H4O···O3iii | 0.83 (2) | 1.85 (2) | 2.673 (3) | 175 (5) |
C5—H5A···O3iv | 0.97 | 2.55 | 3.405 (4) | 147 |
C8—H8A···O4v | 0.97 | 2.40 | 3.308 (4) | 156 |
Symmetry codes: (ii) −x−1, −y, −z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z; (v) x+1, y, z. |
C20H28N2O8S4 | Z = 1 |
Mr = 552.68 | F(000) = 290 |
Triclinic, P1 | Dx = 1.509 Mg m−3 |
a = 4.9424 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.993 (3) Å | Cell parameters from 5563 reflections |
c = 14.190 (6) Å | θ = 2.4–25.5° |
α = 96.96 (3)° | µ = 0.44 mm−1 |
β = 97.14 (3)° | T = 293 K |
γ = 100.72 (3)° | Plate, colourless |
V = 608.1 (4) Å3 | 0.50 × 0.50 × 0.05 mm |
STOE IPDS 2 diffractometer | 2201 independent reflections |
Radiation source: fine-focus sealed tube | 1537 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.080 |
φ + ω scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) | h = −5→5 |
Tmin = 0.144, Tmax = 0.616 | k = −11→9 |
4152 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.071 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.208 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1049P)2 + 0.4241P] where P = (Fo2 + 2Fc2)/3 |
2201 reflections | (Δ/σ)max = 0.001 |
173 parameters | Δρmax = 0.47 e Å−3 |
6 restraints | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.7886 (3) | 0.28919 (12) | 0.71512 (9) | 0.0583 (4) | |
S2 | 0.6227 (3) | 0.07568 (12) | 0.39724 (10) | 0.0682 (5) | |
N1 | 1.2114 (8) | 0.5110 (4) | 0.5754 (3) | 0.0500 (9) | |
C1 | 0.9965 (9) | 0.3908 (4) | 0.5566 (3) | 0.0467 (10) | |
C2 | 0.7852 (9) | 0.3796 (4) | 0.4821 (3) | 0.0469 (10) | |
C3 | 1.0020 (10) | 0.2707 (4) | 0.6214 (3) | 0.0537 (11) | |
H3A | 1.192760 | 0.277226 | 0.650755 | 0.064* | |
H3B | 0.937959 | 0.170470 | 0.583113 | 0.064* | |
C4 | 0.9971 (12) | 0.4560 (5) | 0.7916 (4) | 0.0644 (13) | |
H4A | 1.087916 | 0.524956 | 0.752231 | 0.077* | |
H4B | 0.876729 | 0.509027 | 0.826037 | 0.077* | |
C5 | 1.2177 (12) | 0.4158 (6) | 0.8638 (4) | 0.0682 (14) | |
H5A | 1.332589 | 0.358948 | 0.829232 | 0.082* | |
H5B | 1.337009 | 0.509683 | 0.898069 | 0.082* | |
C6 | 1.0984 (14) | 0.3238 (6) | 0.9345 (4) | 0.0728 (15) | |
O1 | 0.8532 (10) | 0.3158 (5) | 0.9473 (3) | 0.0828 (12) | |
O2 | 1.2630 (12) | 0.2603 (9) | 0.9826 (5) | 0.136 (2) | |
H2O | 1.173990 | 0.186783 | 1.001978 | 0.204* | |
C7 | 0.5410 (10) | 0.2468 (5) | 0.4572 (4) | 0.0559 (11) | |
H7A | 0.394220 | 0.276430 | 0.416093 | 0.067* | |
H7B | 0.470023 | 0.224151 | 0.515671 | 0.067* | |
C8 | 0.6926 (16) | 0.1494 (6) | 0.2872 (5) | 0.0604 (17) | 0.821 (6) |
H8A | 0.530565 | 0.183752 | 0.258819 | 0.072* | 0.821 (6) |
H8B | 0.847467 | 0.236521 | 0.301719 | 0.072* | 0.821 (6) |
C9 | 0.7607 (15) | 0.0292 (6) | 0.2173 (5) | 0.0657 (16) | 0.821 (6) |
H9A | 0.597449 | −0.051856 | 0.196091 | 0.079* | 0.821 (6) |
H9B | 0.906849 | −0.014697 | 0.248293 | 0.079* | 0.821 (6) |
C10 | 0.8546 (16) | 0.0963 (7) | 0.1325 (5) | 0.0622 (15) | 0.821 (6) |
O3 | 1.0881 (16) | 0.0900 (11) | 0.1127 (6) | 0.132 (3) | 0.821 (6) |
O4 | 0.6974 (19) | 0.1598 (10) | 0.0858 (6) | 0.117 (3) | 0.821 (6) |
H4O | 0.785351 | 0.212989 | 0.052298 | 0.175* | 0.821 (6) |
C8B | 0.834 (7) | 0.112 (3) | 0.3062 (18) | 0.0604 (17) | 0.179 (6) |
H8B1 | 0.957385 | 0.212176 | 0.321614 | 0.072* | 0.179 (6) |
H8B2 | 0.941870 | 0.034250 | 0.294752 | 0.072* | 0.179 (6) |
C9B | 0.609 (6) | 0.106 (3) | 0.2219 (19) | 0.0657 (16) | 0.179 (6) |
H9B1 | 0.490282 | 0.005115 | 0.207464 | 0.079* | 0.179 (6) |
H9B2 | 0.494650 | 0.179949 | 0.237286 | 0.079* | 0.179 (6) |
C10B | 0.748 (6) | 0.143 (4) | 0.137 (2) | 0.0622 (15) | 0.179 (6) |
O3B | 0.998 (6) | 0.188 (6) | 0.137 (3) | 0.132 (3) | 0.179 (6) |
O4B | 0.576 (9) | 0.176 (6) | 0.073 (3) | 0.117 (3) | 0.179 (6) |
H4OB | 0.660348 | 0.228397 | 0.038152 | 0.175* | 0.179 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0546 (9) | 0.0462 (6) | 0.0762 (8) | 0.0041 (5) | 0.0158 (6) | 0.0205 (5) |
S2 | 0.0868 (11) | 0.0329 (5) | 0.0834 (9) | −0.0047 (5) | 0.0293 (7) | 0.0119 (5) |
N1 | 0.045 (2) | 0.0322 (16) | 0.075 (2) | 0.0074 (14) | 0.0141 (17) | 0.0146 (15) |
C1 | 0.048 (3) | 0.0259 (16) | 0.071 (3) | 0.0081 (15) | 0.017 (2) | 0.0160 (16) |
C2 | 0.045 (3) | 0.0292 (17) | 0.070 (3) | 0.0054 (15) | 0.017 (2) | 0.0152 (16) |
C3 | 0.051 (3) | 0.0350 (19) | 0.080 (3) | 0.0097 (17) | 0.015 (2) | 0.0220 (19) |
C4 | 0.073 (4) | 0.043 (2) | 0.083 (3) | 0.009 (2) | 0.026 (3) | 0.022 (2) |
C5 | 0.063 (4) | 0.061 (3) | 0.077 (3) | −0.001 (2) | 0.015 (3) | 0.017 (2) |
C6 | 0.064 (4) | 0.066 (3) | 0.090 (4) | 0.003 (2) | 0.013 (3) | 0.033 (3) |
O1 | 0.079 (3) | 0.086 (3) | 0.093 (3) | 0.019 (2) | 0.029 (2) | 0.034 (2) |
O2 | 0.085 (4) | 0.190 (6) | 0.162 (5) | 0.031 (4) | 0.031 (3) | 0.122 (5) |
C7 | 0.051 (3) | 0.042 (2) | 0.073 (3) | −0.0032 (18) | 0.012 (2) | 0.0155 (19) |
C8 | 0.078 (5) | 0.034 (3) | 0.074 (4) | 0.010 (2) | 0.023 (3) | 0.017 (2) |
C9 | 0.084 (5) | 0.040 (3) | 0.079 (4) | 0.011 (3) | 0.026 (3) | 0.022 (3) |
C10 | 0.068 (5) | 0.048 (3) | 0.080 (4) | 0.019 (3) | 0.024 (3) | 0.020 (3) |
O3 | 0.096 (5) | 0.194 (8) | 0.145 (6) | 0.052 (5) | 0.052 (4) | 0.113 (6) |
O4 | 0.132 (8) | 0.140 (5) | 0.131 (5) | 0.087 (5) | 0.067 (5) | 0.090 (4) |
C8B | 0.078 (5) | 0.034 (3) | 0.074 (4) | 0.010 (2) | 0.023 (3) | 0.017 (2) |
C9B | 0.084 (5) | 0.040 (3) | 0.079 (4) | 0.011 (3) | 0.026 (3) | 0.022 (3) |
C10B | 0.068 (5) | 0.048 (3) | 0.080 (4) | 0.019 (3) | 0.024 (3) | 0.020 (3) |
O3B | 0.096 (5) | 0.194 (8) | 0.145 (6) | 0.052 (5) | 0.052 (4) | 0.113 (6) |
O4B | 0.132 (8) | 0.140 (5) | 0.131 (5) | 0.087 (5) | 0.067 (5) | 0.090 (4) |
S1—C4 | 1.801 (5) | C7—H7A | 0.9700 |
S1—C3 | 1.808 (5) | C7—H7B | 0.9700 |
S2—C8B | 1.78 (3) | C8—C9 | 1.490 (8) |
S2—C7 | 1.804 (5) | C8—H8A | 0.9700 |
S2—C8 | 1.816 (6) | C8—H8B | 0.9700 |
N1—C1 | 1.342 (5) | C9—C10 | 1.496 (8) |
N1—C2i | 1.351 (5) | C9—H9A | 0.9700 |
C1—C2 | 1.371 (6) | C9—H9B | 0.9700 |
C1—C3 | 1.503 (5) | C10—O4 | 1.224 (8) |
C2—C7 | 1.504 (6) | C10—O3 | 1.231 (9) |
C3—H3A | 0.9700 | O4—H4O | 0.8200 |
C3—H3B | 0.9700 | C8B—C9B | 1.516 (19) |
C4—C5 | 1.526 (8) | C8B—H8B1 | 0.9700 |
C4—H4A | 0.9700 | C8B—H8B2 | 0.9700 |
C4—H4B | 0.9700 | C9B—C10B | 1.505 (19) |
C5—C6 | 1.485 (7) | C9B—H9B1 | 0.9700 |
C5—H5A | 0.9700 | C9B—H9B2 | 0.9700 |
C5—H5B | 0.9700 | C10B—O3B | 1.226 (19) |
C6—O1 | 1.238 (7) | C10B—O4B | 1.265 (19) |
C6—O2 | 1.258 (8) | O4B—H4OB | 0.8200 |
O2—H2O | 0.8200 | ||
C4—S1—C3 | 100.2 (2) | C2—C7—H7B | 108.8 |
C8B—S2—C7 | 112.9 (9) | S2—C7—H7B | 108.8 |
C7—S2—C8 | 96.8 (2) | H7A—C7—H7B | 107.7 |
C1—N1—C2i | 117.9 (4) | C9—C8—S2 | 110.8 (4) |
N1—C1—C2 | 121.2 (4) | C9—C8—H8A | 109.5 |
N1—C1—C3 | 116.3 (4) | S2—C8—H8A | 109.5 |
C2—C1—C3 | 122.5 (4) | C9—C8—H8B | 109.5 |
N1i—C2—C1 | 120.9 (4) | S2—C8—H8B | 109.5 |
N1i—C2—C7 | 115.7 (4) | H8A—C8—H8B | 108.1 |
C1—C2—C7 | 123.5 (4) | C8—C9—C10 | 110.3 (5) |
C1—C3—S1 | 113.3 (3) | C8—C9—H9A | 109.6 |
C1—C3—H3A | 108.9 | C10—C9—H9A | 109.6 |
S1—C3—H3A | 108.9 | C8—C9—H9B | 109.6 |
C1—C3—H3B | 108.9 | C10—C9—H9B | 109.6 |
S1—C3—H3B | 108.9 | H9A—C9—H9B | 108.1 |
H3A—C3—H3B | 107.7 | O4—C10—O3 | 121.6 (7) |
C5—C4—S1 | 112.3 (3) | O4—C10—C9 | 118.5 (7) |
C5—C4—H4A | 109.2 | O3—C10—C9 | 119.8 (6) |
S1—C4—H4A | 109.2 | C10—O4—H4O | 109.5 |
C5—C4—H4B | 109.2 | C9B—C8B—S2 | 99.9 (19) |
S1—C4—H4B | 109.2 | C9B—C8B—H8B1 | 111.8 |
H4A—C4—H4B | 107.9 | S2—C8B—H8B1 | 111.8 |
C6—C5—C4 | 113.3 (5) | C9B—C8B—H8B2 | 111.8 |
C6—C5—H5A | 108.9 | S2—C8B—H8B2 | 111.8 |
C4—C5—H5A | 108.9 | H8B1—C8B—H8B2 | 109.5 |
C6—C5—H5B | 108.9 | C10B—C9B—C8B | 108 (2) |
C4—C5—H5B | 108.9 | C10B—C9B—H9B1 | 110.0 |
H5A—C5—H5B | 107.7 | C8B—C9B—H9B1 | 110.0 |
O1—C6—O2 | 122.4 (5) | C10B—C9B—H9B2 | 110.0 |
O1—C6—C5 | 121.3 (5) | C8B—C9B—H9B2 | 110.0 |
O2—C6—C5 | 116.3 (6) | H9B1—C9B—H9B2 | 108.4 |
C6—O2—H2O | 109.5 | O3B—C10B—O4B | 119 (3) |
C2—C7—S2 | 113.8 (3) | O3B—C10B—C9B | 126 (3) |
C2—C7—H7A | 108.8 | O4B—C10B—C9B | 110 (3) |
S2—C7—H7A | 108.8 | C10B—O4B—H4OB | 109.5 |
C2i—N1—C1—C2 | −0.6 (6) | N1i—C2—C7—S2 | 103.4 (4) |
C2i—N1—C1—C3 | 179.3 (4) | C1—C2—C7—S2 | −75.4 (5) |
N1—C1—C2—N1i | 0.6 (7) | C8B—S2—C7—C2 | −43.7 (10) |
C3—C1—C2—N1i | −179.3 (4) | C8—S2—C7—C2 | −66.8 (4) |
N1—C1—C2—C7 | 179.3 (4) | C7—S2—C8—C9 | −178.1 (5) |
C3—C1—C2—C7 | −0.6 (6) | S2—C8—C9—C10 | −172.5 (5) |
N1—C1—C3—S1 | 98.8 (4) | C8—C9—C10—O4 | −57.8 (10) |
C2—C1—C3—S1 | −81.3 (5) | C8—C9—C10—O3 | 120.5 (9) |
C4—S1—C3—C1 | −72.6 (4) | C7—S2—C8B—C9B | −87.0 (16) |
C3—S1—C4—C5 | −86.7 (4) | S2—C8B—C9B—C10B | 177 (2) |
S1—C4—C5—C6 | −65.0 (6) | C8B—C9B—C10B—O3B | −8 (5) |
C4—C5—C6—O1 | −17.0 (8) | C8B—C9B—C10B—O4B | −164 (3) |
C4—C5—C6—O2 | 165.7 (6) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O3ii | 0.82 | 1.94 | 2.66 (1) | 146 |
O2—H2O···O3Bii | 0.82 | 2.20 | 2.77 (3) | 127 |
O4—H4O···O1iii | 0.82 | 1.88 | 2.66 (1) | 158 |
O4B—H4OB···O1iii | 0.82 | 1.86 | 2.67 (4) | 170 |
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z−1. |
[K(C20H27N2O8S4)] | F(000) = 1232 |
Mr = 590.77 | Dx = 1.611 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 30.080 (4) Å | Cell parameters from 7965 reflections |
b = 8.4716 (10) Å | θ = 1.4–25.0° |
c = 9.5908 (12) Å | µ = 0.61 mm−1 |
β = 94.717 (11)° | T = 153 K |
V = 2435.7 (6) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.50 × 0.10 mm |
STOE IPDS 2 diffractometer | 2084 independent reflections |
Radiation source: fine-focus sealed tube | 1646 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.064 |
φ + ω scans | θmax = 24.8°, θmin = 2.5° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −35→35 |
Tmin = 0.640, Tmax = 1.000 | k = −9→9 |
10309 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0648P)2 + 1.5958P] where P = (Fo2 + 2Fc2)/3 |
2084 reflections | (Δ/σ)max = 0.002 |
165 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.500000 | −0.28423 (13) | −0.250000 | 0.0357 (3) | |
S1 | 0.34409 (2) | −0.03261 (9) | 0.17646 (7) | 0.0305 (2) | |
S2 | 0.18978 (2) | −0.11089 (9) | 0.16606 (8) | 0.0342 (2) | |
O1 | 0.46781 (7) | −0.2235 (3) | 0.0136 (2) | 0.0404 (5) | |
O2 | 0.46330 (7) | −0.0466 (3) | 0.1860 (2) | 0.0402 (6) | |
H20 | 0.500000 | −0.073 (9) | 0.250000 | 0.12 (3)* | |
O3 | 0.06245 (6) | 0.1153 (3) | −0.0544 (2) | 0.0363 (5) | |
O4 | 0.03178 (7) | 0.1057 (3) | 0.1493 (2) | 0.0472 (7) | |
H4O | 0.0125 (17) | 0.157 (7) | 0.109 (5) | 0.097 (19)* | |
N1 | 0.28457 (7) | 0.2024 (3) | −0.0774 (2) | 0.0240 (5) | |
C1 | 0.27160 (8) | 0.1117 (3) | 0.0267 (3) | 0.0240 (6) | |
C2 | 0.23661 (8) | 0.1606 (3) | 0.1047 (3) | 0.0229 (6) | |
C3 | 0.29578 (8) | −0.0422 (3) | 0.0500 (3) | 0.0280 (6) | |
H3A | 0.305554 | −0.079313 | −0.040443 | 0.034* | |
H3B | 0.274689 | −0.121452 | 0.082227 | 0.034* | |
C4 | 0.38202 (9) | 0.0765 (4) | 0.0748 (3) | 0.0352 (7) | |
H4A | 0.364384 | 0.148969 | 0.010857 | 0.042* | |
H4B | 0.401718 | 0.141946 | 0.139218 | 0.042* | |
C5 | 0.41100 (9) | −0.0265 (4) | −0.0116 (3) | 0.0335 (7) | |
H5A | 0.391756 | −0.108161 | −0.059355 | 0.040* | |
H5B | 0.422744 | 0.040143 | −0.084955 | 0.040* | |
C6 | 0.44979 (9) | −0.1079 (4) | 0.0676 (3) | 0.0326 (7) | |
C7 | 0.22055 (9) | 0.0650 (3) | 0.2220 (3) | 0.0283 (6) | |
H7A | 0.201211 | 0.132352 | 0.275893 | 0.034* | |
H7B | 0.246620 | 0.033583 | 0.285664 | 0.034* | |
C8 | 0.14217 (9) | −0.0295 (4) | 0.0628 (3) | 0.0329 (7) | |
H8A | 0.152427 | 0.055219 | 0.002031 | 0.039* | |
H8B | 0.128312 | −0.113189 | 0.001607 | 0.039* | |
C9 | 0.10744 (9) | 0.0371 (4) | 0.1528 (3) | 0.0350 (7) | |
H9A | 0.099826 | −0.044379 | 0.220895 | 0.042* | |
H9B | 0.120475 | 0.128185 | 0.206358 | 0.042* | |
C10 | 0.06542 (9) | 0.0895 (4) | 0.0702 (3) | 0.0307 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0254 (4) | 0.0547 (6) | 0.0267 (5) | 0.000 | −0.0009 (3) | 0.000 |
S1 | 0.0189 (3) | 0.0428 (5) | 0.0297 (4) | 0.0034 (3) | 0.0011 (3) | 0.0042 (3) |
S2 | 0.0224 (4) | 0.0335 (4) | 0.0466 (5) | −0.0003 (3) | 0.0027 (3) | 0.0034 (3) |
O1 | 0.0302 (11) | 0.0590 (15) | 0.0320 (11) | 0.0130 (10) | 0.0022 (9) | −0.0023 (10) |
O2 | 0.0246 (10) | 0.0633 (15) | 0.0319 (11) | 0.0051 (10) | −0.0024 (9) | −0.0077 (10) |
O3 | 0.0259 (10) | 0.0554 (15) | 0.0278 (11) | 0.0021 (9) | 0.0032 (8) | 0.0038 (9) |
O4 | 0.0266 (12) | 0.0804 (19) | 0.0356 (13) | 0.0138 (12) | 0.0085 (10) | 0.0044 (12) |
N1 | 0.0156 (10) | 0.0304 (13) | 0.0255 (12) | −0.0007 (9) | −0.0019 (9) | −0.0021 (10) |
C1 | 0.0152 (12) | 0.0299 (16) | 0.0256 (14) | 0.0007 (11) | −0.0048 (10) | −0.0038 (11) |
C2 | 0.0159 (11) | 0.0278 (15) | 0.0239 (14) | −0.0009 (11) | −0.0036 (10) | −0.0026 (11) |
C3 | 0.0187 (13) | 0.0317 (16) | 0.0331 (15) | 0.0022 (11) | −0.0012 (11) | −0.0003 (12) |
C4 | 0.0210 (13) | 0.0424 (19) | 0.0421 (18) | −0.0024 (13) | 0.0018 (12) | 0.0070 (14) |
C5 | 0.0213 (13) | 0.051 (2) | 0.0280 (15) | −0.0009 (12) | 0.0017 (12) | 0.0039 (13) |
C6 | 0.0185 (13) | 0.053 (2) | 0.0268 (15) | −0.0019 (13) | 0.0047 (11) | 0.0024 (14) |
C7 | 0.0229 (14) | 0.0366 (16) | 0.0251 (14) | −0.0005 (12) | 0.0013 (11) | 0.0024 (12) |
C8 | 0.0224 (14) | 0.0422 (19) | 0.0338 (16) | −0.0034 (12) | 0.0011 (12) | −0.0009 (13) |
C9 | 0.0208 (14) | 0.056 (2) | 0.0280 (15) | 0.0017 (13) | 0.0037 (12) | 0.0032 (14) |
C10 | 0.0217 (13) | 0.0388 (18) | 0.0321 (16) | −0.0033 (12) | 0.0052 (12) | −0.0013 (13) |
K1—O1 | 2.828 (2) | C1—C2 | 1.403 (4) |
K1—O1i | 2.828 (2) | C1—C3 | 1.501 (4) |
K1—O2ii | 3.056 (3) | C2—C7 | 1.498 (4) |
K1—O2iii | 3.056 (3) | C3—H3A | 0.9900 |
K1—O3iv | 2.682 (2) | C3—H3B | 0.9900 |
K1—O3v | 2.682 (2) | C4—C5 | 1.525 (4) |
K1—O4vi | 3.069 (3) | C4—H4A | 0.9900 |
K1—O4vii | 3.069 (3) | C4—H4B | 0.9900 |
S1—C4 | 1.814 (3) | C5—C6 | 1.506 (4) |
S1—C3 | 1.816 (3) | C5—H5A | 0.9900 |
S2—C8 | 1.809 (3) | C5—H5B | 0.9900 |
S2—C7 | 1.812 (3) | C7—H7A | 0.9900 |
O1—C6 | 1.252 (4) | C7—H7B | 0.9900 |
O2—C6 | 1.284 (4) | C8—C9 | 1.517 (4) |
O2—H20 | 1.239 (15) | C8—H8A | 0.9900 |
O3—C10 | 1.211 (3) | C8—H8B | 0.9900 |
O4—C10 | 1.321 (3) | C9—C10 | 1.502 (4) |
O4—H4O | 0.80 (5) | C9—H9A | 0.9900 |
N1—C2viii | 1.339 (4) | C9—H9B | 0.9900 |
N1—C1 | 1.343 (4) | ||
O3iv—K1—O3v | 143.00 (11) | C1—C2—C7 | 122.9 (3) |
O3iv—K1—O1 | 114.30 (6) | C1—C3—S1 | 114.31 (19) |
O3v—K1—O1 | 72.78 (6) | C1—C3—H3A | 108.7 |
O3iv—K1—O1i | 72.78 (6) | S1—C3—H3A | 108.7 |
O3v—K1—O1i | 114.30 (6) | C1—C3—H3B | 108.7 |
O1—K1—O1i | 159.05 (11) | S1—C3—H3B | 108.7 |
O3iv—K1—O2ii | 130.71 (7) | H3A—C3—H3B | 107.6 |
O3v—K1—O2ii | 85.98 (6) | C5—C4—S1 | 114.4 (2) |
O1—K1—O2ii | 78.37 (7) | C5—C4—H4A | 108.7 |
O1i—K1—O2ii | 82.42 (6) | S1—C4—H4A | 108.7 |
O3iv—K1—O2iii | 85.98 (6) | C5—C4—H4B | 108.7 |
O3v—K1—O2iii | 130.71 (7) | S1—C4—H4B | 108.7 |
O1—K1—O2iii | 82.42 (6) | H4A—C4—H4B | 107.6 |
O1i—K1—O2iii | 78.37 (7) | C6—C5—C4 | 116.2 (2) |
O2ii—K1—O2iii | 46.99 (8) | C6—C5—H5A | 108.2 |
O3iv—K1—O4vi | 73.54 (7) | C4—C5—H5A | 108.2 |
O3v—K1—O4vi | 73.75 (7) | C6—C5—H5B | 108.2 |
O1—K1—O4vi | 125.54 (7) | C4—C5—H5B | 108.2 |
O1i—K1—O4vi | 75.02 (7) | H5A—C5—H5B | 107.4 |
O2ii—K1—O4vi | 139.50 (6) | O1—C6—O2 | 124.5 (3) |
O2iii—K1—O4vi | 150.17 (6) | O1—C6—C5 | 119.6 (3) |
O3iv—K1—O4vii | 73.75 (7) | O2—C6—C5 | 115.9 (3) |
O3v—K1—O4vii | 73.54 (7) | C2—C7—S2 | 114.24 (19) |
O1—K1—O4vii | 75.02 (7) | C2—C7—H7A | 108.7 |
O1i—K1—O4vii | 125.54 (7) | S2—C7—H7A | 108.7 |
O2ii—K1—O4vii | 150.17 (6) | C2—C7—H7B | 108.7 |
O2iii—K1—O4vii | 139.50 (6) | S2—C7—H7B | 108.7 |
O4vi—K1—O4vii | 54.87 (9) | H7A—C7—H7B | 107.6 |
C4—S1—C3 | 99.68 (14) | C9—C8—S2 | 112.4 (2) |
C8—S2—C7 | 102.17 (14) | C9—C8—H8A | 109.1 |
C6—O1—K1 | 134.73 (19) | S2—C8—H8A | 109.1 |
C6—O2—K1ii | 129.17 (19) | C9—C8—H8B | 109.1 |
C6—O2—H20 | 125 (2) | S2—C8—H8B | 109.1 |
K1ii—O2—H20 | 77 (4) | H8A—C8—H8B | 107.9 |
C10—O3—K1ix | 137.58 (18) | C10—C9—C8 | 113.5 (2) |
C10—O4—K1vii | 111.2 (2) | C10—C9—H9A | 108.9 |
C10—O4—H4O | 110 (4) | C8—C9—H9A | 108.9 |
K1vii—O4—H4O | 114 (4) | C10—C9—H9B | 108.9 |
C2viii—N1—C1 | 118.6 (2) | C8—C9—H9B | 108.9 |
N1—C1—C2 | 120.3 (2) | H9A—C9—H9B | 107.7 |
N1—C1—C3 | 116.2 (2) | O3—C10—O4 | 123.4 (3) |
C2—C1—C3 | 123.5 (2) | O3—C10—C9 | 124.3 (2) |
N1viii—C2—C1 | 121.1 (2) | O4—C10—C9 | 112.3 (2) |
N1viii—C2—C7 | 116.0 (2) | ||
C2viii—N1—C1—C2 | −0.1 (4) | K1ii—O2—C6—C5 | −60.6 (3) |
C2viii—N1—C1—C3 | 178.5 (2) | C4—C5—C6—O1 | 161.6 (3) |
N1—C1—C2—N1viii | 0.1 (4) | C4—C5—C6—O2 | −21.4 (4) |
C3—C1—C2—N1viii | −178.4 (2) | N1viii—C2—C7—S2 | 107.9 (2) |
N1—C1—C2—C7 | 180.0 (2) | C1—C2—C7—S2 | −72.0 (3) |
C3—C1—C2—C7 | 1.5 (4) | C8—S2—C7—C2 | −62.3 (2) |
N1—C1—C3—S1 | 91.6 (3) | C7—S2—C8—C9 | −77.5 (2) |
C2—C1—C3—S1 | −89.8 (3) | S2—C8—C9—C10 | −173.8 (2) |
C4—S1—C3—C1 | −72.3 (2) | K1ix—O3—C10—O4 | 1.7 (5) |
C3—S1—C4—C5 | −90.3 (2) | K1ix—O3—C10—C9 | −177.7 (2) |
S1—C4—C5—C6 | −76.4 (3) | K1vii—O4—C10—O3 | 110.5 (3) |
K1—O1—C6—O2 | −127.8 (3) | K1vii—O4—C10—C9 | −70.0 (3) |
K1—O1—C6—C5 | 48.8 (4) | C8—C9—C10—O3 | −17.9 (5) |
K1ii—O2—C6—O1 | 116.1 (3) | C8—C9—C10—O4 | 162.6 (3) |
Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1, −y, −z; (iii) x, −y, z−1/2; (iv) −x+1/2, y−1/2, −z−1/2; (v) x+1/2, y−1/2, z; (vi) x+1/2, −y−1/2, z−1/2; (vii) −x+1/2, −y−1/2, −z; (viii) −x+1/2, −y+1/2, −z; (ix) x−1/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O1ix | 0.80 (5) | 1.86 (5) | 2.661 (3) | 180 (7) |
O2—H20···O2x | 1.24 (1) | 1.24 (1) | 2.436 (3) | 159 (7) |
C4—H4A···N1 | 0.99 | 2.52 | 3.340 (4) | 140 |
C4—H4B···O3viii | 0.99 | 2.49 | 3.114 (4) | 121 |
C5—H5B···O2iii | 0.99 | 2.60 | 3.467 (4) | 146 |
C7—H7B···N1xi | 0.99 | 2.60 | 3.454 (4) | 144 |
C9—H9A···O3xi | 0.99 | 2.58 | 3.465 (4) | 149 |
Symmetry codes: (iii) x, −y, z−1/2; (viii) −x+1/2, −y+1/2, −z; (ix) x−1/2, y+1/2, z; (x) −x+1, y, −z+1/2; (xi) x, −y, z+1/2. |
[K2(C20H26N2O8S4)] | F(000) = 1304 |
Mr = 628.87 | Dx = 1.602 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.908 (2) Å | Cell parameters from 20250 reflections |
b = 8.2916 (6) Å | θ = 1.8–29.6° |
c = 11.3035 (9) Å | µ = 0.73 mm−1 |
β = 94.753 (6)° | T = 153 K |
V = 2606.7 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.50 × 0.05 mm |
STOE IPDS 2 diffractometer | 3646 independent reflections |
Radiation source: fine-focus sealed tube | 3175 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.042 |
φ + ω scans | θmax = 29.6°, θmin = 2.6° |
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) | h = −38→38 |
Tmin = 0.416, Tmax = 0.803 | k = −11→11 |
19423 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: mixed |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0541P)2 + 3.5192P] where P = (Fo2 + 2Fc2)/3 |
3646 reflections | (Δ/σ)max < 0.001 |
167 parameters | Δρmax = 0.76 e Å−3 |
1 restraint | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.000000 | 0.82906 (7) | 0.750000 | 0.02908 (13) | |
K2 | 0.000000 | 0.64758 (6) | 0.250000 | 0.02585 (12) | |
S1 | 0.15530 (2) | 0.94369 (6) | 0.36528 (5) | 0.03200 (12) | |
S2 | 0.31454 (2) | 0.91861 (6) | 0.30731 (4) | 0.02972 (12) | |
O1 | 0.03202 (5) | 0.90961 (16) | 0.37679 (12) | 0.0288 (3) | |
O2 | 0.03173 (4) | 0.75961 (15) | 0.53962 (10) | 0.0251 (2) | |
O3 | 0.44445 (5) | 1.07891 (16) | 0.64145 (11) | 0.0264 (3) | |
O4 | 0.45504 (4) | 1.14483 (16) | 0.45457 (11) | 0.0246 (2) | |
H4O | 0.4811 (7) | 1.187 (3) | 0.485 (2) | 0.037* | |
N1 | 0.22122 (5) | 1.18192 (18) | 0.58094 (13) | 0.0226 (3) | |
C1 | 0.23166 (6) | 1.10103 (19) | 0.48370 (15) | 0.0214 (3) | |
C2 | 0.26072 (6) | 1.1694 (2) | 0.40166 (14) | 0.0214 (3) | |
C3 | 0.20952 (6) | 0.9373 (2) | 0.46641 (17) | 0.0261 (3) | |
H3A | 0.201509 | 0.894439 | 0.544105 | 0.031* | |
H3B | 0.233073 | 0.863252 | 0.434300 | 0.031* | |
C4 | 0.11775 (7) | 1.0635 (2) | 0.4543 (2) | 0.0344 (4) | |
H4A | 0.138286 | 1.142471 | 0.500499 | 0.041* | |
H4B | 0.094632 | 1.125024 | 0.400576 | 0.041* | |
C5 | 0.08989 (6) | 0.9666 (2) | 0.53952 (18) | 0.0301 (4) | |
H5A | 0.112007 | 0.889825 | 0.583250 | 0.036* | |
H5B | 0.077277 | 1.040676 | 0.598231 | 0.036* | |
C6 | 0.04848 (6) | 0.8740 (2) | 0.47738 (14) | 0.0215 (3) | |
C7 | 0.27238 (6) | 1.0859 (2) | 0.28997 (15) | 0.0260 (3) | |
H7A | 0.285609 | 1.166910 | 0.237196 | 0.031* | |
H7B | 0.241998 | 1.045256 | 0.249183 | 0.031* | |
C8 | 0.37036 (6) | 1.0182 (3) | 0.35882 (16) | 0.0295 (4) | |
H8A | 0.397073 | 0.966995 | 0.320275 | 0.035* | |
H8B | 0.368597 | 1.132425 | 0.333262 | 0.035* | |
C9 | 0.38174 (6) | 1.0126 (2) | 0.49202 (15) | 0.0243 (3) | |
H9A | 0.380284 | 0.899037 | 0.518480 | 0.029* | |
H9B | 0.356583 | 1.073093 | 0.530128 | 0.029* | |
C10 | 0.43036 (6) | 1.08130 (19) | 0.53492 (14) | 0.0216 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0442 (3) | 0.0240 (2) | 0.0186 (2) | 0.000 | −0.0001 (2) | 0.000 |
K2 | 0.0356 (3) | 0.0230 (2) | 0.0189 (2) | 0.000 | 0.00191 (18) | 0.000 |
S1 | 0.0250 (2) | 0.0304 (2) | 0.0399 (3) | −0.00503 (16) | −0.00202 (17) | −0.00557 (18) |
S2 | 0.0236 (2) | 0.0297 (2) | 0.0355 (2) | −0.00158 (16) | 0.00042 (16) | −0.00746 (17) |
O1 | 0.0311 (6) | 0.0272 (6) | 0.0269 (6) | −0.0064 (5) | −0.0040 (5) | 0.0023 (5) |
O2 | 0.0235 (5) | 0.0282 (6) | 0.0233 (5) | −0.0027 (5) | 0.0009 (4) | 0.0005 (5) |
O3 | 0.0276 (6) | 0.0300 (6) | 0.0217 (5) | −0.0011 (5) | 0.0019 (4) | 0.0021 (5) |
O4 | 0.0228 (5) | 0.0299 (6) | 0.0212 (5) | −0.0051 (5) | 0.0024 (4) | 0.0004 (5) |
N1 | 0.0196 (6) | 0.0235 (6) | 0.0242 (6) | −0.0010 (5) | −0.0004 (5) | 0.0030 (5) |
C1 | 0.0173 (6) | 0.0206 (7) | 0.0256 (7) | −0.0002 (5) | −0.0027 (5) | 0.0020 (6) |
C2 | 0.0183 (7) | 0.0230 (7) | 0.0223 (7) | 0.0002 (5) | −0.0022 (5) | 0.0019 (6) |
C3 | 0.0214 (7) | 0.0213 (7) | 0.0353 (9) | −0.0017 (6) | 0.0007 (6) | 0.0016 (6) |
C4 | 0.0220 (8) | 0.0231 (8) | 0.0576 (12) | −0.0023 (6) | −0.0009 (8) | −0.0060 (8) |
C5 | 0.0230 (8) | 0.0295 (9) | 0.0368 (9) | −0.0023 (6) | −0.0035 (7) | −0.0092 (7) |
C6 | 0.0180 (7) | 0.0212 (7) | 0.0250 (7) | 0.0004 (5) | 0.0006 (5) | −0.0046 (6) |
C7 | 0.0250 (8) | 0.0290 (8) | 0.0237 (7) | −0.0007 (6) | −0.0005 (6) | −0.0005 (6) |
C8 | 0.0211 (7) | 0.0402 (10) | 0.0271 (8) | −0.0049 (7) | 0.0021 (6) | −0.0020 (7) |
C9 | 0.0218 (7) | 0.0250 (8) | 0.0261 (7) | −0.0017 (6) | 0.0025 (6) | −0.0010 (6) |
C10 | 0.0224 (7) | 0.0205 (7) | 0.0220 (7) | 0.0019 (5) | 0.0031 (6) | −0.0003 (5) |
K1—O1i | 2.7084 (14) | O1—C6 | 1.227 (2) |
K1—O1ii | 2.7084 (14) | O4—C10 | 1.296 (2) |
K1—O2 | 2.6682 (12) | O4—H4O | 0.855 (16) |
K1—O2iii | 2.6683 (12) | O3—C10 | 1.236 (2) |
K1—O3iv | 2.8099 (14) | N1—C1 | 1.340 (2) |
K1—O3v | 2.8099 (13) | N1—C2xi | 1.341 (2) |
K1—C6iii | 3.4864 (17) | C1—C2 | 1.401 (2) |
K1—C6 | 3.4865 (17) | C1—C3 | 1.498 (2) |
K1—K2vi | 3.9521 (8) | C2—C7 | 1.499 (2) |
K1—K2ii | 4.3395 (8) | C3—H3A | 0.9900 |
K2—O1vii | 2.7131 (13) | C3—H3B | 0.9900 |
K2—O1 | 2.7132 (13) | C4—C5 | 1.518 (3) |
K2—O3viii | 2.6683 (13) | C4—H4A | 0.9900 |
K2—O3ix | 2.6682 (13) | C4—H4B | 0.9900 |
K2—O4x | 2.7209 (12) | C5—C6 | 1.511 (2) |
K2—O4iv | 2.7209 (12) | C5—H5A | 0.9900 |
K2—C6vii | 3.3739 (16) | C5—H5B | 0.9900 |
K2—C6 | 3.3739 (16) | C7—H7A | 0.9900 |
K2—C10viii | 3.5364 (16) | C7—H7B | 0.9900 |
K2—C10ix | 3.5364 (16) | C8—C9 | 1.513 (2) |
S1—C4 | 1.809 (2) | C8—H8A | 0.9900 |
S1—C3 | 1.8200 (18) | C8—H8B | 0.9900 |
S2—C8 | 1.8159 (18) | C9—C10 | 1.514 (2) |
S2—C7 | 1.8190 (19) | C9—H9A | 0.9900 |
O2—C6 | 1.291 (2) | C9—H9B | 0.9900 |
O2—K1—O2iii | 155.07 (6) | O3ix—K2—K1vi | 45.27 (3) |
O2—K1—O1i | 121.67 (4) | O1vii—K2—K1vi | 143.21 (3) |
O2iii—K1—O1i | 79.65 (4) | O1—K2—K1vi | 143.21 (3) |
O2—K1—O1ii | 79.65 (4) | O4x—K2—K1vi | 89.52 (3) |
O2iii—K1—O1ii | 121.67 (4) | O4iv—K2—K1vi | 89.52 (3) |
O1i—K1—O1ii | 73.73 (6) | C6vii—K2—K1vi | 123.80 (3) |
O2—K1—O3iv | 70.32 (4) | C6—K2—K1vi | 123.80 (3) |
O2iii—K1—O3iv | 91.03 (4) | C10viii—K2—K1vi | 57.55 (3) |
O1i—K1—O3iv | 165.36 (4) | C10ix—K2—K1vi | 57.55 (3) |
O1ii—K1—O3iv | 102.33 (4) | O3viii—K2—K1ii | 134.73 (3) |
O2—K1—O3v | 91.03 (4) | O3ix—K2—K1ii | 134.73 (3) |
O2iii—K1—O3v | 70.32 (4) | O1vii—K2—K1ii | 36.79 (3) |
O1i—K1—O3v | 102.33 (4) | O1—K2—K1ii | 36.79 (3) |
O1ii—K1—O3v | 165.36 (4) | O4x—K2—K1ii | 90.48 (3) |
O3iv—K1—O3v | 84.85 (5) | O4iv—K2—K1ii | 90.48 (3) |
O2—K1—C6iii | 172.97 (4) | C6vii—K2—K1ii | 56.20 (3) |
O2iii—K1—C6iii | 18.84 (4) | C6—K2—K1ii | 56.20 (3) |
O1i—K1—C6iii | 65.30 (4) | C10viii—K2—K1ii | 122.45 (3) |
O1ii—K1—C6iii | 104.31 (4) | C10ix—K2—K1ii | 122.45 (3) |
O3iv—K1—C6iii | 102.96 (4) | K1vi—K2—K1ii | 180.0 |
O3v—K1—C6iii | 86.17 (4) | C4—S1—C3 | 99.00 (9) |
O2—K1—C6 | 18.84 (4) | C8—S2—C7 | 102.58 (9) |
O2iii—K1—C6 | 172.97 (4) | C6—O2—K1 | 119.28 (10) |
O1i—K1—C6 | 104.31 (4) | C6—O1—K1ii | 139.92 (11) |
O1ii—K1—C6 | 65.30 (4) | C6—O1—K2 | 112.22 (11) |
O3iv—K1—C6 | 86.17 (4) | K1ii—O1—K2 | 106.34 (4) |
O3v—K1—C6 | 102.96 (4) | C10—O4—K2xii | 155.24 (11) |
C6iii—K1—C6 | 167.74 (6) | C10—O4—H4O | 111.3 (17) |
O2—K1—K2vi | 77.54 (3) | K2xii—O4—H4O | 84.7 (17) |
O2iii—K1—K2vi | 77.54 (3) | C10—O3—K2ix | 125.83 (11) |
O1i—K1—K2vi | 143.13 (3) | C10—O3—K1xii | 122.23 (11) |
O1ii—K1—K2vi | 143.13 (3) | K2ix—O3—K1xii | 92.31 (4) |
O3iv—K1—K2vi | 42.42 (3) | C1—N1—C2xi | 118.43 (14) |
O3v—K1—K2vi | 42.42 (3) | N1—C1—C2 | 121.17 (15) |
C6iii—K1—K2vi | 96.13 (3) | N1—C1—C3 | 116.44 (15) |
C6—K1—K2vi | 96.13 (3) | C2—C1—C3 | 122.37 (15) |
O2—K1—K2ii | 102.46 (3) | N1xi—C2—C1 | 120.40 (15) |
O2iii—K1—K2ii | 102.46 (3) | N1xi—C2—C7 | 116.30 (15) |
O1i—K1—K2ii | 36.87 (3) | C1—C2—C7 | 123.28 (15) |
O1ii—K1—K2ii | 36.87 (3) | C1—C3—S1 | 111.60 (12) |
O3iv—K1—K2ii | 137.58 (3) | C1—C3—H3A | 109.3 |
O3v—K1—K2ii | 137.58 (3) | S1—C3—H3A | 109.3 |
C6iii—K1—K2ii | 83.87 (3) | C1—C3—H3B | 109.3 |
C6—K1—K2ii | 83.87 (3) | S1—C3—H3B | 109.3 |
K2vi—K1—K2ii | 180.0 | H3A—C3—H3B | 108.0 |
O3viii—K2—O3ix | 90.54 (6) | C5—C4—S1 | 114.41 (14) |
O3viii—K2—O1vii | 99.63 (4) | C5—C4—H4A | 108.7 |
O3ix—K2—O1vii | 163.72 (4) | S1—C4—H4A | 108.7 |
O3viii—K2—O1 | 163.72 (4) | C5—C4—H4B | 108.7 |
O3ix—K2—O1 | 99.63 (4) | S1—C4—H4B | 108.7 |
O1vii—K2—O1 | 73.59 (6) | H4A—C4—H4B | 107.6 |
O3viii—K2—O4x | 83.95 (4) | C6—C5—C4 | 112.73 (16) |
O3ix—K2—O4x | 95.38 (4) | C6—C5—H5A | 109.0 |
O1vii—K2—O4x | 73.30 (4) | C4—C5—H5A | 109.0 |
O1—K2—O4x | 107.50 (4) | C6—C5—H5B | 109.0 |
O3viii—K2—O4iv | 95.38 (4) | C4—C5—H5B | 109.0 |
O3ix—K2—O4iv | 83.95 (4) | H5A—C5—H5B | 107.8 |
O1vii—K2—O4iv | 107.50 (4) | O1—C6—O2 | 123.88 (15) |
O1—K2—O4iv | 73.30 (4) | O1—C6—C5 | 121.42 (16) |
O4x—K2—O4iv | 179.04 (6) | O2—C6—C5 | 114.67 (15) |
O3viii—K2—C6vii | 81.96 (4) | O1—C6—K2 | 48.11 (8) |
O3ix—K2—C6vii | 157.35 (4) | O2—C6—K2 | 82.31 (9) |
O1vii—K2—C6vii | 19.67 (4) | C5—C6—K2 | 151.60 (11) |
O1—K2—C6vii | 92.90 (4) | O1—C6—K1 | 134.60 (11) |
O4x—K2—C6vii | 62.69 (4) | O2—C6—K1 | 41.88 (8) |
O4iv—K2—C6vii | 117.91 (4) | C5—C6—K1 | 88.93 (10) |
O3viii—K2—C6 | 157.35 (4) | K2—C6—K1 | 116.96 (5) |
O3ix—K2—C6 | 81.96 (4) | C2—C7—S2 | 116.42 (12) |
O1vii—K2—C6 | 92.90 (4) | C2—C7—H7A | 108.2 |
O1—K2—C6 | 19.67 (4) | S2—C7—H7A | 108.2 |
O4x—K2—C6 | 117.91 (4) | C2—C7—H7B | 108.2 |
O4iv—K2—C6 | 62.69 (4) | S2—C7—H7B | 108.2 |
C6vii—K2—C6 | 112.40 (6) | H7A—C7—H7B | 107.3 |
O3viii—K2—C10viii | 16.46 (4) | C9—C8—S2 | 114.13 (13) |
O3ix—K2—C10viii | 101.75 (4) | C9—C8—H8A | 108.7 |
O1vii—K2—C10viii | 85.89 (4) | S2—C8—H8A | 108.7 |
O1—K2—C10viii | 158.61 (4) | C9—C8—H8B | 108.7 |
O4x—K2—C10viii | 71.16 (4) | S2—C8—H8B | 108.7 |
O4iv—K2—C10viii | 108.29 (4) | H8A—C8—H8B | 107.6 |
C6vii—K2—C10viii | 67.17 (4) | C8—C9—C10 | 114.57 (14) |
C6—K2—C10viii | 170.09 (4) | C8—C9—H9A | 108.6 |
O3viii—K2—C10ix | 101.75 (4) | C10—C9—H9A | 108.6 |
O3ix—K2—C10ix | 16.46 (4) | C8—C9—H9B | 108.6 |
O1vii—K2—C10ix | 158.61 (4) | C10—C9—H9B | 108.6 |
O1—K2—C10ix | 85.89 (4) | H9A—C9—H9B | 107.6 |
O4x—K2—C10ix | 108.29 (4) | O3—C10—O4 | 122.99 (16) |
O4iv—K2—C10ix | 71.16 (4) | O3—C10—C9 | 120.71 (15) |
C6vii—K2—C10ix | 170.09 (4) | O4—C10—C9 | 116.27 (14) |
C6—K2—C10ix | 67.17 (4) | O3—C10—K2ix | 37.72 (8) |
C10viii—K2—C10ix | 115.09 (5) | O4—C10—K2ix | 113.96 (10) |
O3viii—K2—K1vi | 45.27 (3) | C9—C10—K2ix | 116.44 (10) |
C2xi—N1—C1—C2 | 0.0 (2) | C4—C5—C6—O1 | −18.7 (2) |
C2xi—N1—C1—C3 | −178.32 (14) | C4—C5—C6—O2 | 162.94 (15) |
N1—C1—C2—N1xi | 0.0 (3) | C4—C5—C6—K2 | 40.3 (3) |
C3—C1—C2—N1xi | 178.22 (14) | C4—C5—C6—K1 | −162.96 (14) |
N1—C1—C2—C7 | −178.30 (15) | N1xi—C2—C7—S2 | 108.63 (15) |
C3—C1—C2—C7 | −0.1 (2) | C1—C2—C7—S2 | −72.98 (19) |
N1—C1—C3—S1 | 97.64 (16) | C8—S2—C7—C2 | −67.34 (15) |
C2—C1—C3—S1 | −80.62 (18) | C7—S2—C8—C9 | 97.89 (15) |
C4—S1—C3—C1 | −65.81 (15) | S2—C8—C9—C10 | 174.51 (12) |
C3—S1—C4—C5 | −87.72 (15) | K2ix—O3—C10—O4 | −87.24 (18) |
S1—C4—C5—C6 | −73.29 (18) | K1xii—O3—C10—O4 | 33.7 (2) |
K1ii—O1—C6—O2 | 128.23 (16) | K2ix—O3—C10—C9 | 94.51 (17) |
K2—O1—C6—O2 | −35.0 (2) | K1xii—O3—C10—C9 | −144.57 (12) |
K1ii—O1—C6—C5 | −49.9 (3) | K1xii—O3—C10—K2ix | 120.92 (16) |
K2—O1—C6—C5 | 146.80 (13) | K2xii—O4—C10—O3 | 125.1 (2) |
K1ii—O1—C6—K2 | 163.2 (2) | K2xii—O4—C10—C9 | −56.6 (3) |
K1ii—O1—C6—K1 | 74.9 (2) | K2xii—O4—C10—K2ix | 83.1 (3) |
K2—O1—C6—K1 | −88.34 (15) | C8—C9—C10—O3 | −177.68 (16) |
K1—O2—C6—O1 | −121.20 (15) | C8—C9—C10—O4 | 3.9 (2) |
K1—O2—C6—C5 | 57.09 (17) | C8—C9—C10—K2ix | −134.75 (13) |
K1—O2—C6—K2 | −146.73 (7) |
Symmetry codes: (i) x, −y+2, z+1/2; (ii) −x, −y+2, −z+1; (iii) −x, y, −z+3/2; (iv) x−1/2, y−1/2, z; (v) −x+1/2, y−1/2, −z+3/2; (vi) −x, −y+1, −z+1; (vii) −x, y, −z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (ix) −x+1/2, −y+3/2, −z+1; (x) −x+1/2, y−1/2, −z+1/2; (xi) −x+1/2, −y+5/2, −z+1; (xii) x+1/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O2xii | 0.85 (2) | 1.61 (2) | 2.4637 (16) | 177 (3) |
C4—H4A···N1 | 0.99 | 2.44 | 3.266 (2) | 141 |
C8—H8A···O3xiii | 0.99 | 2.53 | 3.436 (2) | 151 |
Symmetry codes: (xii) x+1/2, y+1/2, z; (xiii) x, −y+2, z−1/2. |
Torsion angle | H4L1_A | H4L1_B | H3L1K | H2L1K2 |
C1—C3—S1—C4 | 174.1 (2) | -72.6 (4) | -72.32) | -65.81 (15) |
C3—S1—C4—C5 | -155.3 (2) | -86.7 (4) | -90.3 (2) | -87.72 (15) |
S1—C4—C5—C6 | -167.9 (2) | -65.0 (6) | -76.4 (3) | -73.19 (18) |
C2—C7—S2—C8 | 57.6 (2) | -66.8 (4) | -62.3 (2) | -67.34 (15) |
C7—C2—S2—C9 | 65.7 (2) | -178.1 (5) | -77.5 (2) | 97.89 (15) |
S2—C8—C9—C10 | 174.8 (2) | -172.5 (5) | -173.8 (2) | 174.51 (12) |
Atom 1 | Atom 2 | Length | Length - VdW | Symm. op. 1 | Symm. op. 2 |
H4L1_A | |||||
O1 | H2O | 1.798 | -0.922 | x, y, z | -1 - x, -y, -z |
O3 | H4O | 1.843 | -0.877 | x, y, z | 1 - x, 1 - y, -z |
O1 | O2 | 2.667 | -0.373 | x, y, z | -1 - x, -y, -z |
O3 | O4 | 2.673 | -0.367 | x, y, z | 1 - x, 1 - y, -z |
O4 | H8A | 2.399 | -0.321 | x, y, z | -1 + x, y, z |
O2 | O4 | 3.015 | -0.025 | x, y, z | -x, 1 - y, -z |
C6 | H2O | 2.667 | -0.233 | x, y, z | -1 - x, -y, -z |
C10 | H4O | 2.668 | -0.232 | x, y, z | 1 - x, 1 - y, -z |
H5A | O3 | 2.549 | -0.171 | x, y, z | -1 + x, y, z |
H4O | H4O | 2.371 | -0.029 | x, y, z | 1 - x, 1 - y, -z |
H2O | H2O | 2.389 | -0.011 | x, y, z | -1 - x, -y, -z |
N1 | H3A | 2.807 | 0.057 | x, y, z | 1 - x, 1 - y, 1 - z |
O4 | C8 | 3.308 | 0.088 | x, y, z | -1 + x, y, z |
O2 | H8A | 2.820 | 0.100 | x, y, z | 1 - x, 1 - y, -z |
H4L1_Ba | |||||
H4O | O1 | 1.879 | -0.841 | x, y, z | x, y, -1 + z |
O4 | O1 | 2.658 | -0.382 | x, y, z | x, y, -1 + z |
O3 | O2 | 2.663 | -0.377 | x, y, z | x, y, -1 + z |
H4O | C6 | 2.580 | -0.320 | x, y, z | x, y, -1 + z |
O4 | O2 | 2.799 | -0.241 | x, y, z | -1 + x, y, -1 + z |
H4O | H2O | 2.173 | -0.227 | x, y, z | x, y, -1 + z |
O1 | O2 | 2.982 | -0.058 | x, y, z | -1 + x, y, z |
S1 | H3A | 2.951 | -0.049 | x, y, z | -1 + x, y, z |
S1 | S2 | 3.590 | -0.010 | x, y, z | 1 - x, -y, 1 - z |
O4 | O3 | 3.041 | 0.001 | x, y, z | -1 + x, y, z |
S2 | S2 | 3.613 | 0.013 | x, y, z | 1 - x, -y, 1 - z |
H8A | O3 | 2.749 | 0.029 | x, y, z | -1 + x, y, z |
S1 | H5A | 3.047 | 0.047 | x, y, z | -1 + x, y, z |
H4O | O2 | 2.775 | 0.055 | x, y, z | -1 + x, y, -1 + z |
O4 | H2O | 2.776 | 0.056 | x, y, z | -1 + x, y, -1 + z |
C10 | H2O | 2.960 | 0.060 | x, y, z | 2 - x, -y, 1 - z |
O3 | H2O | 2.796 | 0.076 | x, y, z | 2 - x, -y, 1 - z |
H7B | C3 | 2.974 | 0.074 | x, y, z | -1 + x, y, z |
S2 | H7B | 3.082 | 0.082 | x, y, z | 1 - x, -y, 1 - z |
O2 | H5B | 2.802 | 0.082 | 2 - x, 1 - y, 1 - z | -1 + x, y, -1 + z |
S1 | H9A | 3.085 | 0.085 | x, y, z | 1 - x, -y, 1 - z |
Note: (a) major component of H4L1_B. |
Contact | % contribution | % contribution |
H4L1_A | H4L1_Ba | |
H···H | 37.2 | 36.3 |
O···H/H···O | 37.7 | 32.3 |
S···H/H···S | 13.4 | 16.1 |
C···H/H···C | 4.5 | 4.9 |
C···N | 0 | 0.8 |
C···O | 1.0 | 0.7 |
C···S | 1.2 | 0 |
N···S | 0.4 | 0.4 |
O···O | 1.3 | 4.9 |
O···S | 0.2 | 0 |
S···S | 0.2 | 1.2 |
Note: (a) major component of H4L1_B. |
Acknowledgements
HSE is grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.
References
Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53. CSD CrossRef CAS IUCr Journals Google Scholar
Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hayati, P., Rezvani, A. R., Morsali, A. & Retailleau, P. (2017). Ultrason. Sonochem. 34, 195–205. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090–2096. Web of Science CSD CrossRef CAS Google Scholar
Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870-7874. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004–1011. CSD CrossRef CAS Web of Science Google Scholar
Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004–2010. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Pacifico, J. (2003). PhD Thesis, University of Neuchâtel, Switzerland. Google Scholar
Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications (CCDC 2036276, 2041654 and 2041655). CCDC, Cambridge, England. Google Scholar
Santra, S., Das, B. & Baruah, J. B. (2011). J. Chem. Crystallogr. 41, 1981–1987. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2000). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Wang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X. & Zou, R. (2019). Inorg. Chem. Commun. 104, 78–82. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, L. (1887). Ber. Dtsch. Chem. Ges. 20, 425–433. CrossRef Google Scholar
Wolff, L. (1893). Ber. Dtsch. Chem. Ges. 26, 721–725. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.