research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new tetra­kis-substituted pyrazine carb­­oxy­lic acid, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid: crystal structures of two triclinic polymorphs and of two potassium–organic frameworks

crossmark logo

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by S. Parkin, University of Kentucky, USA (Received 22 March 2021; accepted 1 April 2021; online 9 April 2021)

Two polymorphs of the title tetra­kis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene))tetra­kis­(sulfanedi­yl]}tetra­propionic acid, C20H28N2O8S4, (H4L1), have been obtained, H4L1_A and H4L1_B. Each structure crystallized with half a mol­ecule in the asymmetric unit of a triclinic P[\overline{1}] unit cell. The whole mol­ecules are generated by inversion symmetry, with the pyrazine rings being located about inversion centers. The crystals of H4L1_B were of poor quality, but the X-ray diffraction analysis does show the change in conformation of the –CH2—S—CH2—CH2– side chains compared to those in polymorph H4L1_A. In the crystal of H4L1_A, mol­ecules are linked by two pairs of O—H⋯O hydrogen bonds, enclosing R22(8) ring motifs forming layers parallel to plane (100), which are linked by C—H⋯O hydrogen bonds to form a supra­molecular framework. In the crystal of H4L1_B, mol­ecules are also linked by two pairs of O—H⋯O hydrogen bonds enclosing R22(8) ring motifs, however here, chains are formed propagating in the [001] direction and stacking up the a-axis. Reaction of H4L1 with Hg(NO3)2 in the presence of a potassium acetate buffer did not produce the expected binuclear complex, instead crystals of a potassium–organic framework were obtained, poly[(μ-3-{[(3,5,6-tris­{[(2-carb­oxy­eth­yl)sulfan­yl]meth­yl}pyrazin-2-yl)meth­yl]sulfan­yl}propano­ato)potassium], [K(C20H27N2O8S4)]n (KH3L1). The organic mono-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. A carb­oxy H atom is disordered by symmetry and the charge is compensated for by a potassium ion. A similar reaction with Zn(NO3)2 resulted in the formation of crystals of a dipotassium-organic framework, poly[(μ-3,3′-{[(3,6-bis­{[(2-carb­oxy­eth­yl)sulfan­yl]meth­yl}pyrazine-2,5-di­yl)bis(methyl­ene)]bis­(sulfanedi­yl)}dipropionato)dipotassium], [K2(C20H26N2O8S4)]n (K2H2L1). Here, the organic di-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. Two symmetry-related acid groups are deprotonated and the charges are compensated for by two potassium ions.

1. Chemical context

The title tetrakis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene))tetra­kis­(sulfane­di­yl)]tetra­propionic acid (H4L1), is to the best of our knowledge, only the third pyrazine tetrakis-substituted carb­oxy­lic acid ligand to have been synthesized. The first is pyrazine-2,3,5,6-tetra­carb­oxy­lic acid (pztca), which was originally synthesized by Wolff at the end of the 19th century (Wolff, 1887[Wolff, L. (1887). Ber. Dtsch. Chem. Ges. 20, 425-433.], 1893[Wolff, L. (1893). Ber. Dtsch. Chem. Ges. 26, 721-725.]), while the second is 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetra­yl)tetra­benzoic acid (pztba), which was first synthesized by Jiang et al. (2017[Jiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090-2096.]). Pztca (Fig. 1[link]) has been used to synthesize a number of coordination polymers, the first being poly{[(2,5-di­carb­oxy­pyrazine-3,6-di­carboxyl­ato)transdi­aqua­iron(II) dihydrate]} (Marioni et al., 1986[Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004-1011.]), while pztba (Fig. 1[link]) has been shown to form a series of metal–organic frameworks (Jiang et al., 2017[Jiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090-2096.]; Wang et al., 2019[Wang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X. & Zou, R. (2019). Inorg. Chem. Commun. 104, 78-82.]).

[Scheme 1]
[Figure 1]
Figure 1
Chemical diagrams for pyrazine-2,3,5,6-tetra­carb­oxy­lic acid (pztca), 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetra­yl)tetra­benzoic acid (pztba), pyrazine-2,3-di­carb­oxy­lic acid (pzdca) and pyridine-2,6-di­carb­oxy­lic acid (pydca).

The title ligand was synthesized to study its coordination behaviour with various transition metal ions (Pacifico, 2003[Pacifico, J. (2003). PhD Thesis, University of Neuchâtel, Switzerland.]). Potentially the ligand can coordinate in a bis-penta­dentate manner, as was shown to be the case for a similar ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­kis­(ethan-1-amine) (H4L2), for which two nickel(II) binuclear complexes, I and II, were synthesized (Pacifico, 2003[Pacifico, J. (2003). PhD Thesis, University of Neuchâtel, Switzerland.]; Pacifico & Stoeckli-Evans, 2020[Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications (CCDC 2036276, 2041654 and 2041655). CCDC, Cambridge, England.]); see Fig. 2[link].

[Figure 2]
Figure 2
Chemical diagram for 2,2′,2′′,2′′′-[(pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)tetra­kis­(sulfanedi­yl)]tetra­kis­(ethan-1-amine) (H4L2) and two nickel(II) binuclear complexes, I and II (Pacifico & Stoeckli-Evans, 2020[Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications (CCDC 2036276, 2041654 and 2041655). CCDC, Cambridge, England.]).

2. Structural commentary

The title tetra­kis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene))tetra­kis­(sulfanedi­yl)]tetra­propionic acid (H4L1_A), crystallized with half a mol­ecule in the asymmetric unit (Fig. 3[link]). The whole mol­ecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center.

[Figure 3]
Figure 3
The mol­ecular structure of H4L1_A, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by symmetry operator −x + 2, −y + 1, −z + 1.

In an attempt to form a co-crystal, equimolar amounts of H4L1 and terephthalic acid were mixed in methanol. On slow evaporation of the solvent, colourless plate-like crystals were obtained. X-ray diffraction analysis revealed their structure to be that of a second triclinic P[\overline{1}] polymorph, H4L1_B (Fig. 4[link]). It crystallized with half a mol­ecule in the asymmetric unit and the whole mol­ecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center. The crystals were of poor quality with one CH2—CH2—CO2H side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B) of the centrosymmetric mol­ecule being positionally disordered (Fig. 4[link]b). The difference in the two polymorphs is essentially in the orientation of the –CH2—S—CH2—CH2—C– side arms, as shown in Fig. 5[link]a and b. Selected torsion angles are given in Table 1[link].

Table 1
Selected torsion angles (°) along the Car—CH2—S—CH2—CH2—CO2H side chains in compounds H4L1_A, H4L1_B, KH3L1 and K2H2L1

Torsion angle H4L1_A H4L1_B KH3L1 K2H2L1
C1—C3—S1—C4 174.1 (2) −72.6 (4) −72.32) −65.81 (15)
C3—S1—C4—C5 −155.3 (2) −86.7 (4) −90.3 (2) −87.72 (15)
S1—C4—C5—C6 −167.9 (2) −65.0 (6) −76.4 (3) −73.19 (18)
C2—C7—S2—C8 57.6 (2) −66.8 (4) −62.3 (2) −67.34 (15)
C7—S2—C8—C9 65.7 (2) −178.1 (5) −77.5 (2) 97.89 (15)
S2—C8—C9—C10 174.8 (2) −172.5 (5) −173.8 (2) 174.51 (12)
[Figure 4]
Figure 4
(a) The mol­ecular structure of H4L1_B, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. (b) A view of the mol­ecular structure of H4L1_B with the symmetry-related disordered side chains (C8/C8B, C9/C9B, C10/C10B, O3/O3B and O4/O4B) shown with dashed bonds. Unlabelled atoms are related to labelled atoms by symmetry operator −x + 2, −y + 1, −z + 1.
[Figure 5]
Figure 5
A comparison of the orientation of the –CH2—S—CH2—CH2– side chains in (a) polymorph H4L1_A, (b) for the major disordered component of polymorph H4L1_B, (c) KH3L1 and (d) K2H2L1 [see Table 1[link] for further details; symmetry codes: (i) = (ii) −x + 2, −y + 1, −z + 1; (iii) −x + [{1\over 2}], −y + [{1\over 2}], −z; (iv) −x + [{1\over 2}], −y + [{5\over 2}], −z + 1].

Reaction of H4L1 with Hg(NO3)2 in the presence a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a potassium–organic framework (KH3L1); see Fig. 6[link]. The asymmetric unit consists of half a mono-deprotonated ligand mol­ecule located about an inversion center, and half a potassium ion located on an inversion center. The carb­oxy H atom is disordered by symmetry. The K+ ion is linked to the O atoms of the acid groups and has a coordination number of eight (KO8) and a distorted dodeca­hedral geometry (Fig. 7[link]a). The K⋯O bond lengths vary between 2.682 (2) and 3.069 (3) Å (Table 2[link]). Inter­estingly, here there is a significant difference between the K⋯O(C=O) and K⋯O(O) distances: 2.6823 (2) and 2.828 (2) Å compared to 3.056 (3) and 3.069 (3) Å, respectively.

Table 2
Selected bond lengths (Å) for KH3L1[link]

K1—O1 2.828 (2) K1—O3ii 2.682 (2)
K1—O2i 3.056 (3) K1—O4iii 3.069 (3)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
The mol­ecular structure of complex KH3L1, with labels for the atoms in the asymmetric unit of the organic anion. Unlabelled atoms are related to labelled atoms by symmetry operator (i) −x + [{1\over 2}], −y + [{1\over 2}], −z. Displacement ellipsoids are drawn at the 50% probability level. [Further symmetry codes are: (ii) −x + 1, −y, −z: (iii) x, y + 1, z; (iv) x, y, z + 1; (v) −x + [{1\over 2}], −y + [{1\over 2}], −z − 1; (vi) x − [{1\over 2}], y + [{1\over 2}], z; (vii) −x + [{1\over 2}], −y − [{1\over 2}], −z.]
[Figure 7]
Figure 7
(a) Views of the coordination sphere of the potassium ion in KH3L1 [symmetry code: (i) −x + 1, y, −z − [{1\over 2}]] and (b) views of the coordination sphere of the potassium ions in K2H2L1 [symmetry codes: (i) −x, y, −z + [{3\over 2}]; (ii) x, y − 1, z; (iii) x, y + 1, z; (iv) −x, y + 1, −z + [{3\over 2}]].

Reaction of H4L1 with Zn(NO3)2 in the presence of a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a dipotassium–organic framework (K2H2L1); see Fig. 8[link]. The asymmetric unit consists of half a di-deprotonated ligand mol­ecule located about an inversion center, and two half potassium ions located on inversion centers. The K+ ions are linked to the O atoms of the acid groups and both K+ ions have a coordination number of six (KO6) and have edge-sharing bipyramidal geometries. The K+ ions are bridged by atoms O1 and O3, forming chains propagating along the b-axis direction (Fig. 7[link]b). The K⋯O bond lengths vary between 2.6682 (12) and 2.8099 (14) Å (Table 3[link]). Here, the difference between the K⋯O(C=O) and K⋯O(O) bond lengths is much less significant (Table 3[link]).

Table 3
Selected bond lengths (Å) for K2H2L1[link]

K1—O1i 2.7084 (14) K2—O1 2.7132 (13)
K1—O2 2.6682 (12) K2—O3iii 2.6682 (13)
K1—O3ii 2.8099 (14) K2—O4ii 2.7209 (12)
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 8]
Figure 8
The mol­ecular structure of complex K2H2L1, with labels for the atoms in the asymmetric unit of the organic dianion. Unlabelled atoms are related to labelled atoms by symmetry operator (i) −x + [{1\over 2}], −y + [{5\over 2}], −z + 1. Displacement ellipsoids are drawn at the 50% probability level. [Further symmetry codes are: (ii) −x, −y + 2, −z + 1; (iii) x, y + 1, z; (iv) x + [{1\over 2}], y + [{1\over 2}], z; (v) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (vi) x + [{1\over 2}], y + [{1\over 2}], z.]

The K⋯O bond lengths in the KH3L1 and K2H2L1 frameworks are close to those observed for similar compounds; see §6 Database survey. The conformation of one of the –CH2—S—CH2—CH2– side chains (involving atom S1) of the organic anion are similar, and similar to that in H4L1_B (Fig. 5[link]b), while the conformation of the second (involving atom S2) differs significantly (Fig. 5[link]c and d, and Table 1[link]).

3. Supra­molecular features

In the crystal of H4L1_A, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers enclosing R22(8) loops (Fig. 9[link] and Table 4[link]). These inter­actions lead to the formation of layers lying parallel to the bc plane. The layers are linked by C—H⋯O hydrogen bonds (Table 4[link]), forming a supra­molecular framework.

Table 4
Hydrogen-bond geometry (Å, °) for H4L1_A[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.87 (2) 1.80 (2) 2.667 (3) 172 (5)
O4—H4O⋯O3ii 0.83 (2) 1.85 (2) 2.673 (3) 175 (5)
C5—H5A⋯O3iii 0.97 2.55 3.405 (4) 147
C8—H8A⋯O4iv 0.97 2.40 3.308 (4) 156
Symmetry codes: (i) [-x-1, -y, -z]; (ii) [-x+1, -y+1, -z]; (iii) [x-1, y, z]; (iv) x+1, y, z.
[Figure 9]
Figure 9
A view along the a axis of the crystal packing of H4L1_A. The hydrogen bonds are shown as dashed lines (see Table 4[link]).

In the crystal of H4L1_B, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction and enclosing R22(8) loops (Fig. 10[link] and Table 5[link]). There are no other significant directional contacts present in the crystal.

Table 5
Hydrogen-bond geometry (Å, °) for H4L1_B[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3i 0.82 1.94 2.66 (1) 146
O2—H2O⋯O3Bi 0.82 2.20 2.77 (3) 127
O4—H4O⋯O1ii 0.82 1.88 2.66 (1) 158
O4B—H4OB⋯O1ii 0.82 1.86 2.67 (4) 170
Symmetry codes: (i) x, y, z+1; (ii) [x, y, z-1].
[Figure 10]
Figure 10
A view along the a-axis of the crystal packing of H4L1_B. Only atoms of the major component are shown. The hydrogen bonds are shown as dashed lines (see Table 5[link]).

In both KH3L1 and K2H2L1, the organic anions are arranged as rungs of parallel ladders, so forming the framework structures, as shown in Figs. 11[link] and 12[link], respectively. The frameworks are reinforced by O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds (Tables 6[link] and 7[link], respectively).

Table 6
Hydrogen-bond geometry (Å, °) for KH3L1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1iv 0.80 (5) 1.86 (5) 2.661 (3) 180 (7)
O2—H20⋯O2v 1.24 (1) 1.24 (1) 2.436 (3) 159 (7)
C4—H4A⋯N1 0.99 2.52 3.340 (4) 140
C4—H4B⋯O3vi 0.99 2.49 3.114 (4) 121
C5—H5B⋯O2i 0.99 2.60 3.467 (4) 146
C7—H7B⋯N1vii 0.99 2.60 3.454 (4) 144
C9—H9A⋯O3vii 0.99 2.58 3.465 (4) 149
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+1, y, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vii) [x, -y, z+{\script{1\over 2}}].

Table 7
Hydrogen-bond geometry (Å, °) for K2H2L1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2iv 0.85 (2) 1.61 (2) 2.4637 (16) 177 (3)
C4—H4A⋯N1 0.99 2.44 3.266 (2) 141
C8—H8A⋯O3v 0.99 2.53 3.436 (2) 151
Symmetry codes: (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x, -y+2, z-{\script{1\over 2}}].
[Figure 11]
Figure 11
A view along the b axis of the crystal packing of complex KH3L1. For clarity, the H atoms have been omitted.
[Figure 12]
Figure 12
A view along the b axis of the crystal packing of complex K2H2L1. For clarity, the H atoms have been omitted.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots for H4L1_A, and H4L1_B

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) following the protocol of Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]).

The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of H4L1_A, and H4L1_B mapped over dnorm are given in Fig. 13[link]. The most significant short contacts in the crystal structures of the two polymorphs are given in Table 8[link]. The large red spots in Fig. 13[link]a and b concern the O—H⋯O hydrogen bonds in the crystal structures of both compounds.

Table 8
Short contacts (Å) in the crystal structures of H4L1_A and H4L1_Ba

Atom 1 Atom 2 Length Length − VdW Symm. op. 1 Symm. op. 2
H4L1_A          
O1 H2O 1.798 −0.922 x, y, z −1 − x, −y, −z
O3 H4O 1.843 −0.877 x, y, z 1 − x, 1 − y, −z
O1 O2 2.667 −0.373 x, y, z −1 − x, −y, −z
O3 O4 2.673 −0.367 x, y, z 1 − x, 1 − y, −z
O4 H8A 2.399 −0.321 x, y, z −1 + x, y, z
O2 O4 3.015 −0.025 x, y, z x, 1 − y, −z
C6 H2O 2.667 −0.233 x, y, z −1 − x, −y, −z
C10 H4O 2.668 −0.232 x, y, z 1 − x, 1 − y, −z
H5A O3 2.549 −0.171 x, y, z −1 + x, y, z
H4O H4O 2.371 −0.029 x, y, z 1 − x, 1 − y, −z
H2O H2O 2.389 −0.011 x, y, z −1 − x, −y, −z
N1 H3A 2.807 0.057 x, y, z 1 − x, 1 − y, 1 − z
O4 C8 3.308 0.088 x, y, z −1 + x, y, z
O2 H8A 2.820 0.100 x, y, z 1 − x, 1 − y, −z
           
H4L1_Ba          
H4O O1 1.879 −0.841 x, y, z x, y, −1 + z
O4 O1 2.658 −0.382 x, y, z x, y, −1 + z
O3 O2 2.663 −0.377 x, y, z x, y, −1 + z
H4O C6 2.580 −0.320 x, y, z x, y, −1 + z
O4 O2 2.799 −0.241 x, y, z −1 + x, y, −1 + z
H4O H2O 2.173 −0.227 x, y, z x, y, −1 + z
O1 O2 2.982 −0.058 x, y, z −1 + x, y, z
S1 H3A 2.951 −0.049 x, y, z −1 + x, y, z
S1 S2 3.590 −0.010 x, y, z 1 − x, −y, 1 − z
O4 O3 3.041 0.001 x, y, z −1 + x, y, z
S2 S2 3.613 0.013 x, y, z 1 − x, −y, 1 − z
H8A O3 2.749 0.029 x, y, z −1 + x, y, z
S1 H5A 3.047 0.047 x, y, z −1 + x, y, z
H4O O2 2.775 0.055 x, y, z −1 + x, y, −1 + z
O4 H2O 2.776 0.056 x, y, z −1 + x, y, −1 + z
C10 H2O 2.960 0.060 x, y, z 2 − x, −y, 1 − z
O3 H2O 2.796 0.076 x, y, z 2 − x, −y, 1 − z
H7B C3 2.974 0.074 x, y, z −1 + x, y, z
S2 H7B 3.082 0.082 x, y, z 1 − x, −y, 1 − z
O2 H5B 2.802 0.082 2 − x, 1 − y, 1 − z −1 + x, y, −1 + z
S1 H9A 3.085 0.085 x, y, z 1 − x, −y, 1 − z
Note: (a) major component of H4L1_B.
[Figure 13]
Figure 13
The Hirshfeld surfaces of compounds (a) H4L1_A and (b) H4L1_B, mapped over dnorm in the colour ranges of −0.7146 to 1.2167 and −0.6847 to 1.3548 au., respectively.

The percentage contributions of inter-atomic contacts to the HS for both compounds are compared in Table 9[link]. The two-dimensional fingerprint plots for compounds H4L1_A, and H4L1_B are shown in Fig. 14[link]. They reveal that the principal contributions to the overall HS involve H⋯H contacts at 37.2 and 36.3%, respectively, and O⋯H/H⋯O contacts at, respectively, 37.7 and 32.2%.

Table 9
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of H4L1_A and H4L1_Ba

Contact % contribution % contribution
  H4L1_A H4L1_Ba
H⋯H 37.2 36.3
O⋯H/H⋯O 37.7 32.2
S⋯H/H⋯S 13.4 16.1
C⋯H/H⋯C 4.5 4.9
N⋯H/H⋯N 3.0 2.5
C⋯N 0 0.8
C⋯O 1.0 0.7
C⋯S 1.2 0
N⋯S 0.4 0.4
O⋯O 1.3 4.9
O⋯S 0.2 0
S⋯S 0.2 1.2
Note: (a) major component of H4L1_B.
[Figure 14]
Figure 14
The full two-dimensional fingerprint plots for compounds (a) H4L1_A and (b) H4L1_B, and those delineated into H⋯H, O⋯H/H⋯O and S⋯H/H⋯S contacts.

The third most important contribution to the HS is from the S⋯H/H⋯S contacts at 13.4 and 16.1%, for H4L1_A, and H4L1_B, respectively. These are followed by C⋯H/H⋯H contacts at, respectively, 4.5 and 4.9%. The N⋯H/H⋯N contacts contribute, respectively, 3.0 and 2.5%.

5. Energies frameworks for H4L1_A, and H4L1_B

The colour-coded inter­action mappings within a radius of 6 Å of a central reference mol­ecule for H4L1_A, and H4L1_B, are given in Fig. 15[link]. Full details of the various contributions to the total energy (Etot) are also included there; see Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) for an explanation of the various parameters.

[Figure 15]
Figure 15
The colour-coded inter­action mappings within a radius of 6 Å of a central reference mol­ecule for (a) H4L1_A and (b) H4L1_B.

A comparison of the energy frameworks calculated for H4L1_A, and H4L1_B, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 16[link]. The energies were obtained by using the wave function at the HF/3-21G level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). They have been adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å of a central reference mol­ecule. It can be seen that for both polymorphs the major contribution to the inter­molecular inter­actions is from electrostatic potential forces (Eele), reflecting the presence of the classical O—H⋯O hydrogen bonds.

[Figure 16]
Figure 16
The energy frameworks calculated for (a) H4L1_A and (b) H4L1_B, both viewed along the b-axis direction, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot).

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tetrakis-substituted pyrazine carb­oxy­lic acids gave results for only two such ligands, viz. 2,3,5,6-pyrazine­tetra­carb­oxy­lic acid (pztca) and 2,3,5,6-tetra­kis­(4-carb­oxy­phen­yl)pyrazine (pztba). Ligand pztba has been shown to be extremely successful in forming metal–organic frameworks (Jiang et al., 2017[Jiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090-2096.]; Wang et al., 2019[Wang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X. & Zou, R. (2019). Inorg. Chem. Commun. 104, 78-82.]).

Potassium salts of carb­oxy­lic acids are relatively common. A search for potassium salts of purely organic carb­oxy­lic acids and excluding hydrates, yielded over 200 hits. The potassium salt of pztca has been reported, viz. catena-[(μ4-3,5,6-tri­carb­oxy­pyrazine-2-carboxyl­ato)potassium] (CSD refcode UBUPAK; Masci et al., 2010[Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004-2010.]). The structure of UBUPAK is that of a potassium–organic framework (Fig. 17[link]a). The asymmetric unit consists of half a mono-deprotonated ligand mol­ecule located about an inversion center, and half a potassium ion. The carb­oxy H atom is disordered by symmetry, similar to the situation in the structure of KH3L1. Here the K⋯O bond lengths vary from 2.7951 (11) to 2.8668 (13) Å. The K+ cation has a coordination number of 8 (KO8) and a distorted dodeca­hedral geometry as in KH3L1 (Fig. 7[link]a and 11).

[Figure 17]
Figure 17
(a) A view along the a axis of the potassium–organic framework of UBUPAK (Masci et al., 2010[Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004-2010.]) and (b) a view along the c axis of the potassium–organic framework of MUMPIW (Li et al., 2020[Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870-7874.]).

The structure of the potassium salt of pyrazine-2,3-di­carb­oxy­lic acid (pzdca; Fig. 1[link]), catena-[(μ2-3-carb­oxy­pyrazine-2-carboxyl­ato)-(μ2-pyrazine-2,3-di­carb­oxy­lic acid)di­aqua­potassium], has been reported (RISYIC; Tombul et al., 2008[Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246-m247.]). It has a polymer chain structure with the chains linked by O—H⋯O hydrogen bonds, forming a supra­molecular framework. Here the K⋯O bond lengths vary from 2.8772 (14) to 3.0898 (14) Å.

The structures of two potassium salts of 2,6-pyridine-di­carb­oxy­lic acid (pydca; Fig. 1[link]) have been reported. They include, bis­(μ2-pyridine-2,6-di­carb­oxy­lic acid-N,O,O′:O′)-hexa­aqua­bis­(6-carb­oxy­pyridine-2-carboxyl­ato-O)dipotassium (HAMBEE; Santra et al., 2011[Santra, S., Das, B. & Baruah, J. B. (2011). J. Chem. Crystallogr. 41, 1981-1987.]; HAMBEE01; Hayati et al., 2017[Hayati, P., Rezvani, A. R., Morsali, A. & Retailleau, P. (2017). Ultrason. Sonochem. 34, 195-205.]), and catena-[(μ-6-carb­oxy­pyridine-2-carboxyl­ato)potassium] (MUMPIW; Li et al., 2020[Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870-7874.]). HAMBEE is a binuclear complex, which is linked by O—H⋯O hydrogen bonds to form supra­molecular chains. The K⋯O bond lengths vary from 2.721 (2) to 3.054 (3) Å.

The structure of MUMPIW is that of a potassium-organic framework (Fig. 17[link]b), with the K⋯O bonds lengths varying from 2.8197 (14) to 3.0449 (15) Å. The K+ ion has a coordination number of seven (KO6N) and has an edge-sharing penta­gonal anti­prism geometry, forming chains (Fig. 17[link]b). This structure can be compared to that of K2H2L1 where the two independent K+ ions, each with a coordination number of six (KO6), have edge-sharing bipyramidal geometries, also forming chains (Fig. 7[link]b and 12).

7. Synthesis and crystallization

The synthesis and crystal structure of the reagent tetra-2,3,5,6-bromo­methyl-pyrazine (TBr) have been reported (Ferigo et al., 1994[Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549-1554.]; Assoumatine & Stoeckli-Evans, 2014[Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51-53.] [CSD refcode: TOJXUN]).

Synthesis of 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid (H4L1):

Mercaptopropionic acid (1.8795 g, 1.77 mol, 4 eq) was dissolved in 50 ml THF. A minimum amount of water (a few ml) was added to dissolve 1.4166 g (3.54 mol, 8 eq) of NaOH. The volume of the mixture was increased to 100 ml by adding THF and the reaction was stirred under reflux for 1 h. Then TBr (2 g, 4.42 mol, 1 eq) dissolved in 50 ml THF was added dropwise using an addition funnel. The mixture was stirred under reflux for 6 h. After drying under vacuum, the residue was dissolved in 50 ml of deionized water, and HCl puriss. was added dropwise until a clearly acid pH was obtained. This mixture was stirred at room temperature for 1–2 h. The yellow precipitate that formed was filtered off and washed with a minimum amount of water and then CHCl3. It was then dried under vacuum conditions. Recrystallization carried out with methanol gave pale-yellow crystals of H4L1 (yield 88%, m.p. 466 K) that X-ray diffraction analysis indicated to be triclinic polymorph H4L1_A.

The presence of terephthalic acid in an equimolar qu­antity with H4L1 in methanol gave colourless crystals of rather poor quality. However, X-ray diffraction analysis indicated that a second triclinic (P[\overline{1}]) polymorph, H4L1_B, had been obtained.

Spectroscopic and elemental analyses:

Rf: 0.77 (solvent: CH3OH).

1H NMR (CD3OD, 400 MHz), δ(ppm): 4.03 (s, 8H, H2), 2.78 (t, 8H, 3J(3,4) = 7.0, H3), 2.62 (t, 8H, 3J(4,3) = 7.0, H4).

13C NMR (CD3OD, 50 MHz), δ(ppm): 174.54 (4C, C5), 150.12 (4C, C1), 34.29 (4C, C4), 33.64 (4C, C2), 26.65 (4C, C3).

Elemental Analysis for C20H28N2O8S4, Mw = 552.71 g mol−1: Calculated: C 43.46, H 5.11, N 5.07%. Found: C 43.40, H 5.17, N 4.87%.

ESI–MS, m/z: 591.04 [M + K]+; 575.06 [M + Na]+; 553.08 [M + H]+; 471.07; 449.09.

IR (KBr disc, cm−1) ν: 2926(s), 2666(m), 2590(s), 1693(s), 1429(s), 1406(s), 1340(m), 1270(s), 1200(s), 1163(m), 1134(s), 1107(m), 1055(w), 918(s), 658(m), 489(m).

Synthesis of poly[(μ-3-{[(3,5,6-tris­{[(2-carb­oxy­eth­yl)sulfan­yl]meth­yl}pyrazin-2-yl)meth­yl]sulfan­yl}propano­ate)potas­sium] (KH3L1):

Hg(NO3)2 (45.0 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1 eq) were mixed together in 20 ml of a 1 M potassium acetate buffer. The mixture was left at 323 K under stirring and nitro­gen conditions for 1 h. The mixture was then filtered and left to evaporate in air for six weeks. Colourless plate-like crystals were obtained, which were shown to be a potassium–organic framework.

IR (KBr disc, cm−1) ν: 3422(m), 2922(m), 1713(m), 1580(s), 1399(s), 1247(m), 1190(m), 1152(m), 1114(m), 811(m), 787(m).

Synthesis of poly[(μ-3,3′-{[(3,6-bis­{[(2-carb­oxy­eth­yl)sulf­an­yl]meth­yl}pyrazine-2,5-di­yl)bis­(methyl­ene)]bis­(sulfanedi­yl)}dipropionato)dipotassium] (K2H2L1):

Zn(NO3)2 (28.4 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1eq) were mixed together in 20 ml of a 1M potassium acetate buffer. The mixture was left at 323 K under stirring and nitro­gen for 1 h. The mixture was then filtered and left to evaporate in air for 6 weeks. Colourless plate-like crystals were obtained, which proved to be a dipotassium-organic framework.

IR (KBr disc, cm−1) ν: 3401(m), 1579(s), 1401(s), 1303(m).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 10[link].

Table 10
Experimental details

  H4L1_A H4L1_B KH3L1 K2H2L1
Crystal data
Chemical formula C20H28N2O8S4 C20H28N2O8S4 [K(C20H27N2O8S4)] [K2(C20H26N2O8S4)]
Mr 552.68 552.68 590.77 628.87
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 293 293 153 153
a, b, c (Å) 5.5843 (8), 9.0061 (14), 12.739 (2) 4.9424 (17), 8.993 (3), 14.190 (6) 30.080 (4), 8.4716 (10), 9.5908 (12) 27.908 (2), 8.2916 (6), 11.3035 (9)
α, β, γ (°) 101.537 (18), 94.313 (18), 103.701 (17) 96.96 (3), 97.14 (3), 100.72 (3) 90, 94.717 (11), 90 90, 94.753 (6), 90
V3) 604.80 (17) 608.1 (4) 2435.7 (6) 2606.7 (3)
Z 1 1 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.44 0.44 0.61 0.73
Crystal size (mm) 0.35 × 0.30 × 0.05 0.50 × 0.50 × 0.05 0.50 × 0.50 × 0.10 0.50 × 0.50 × 0.05
 
Data collection
Diffractometer Stoe IPDS 1 Stoe IPDS 2 Stoe IPDS 2 Stoe IPDS 2
Absorption correction Empirical (using intensity measurements) (ShxAbs; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Empirical (using intensity measurements) (ShxAbs; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Empirical (using intensity measurements) (ShxAbs; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.647, 0.897 0.144, 0.616 0.640, 1.000 0.416, 0.803
No. of measured, independent and observed [I > 2σ(I)] reflections 4709, 2194, 1452 4152, 2201, 1537 10309, 2084, 1646 19423, 3646, 3175
Rint 0.058 0.080 0.064 0.042
(sin θ/λ)max−1) 0.615 0.617 0.590 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 0.88 0.071, 0.208, 1.05 0.039, 0.106, 1.02 0.037, 0.103, 1.05
No. of reflections 2194 2201 2084 3646
No. of parameters 162 173 165 167
No. of restraints 2 6 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.28 0.47, −0.39 0.26, −0.36 0.76, −0.51
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For H4L1_A, KH3L1 and K2H2L1, the various –CO2H H atoms were located in difference-Fourier maps and freely refined. For H4L1_B, the –CO2H H atoms were difficult to locate, probably due to the poor quality of the crystal and the disorder in the side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B; Fig. 4[link]b). They were therefore included in calculated positions assuming the formation of carb­oxy­lic acid dimers; O—H = 0.82 Å and refined as riding with Uiso(H) = 1.5Ueq(O).

As in the K+ salt of pyrazine tetra­carb­oxy­lic acid (UBUPAK; Masci et al., 2010[Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004-2010.]), the carb­oxy H atom in KH3L1 is disordered by symmetry, hence the H atom on O3 was given an occupancy factor of 0.5 to balance the charges.

For all four compounds, the C-bound H atoms were included in calculated positions and treated as riding on their parent C atom with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

For H4L1_A and H4L1_B, the alert _diffrn_reflns_point_group_measured_fraction_full value (0.94 and 0.93, respectively) below minimum (0.95) was given. For H4L1_A it involves 131 random reflections out of a total of 2180, viz. 6.0%, while for H4L1_B it involves 158 random reflections out of a total of 2184, viz. 7.2%.

For H4L1_A, H4L1_B and K2H2L1 the multiplicity of reflections was 2 or less and so an empirical absorption correction was applied.

Supporting information


Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000) for H4L1A; X-AREA (Stoe & Cie, 2002) for H4L1B, KH3L1, K2H2L1. Cell refinement: CELL in IPDS-I (Stoe & Cie, 2000) for H4L1A; X-AREA (Stoe & Cie, 2002) for H4L1B, KH3L1, K2H2L1. Data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2000) for H4L1A; X-RED32 (Stoe & Cie, 2002) for H4L1B, KH3L1, K2H2L1. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015). Molecular graphics: Mercury (Macrae et al., 2020) for H4L1A; PLATON (Spek, 2020) and Mercury (Macrae et al., 2020) for H4L1B, KH3L1, K2H2L1. For all structures, software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A) top
Crystal data top
C20H28N2O8S4Z = 1
Mr = 552.68F(000) = 290
Triclinic, P1Dx = 1.517 Mg m3
a = 5.5843 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0061 (14) ÅCell parameters from 3225 reflections
c = 12.739 (2) Åθ = 2.4–25.9°
α = 101.537 (18)°µ = 0.44 mm1
β = 94.313 (18)°T = 293 K
γ = 103.701 (17)°Plate, pale-yellow
V = 604.80 (17) Å30.35 × 0.30 × 0.05 mm
Data collection top
STOE IPDS 1
diffractometer
2194 independent reflections
Radiation source: fine-focus sealed tube1452 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.058
φ rotation scansθmax = 25.9°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(ShxAbs; Spek, 2020)
h = 66
Tmin = 0.647, Tmax = 0.897k = 1111
4709 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40170 (15)0.39121 (9)0.29698 (6)0.0312 (2)
S21.27548 (15)0.86290 (9)0.37908 (6)0.0288 (2)
O10.3381 (5)0.0716 (3)0.12207 (17)0.0435 (6)
O20.2098 (5)0.1064 (3)0.03567 (17)0.0409 (6)
H2O0.363 (5)0.052 (5)0.059 (4)0.098 (19)*
O30.7761 (4)0.5277 (3)0.08084 (16)0.0379 (6)
O40.5045 (5)0.6736 (3)0.09232 (19)0.0422 (6)
H4O0.422 (8)0.607 (4)0.039 (3)0.087 (17)*
N10.8353 (4)0.5540 (3)0.44074 (17)0.0198 (5)
C10.7859 (5)0.4024 (3)0.4451 (2)0.0194 (6)
C21.0447 (5)0.6523 (3)0.4952 (2)0.0183 (6)
C30.5460 (5)0.2957 (3)0.3850 (2)0.0248 (6)
H3A0.4344050.2649800.4361770.030*
H3B0.5774090.2016070.3428270.030*
C40.1473 (6)0.2234 (4)0.2308 (2)0.0328 (7)
H4A0.2028110.1280080.2226730.039*
H4B0.0115420.2143050.2743060.039*
C50.0600 (6)0.2449 (4)0.1219 (2)0.0347 (8)
H5A0.0417880.3508650.1294660.042*
H5B0.1861830.2331480.0747990.042*
C60.1807 (6)0.1321 (3)0.0698 (2)0.0291 (7)
C71.0877 (6)0.8196 (3)0.4857 (2)0.0239 (6)
H7A1.1703020.8879350.5540880.029*
H7B0.9284340.8419370.4711630.029*
C81.0935 (6)0.7220 (4)0.2615 (2)0.0277 (7)
H8A1.1877630.7255530.2007170.033*
H8B1.0681520.6177070.2753670.033*
C90.8427 (6)0.7491 (3)0.2307 (2)0.0290 (7)
H9A0.7421720.7357200.2886980.035*
H9B0.8664520.8565240.2231860.035*
C100.7046 (6)0.6407 (4)0.1277 (2)0.0283 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0292 (5)0.0246 (4)0.0348 (4)0.0018 (3)0.0101 (3)0.0109 (3)
S20.0243 (5)0.0241 (4)0.0376 (4)0.0013 (3)0.0027 (3)0.0156 (3)
O10.0333 (15)0.0501 (14)0.0362 (13)0.0022 (12)0.0093 (10)0.0054 (11)
O20.0322 (16)0.0486 (14)0.0345 (13)0.0001 (13)0.0099 (10)0.0099 (10)
O30.0400 (15)0.0425 (13)0.0341 (12)0.0216 (12)0.0002 (10)0.0039 (10)
O40.0345 (15)0.0519 (15)0.0396 (13)0.0217 (13)0.0064 (11)0.0004 (12)
N10.0182 (14)0.0159 (11)0.0242 (11)0.0010 (10)0.0009 (9)0.0072 (9)
C10.0184 (16)0.0158 (13)0.0222 (13)0.0006 (12)0.0005 (10)0.0055 (10)
C20.0182 (16)0.0125 (12)0.0226 (13)0.0011 (12)0.0009 (10)0.0047 (10)
C30.0191 (17)0.0189 (14)0.0327 (15)0.0025 (13)0.0028 (11)0.0085 (11)
C40.0259 (19)0.0290 (16)0.0359 (16)0.0069 (14)0.0053 (13)0.0097 (13)
C50.032 (2)0.0279 (16)0.0404 (18)0.0008 (15)0.0080 (14)0.0114 (13)
C60.0228 (19)0.0264 (16)0.0360 (17)0.0048 (15)0.0074 (13)0.0083 (13)
C70.0251 (18)0.0155 (13)0.0313 (15)0.0028 (13)0.0021 (12)0.0088 (11)
C80.0263 (18)0.0316 (16)0.0293 (15)0.0092 (14)0.0066 (12)0.0132 (12)
C90.0281 (19)0.0276 (16)0.0324 (16)0.0074 (15)0.0008 (12)0.0097 (12)
C100.0262 (18)0.0385 (17)0.0254 (15)0.0125 (15)0.0068 (12)0.0129 (13)
Geometric parameters (Å, º) top
S1—C31.796 (3)C3—H3B0.9700
S1—C41.818 (3)C4—C51.500 (4)
S2—C81.813 (3)C4—H4A0.9700
S2—C71.825 (3)C4—H4B0.9700
O1—C61.233 (4)C5—C61.493 (4)
O2—C61.307 (4)C5—H5A0.9700
O2—H2O0.87 (2)C5—H5B0.9700
O3—C101.240 (4)C7—H7A0.9700
O4—C101.294 (4)C7—H7B0.9700
O4—H4O0.830 (19)C8—C91.514 (4)
N1—C21.332 (3)C8—H8A0.9700
N1—C11.341 (3)C8—H8B0.9700
C1—C2i1.406 (3)C9—C101.499 (4)
C1—C31.499 (4)C9—H9A0.9700
C2—C71.500 (3)C9—H9B0.9700
C3—H3A0.9700
C3—S1—C497.53 (13)C4—C5—H5B108.8
C8—S2—C7101.68 (14)H5A—C5—H5B107.7
C6—O2—H2O108 (3)O1—C6—O2123.6 (3)
C10—O4—H4O113 (3)O1—C6—C5122.7 (3)
C2—N1—C1119.1 (2)O2—C6—C5113.7 (3)
N1—C1—C2i120.3 (2)C2—C7—S2112.8 (2)
N1—C1—C3117.7 (2)C2—C7—H7A109.0
C2i—C1—C3122.0 (2)S2—C7—H7A109.0
N1—C2—C1i120.6 (2)C2—C7—H7B109.0
N1—C2—C7115.9 (2)S2—C7—H7B109.0
C1i—C2—C7123.4 (2)H7A—C7—H7B107.8
C1—C3—S1110.88 (18)C9—C8—S2114.2 (2)
C1—C3—H3A109.5C9—C8—H8A108.7
S1—C3—H3A109.5S2—C8—H8A108.7
C1—C3—H3B109.5C9—C8—H8B108.7
S1—C3—H3B109.5S2—C8—H8B108.7
H3A—C3—H3B108.1H8A—C8—H8B107.6
C5—C4—S1109.2 (2)C10—C9—C8113.5 (2)
C5—C4—H4A109.8C10—C9—H9A108.9
S1—C4—H4A109.8C8—C9—H9A108.9
C5—C4—H4B109.8C10—C9—H9B108.9
S1—C4—H4B109.8C8—C9—H9B108.9
H4A—C4—H4B108.3H9A—C9—H9B107.7
C6—C5—C4113.8 (3)O3—C10—O4122.8 (3)
C6—C5—H5A108.8O3—C10—C9122.4 (3)
C4—C5—H5A108.8O4—C10—C9114.8 (3)
C6—C5—H5B108.8
C2—N1—C1—C2i1.2 (4)C4—C5—C6—O126.8 (4)
C2—N1—C1—C3178.6 (2)C4—C5—C6—O2154.4 (3)
C1—N1—C2—C1i1.2 (4)N1—C2—C7—S294.0 (3)
C1—N1—C2—C7179.6 (2)C1i—C2—C7—S284.3 (3)
N1—C1—C3—S111.3 (3)C8—S2—C7—C257.6 (2)
C2i—C1—C3—S1168.8 (2)C7—S2—C8—C965.7 (2)
C4—S1—C3—C1174.1 (2)S2—C8—C9—C10174.8 (2)
C3—S1—C4—C5155.3 (2)C8—C9—C10—O38.8 (4)
S1—C4—C5—C6167.9 (2)C8—C9—C10—O4171.8 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1ii0.87 (2)1.80 (2)2.667 (3)172 (5)
O4—H4O···O3iii0.83 (2)1.85 (2)2.673 (3)175 (5)
C5—H5A···O3iv0.972.553.405 (4)147
C8—H8A···O4v0.972.403.308 (4)156
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y, z.
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B) top
Crystal data top
C20H28N2O8S4Z = 1
Mr = 552.68F(000) = 290
Triclinic, P1Dx = 1.509 Mg m3
a = 4.9424 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.993 (3) ÅCell parameters from 5563 reflections
c = 14.190 (6) Åθ = 2.4–25.5°
α = 96.96 (3)°µ = 0.44 mm1
β = 97.14 (3)°T = 293 K
γ = 100.72 (3)°Plate, colourless
V = 608.1 (4) Å30.50 × 0.50 × 0.05 mm
Data collection top
STOE IPDS 2
diffractometer
2201 independent reflections
Radiation source: fine-focus sealed tube1537 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.080
φ + ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(ShxAbs; Spek, 2020)
h = 55
Tmin = 0.144, Tmax = 0.616k = 119
4152 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1049P)2 + 0.4241P]
where P = (Fo2 + 2Fc2)/3
2201 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.47 e Å3
6 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.7886 (3)0.28919 (12)0.71512 (9)0.0583 (4)
S20.6227 (3)0.07568 (12)0.39724 (10)0.0682 (5)
N11.2114 (8)0.5110 (4)0.5754 (3)0.0500 (9)
C10.9965 (9)0.3908 (4)0.5566 (3)0.0467 (10)
C20.7852 (9)0.3796 (4)0.4821 (3)0.0469 (10)
C31.0020 (10)0.2707 (4)0.6214 (3)0.0537 (11)
H3A1.1927600.2772260.6507550.064*
H3B0.9379590.1704700.5831130.064*
C40.9971 (12)0.4560 (5)0.7916 (4)0.0644 (13)
H4A1.0879160.5249560.7522310.077*
H4B0.8767290.5090270.8260370.077*
C51.2177 (12)0.4158 (6)0.8638 (4)0.0682 (14)
H5A1.3325890.3589480.8292320.082*
H5B1.3370090.5096830.8980690.082*
C61.0984 (14)0.3238 (6)0.9345 (4)0.0728 (15)
O10.8532 (10)0.3158 (5)0.9473 (3)0.0828 (12)
O21.2630 (12)0.2603 (9)0.9826 (5)0.136 (2)
H2O1.1739900.1867831.0019780.204*
C70.5410 (10)0.2468 (5)0.4572 (4)0.0559 (11)
H7A0.3942200.2764300.4160930.067*
H7B0.4700230.2241510.5156710.067*
C80.6926 (16)0.1494 (6)0.2872 (5)0.0604 (17)0.821 (6)
H8A0.5305650.1837520.2588190.072*0.821 (6)
H8B0.8474670.2365210.3017190.072*0.821 (6)
C90.7607 (15)0.0292 (6)0.2173 (5)0.0657 (16)0.821 (6)
H9A0.5974490.0518560.1960910.079*0.821 (6)
H9B0.9068490.0146970.2482930.079*0.821 (6)
C100.8546 (16)0.0963 (7)0.1325 (5)0.0622 (15)0.821 (6)
O31.0881 (16)0.0900 (11)0.1127 (6)0.132 (3)0.821 (6)
O40.6974 (19)0.1598 (10)0.0858 (6)0.117 (3)0.821 (6)
H4O0.7853510.2129890.0522980.175*0.821 (6)
C8B0.834 (7)0.112 (3)0.3062 (18)0.0604 (17)0.179 (6)
H8B10.9573850.2121760.3216140.072*0.179 (6)
H8B20.9418700.0342500.2947520.072*0.179 (6)
C9B0.609 (6)0.106 (3)0.2219 (19)0.0657 (16)0.179 (6)
H9B10.4902820.0051150.2074640.079*0.179 (6)
H9B20.4946500.1799490.2372860.079*0.179 (6)
C10B0.748 (6)0.143 (4)0.137 (2)0.0622 (15)0.179 (6)
O3B0.998 (6)0.188 (6)0.137 (3)0.132 (3)0.179 (6)
O4B0.576 (9)0.176 (6)0.073 (3)0.117 (3)0.179 (6)
H4OB0.6603480.2283970.0381520.175*0.179 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0546 (9)0.0462 (6)0.0762 (8)0.0041 (5)0.0158 (6)0.0205 (5)
S20.0868 (11)0.0329 (5)0.0834 (9)0.0047 (5)0.0293 (7)0.0119 (5)
N10.045 (2)0.0322 (16)0.075 (2)0.0074 (14)0.0141 (17)0.0146 (15)
C10.048 (3)0.0259 (16)0.071 (3)0.0081 (15)0.017 (2)0.0160 (16)
C20.045 (3)0.0292 (17)0.070 (3)0.0054 (15)0.017 (2)0.0152 (16)
C30.051 (3)0.0350 (19)0.080 (3)0.0097 (17)0.015 (2)0.0220 (19)
C40.073 (4)0.043 (2)0.083 (3)0.009 (2)0.026 (3)0.022 (2)
C50.063 (4)0.061 (3)0.077 (3)0.001 (2)0.015 (3)0.017 (2)
C60.064 (4)0.066 (3)0.090 (4)0.003 (2)0.013 (3)0.033 (3)
O10.079 (3)0.086 (3)0.093 (3)0.019 (2)0.029 (2)0.034 (2)
O20.085 (4)0.190 (6)0.162 (5)0.031 (4)0.031 (3)0.122 (5)
C70.051 (3)0.042 (2)0.073 (3)0.0032 (18)0.012 (2)0.0155 (19)
C80.078 (5)0.034 (3)0.074 (4)0.010 (2)0.023 (3)0.017 (2)
C90.084 (5)0.040 (3)0.079 (4)0.011 (3)0.026 (3)0.022 (3)
C100.068 (5)0.048 (3)0.080 (4)0.019 (3)0.024 (3)0.020 (3)
O30.096 (5)0.194 (8)0.145 (6)0.052 (5)0.052 (4)0.113 (6)
O40.132 (8)0.140 (5)0.131 (5)0.087 (5)0.067 (5)0.090 (4)
C8B0.078 (5)0.034 (3)0.074 (4)0.010 (2)0.023 (3)0.017 (2)
C9B0.084 (5)0.040 (3)0.079 (4)0.011 (3)0.026 (3)0.022 (3)
C10B0.068 (5)0.048 (3)0.080 (4)0.019 (3)0.024 (3)0.020 (3)
O3B0.096 (5)0.194 (8)0.145 (6)0.052 (5)0.052 (4)0.113 (6)
O4B0.132 (8)0.140 (5)0.131 (5)0.087 (5)0.067 (5)0.090 (4)
Geometric parameters (Å, º) top
S1—C41.801 (5)C7—H7A0.9700
S1—C31.808 (5)C7—H7B0.9700
S2—C8B1.78 (3)C8—C91.490 (8)
S2—C71.804 (5)C8—H8A0.9700
S2—C81.816 (6)C8—H8B0.9700
N1—C11.342 (5)C9—C101.496 (8)
N1—C2i1.351 (5)C9—H9A0.9700
C1—C21.371 (6)C9—H9B0.9700
C1—C31.503 (5)C10—O41.224 (8)
C2—C71.504 (6)C10—O31.231 (9)
C3—H3A0.9700O4—H4O0.8200
C3—H3B0.9700C8B—C9B1.516 (19)
C4—C51.526 (8)C8B—H8B10.9700
C4—H4A0.9700C8B—H8B20.9700
C4—H4B0.9700C9B—C10B1.505 (19)
C5—C61.485 (7)C9B—H9B10.9700
C5—H5A0.9700C9B—H9B20.9700
C5—H5B0.9700C10B—O3B1.226 (19)
C6—O11.238 (7)C10B—O4B1.265 (19)
C6—O21.258 (8)O4B—H4OB0.8200
O2—H2O0.8200
C4—S1—C3100.2 (2)C2—C7—H7B108.8
C8B—S2—C7112.9 (9)S2—C7—H7B108.8
C7—S2—C896.8 (2)H7A—C7—H7B107.7
C1—N1—C2i117.9 (4)C9—C8—S2110.8 (4)
N1—C1—C2121.2 (4)C9—C8—H8A109.5
N1—C1—C3116.3 (4)S2—C8—H8A109.5
C2—C1—C3122.5 (4)C9—C8—H8B109.5
N1i—C2—C1120.9 (4)S2—C8—H8B109.5
N1i—C2—C7115.7 (4)H8A—C8—H8B108.1
C1—C2—C7123.5 (4)C8—C9—C10110.3 (5)
C1—C3—S1113.3 (3)C8—C9—H9A109.6
C1—C3—H3A108.9C10—C9—H9A109.6
S1—C3—H3A108.9C8—C9—H9B109.6
C1—C3—H3B108.9C10—C9—H9B109.6
S1—C3—H3B108.9H9A—C9—H9B108.1
H3A—C3—H3B107.7O4—C10—O3121.6 (7)
C5—C4—S1112.3 (3)O4—C10—C9118.5 (7)
C5—C4—H4A109.2O3—C10—C9119.8 (6)
S1—C4—H4A109.2C10—O4—H4O109.5
C5—C4—H4B109.2C9B—C8B—S299.9 (19)
S1—C4—H4B109.2C9B—C8B—H8B1111.8
H4A—C4—H4B107.9S2—C8B—H8B1111.8
C6—C5—C4113.3 (5)C9B—C8B—H8B2111.8
C6—C5—H5A108.9S2—C8B—H8B2111.8
C4—C5—H5A108.9H8B1—C8B—H8B2109.5
C6—C5—H5B108.9C10B—C9B—C8B108 (2)
C4—C5—H5B108.9C10B—C9B—H9B1110.0
H5A—C5—H5B107.7C8B—C9B—H9B1110.0
O1—C6—O2122.4 (5)C10B—C9B—H9B2110.0
O1—C6—C5121.3 (5)C8B—C9B—H9B2110.0
O2—C6—C5116.3 (6)H9B1—C9B—H9B2108.4
C6—O2—H2O109.5O3B—C10B—O4B119 (3)
C2—C7—S2113.8 (3)O3B—C10B—C9B126 (3)
C2—C7—H7A108.8O4B—C10B—C9B110 (3)
S2—C7—H7A108.8C10B—O4B—H4OB109.5
C2i—N1—C1—C20.6 (6)N1i—C2—C7—S2103.4 (4)
C2i—N1—C1—C3179.3 (4)C1—C2—C7—S275.4 (5)
N1—C1—C2—N1i0.6 (7)C8B—S2—C7—C243.7 (10)
C3—C1—C2—N1i179.3 (4)C8—S2—C7—C266.8 (4)
N1—C1—C2—C7179.3 (4)C7—S2—C8—C9178.1 (5)
C3—C1—C2—C70.6 (6)S2—C8—C9—C10172.5 (5)
N1—C1—C3—S198.8 (4)C8—C9—C10—O457.8 (10)
C2—C1—C3—S181.3 (5)C8—C9—C10—O3120.5 (9)
C4—S1—C3—C172.6 (4)C7—S2—C8B—C9B87.0 (16)
C3—S1—C4—C586.7 (4)S2—C8B—C9B—C10B177 (2)
S1—C4—C5—C665.0 (6)C8B—C9B—C10B—O3B8 (5)
C4—C5—C6—O117.0 (8)C8B—C9B—C10B—O4B164 (3)
C4—C5—C6—O2165.7 (6)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3ii0.821.942.66 (1)146
O2—H2O···O3Bii0.822.202.77 (3)127
O4—H4O···O1iii0.821.882.66 (1)158
O4B—H4OB···O1iii0.821.862.67 (4)170
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z1.
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1) top
Crystal data top
[K(C20H27N2O8S4)]F(000) = 1232
Mr = 590.77Dx = 1.611 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.080 (4) ÅCell parameters from 7965 reflections
b = 8.4716 (10) Åθ = 1.4–25.0°
c = 9.5908 (12) ŵ = 0.61 mm1
β = 94.717 (11)°T = 153 K
V = 2435.7 (6) Å3Plate, colourless
Z = 40.50 × 0.50 × 0.10 mm
Data collection top
STOE IPDS 2
diffractometer
2084 independent reflections
Radiation source: fine-focus sealed tube1646 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.064
φ + ω scansθmax = 24.8°, θmin = 2.5°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 3535
Tmin = 0.640, Tmax = 1.000k = 99
10309 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0648P)2 + 1.5958P]
where P = (Fo2 + 2Fc2)/3
2084 reflections(Δ/σ)max = 0.002
165 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.5000000.28423 (13)0.2500000.0357 (3)
S10.34409 (2)0.03261 (9)0.17646 (7)0.0305 (2)
S20.18978 (2)0.11089 (9)0.16606 (8)0.0342 (2)
O10.46781 (7)0.2235 (3)0.0136 (2)0.0404 (5)
O20.46330 (7)0.0466 (3)0.1860 (2)0.0402 (6)
H200.5000000.073 (9)0.2500000.12 (3)*
O30.06245 (6)0.1153 (3)0.0544 (2)0.0363 (5)
O40.03178 (7)0.1057 (3)0.1493 (2)0.0472 (7)
H4O0.0125 (17)0.157 (7)0.109 (5)0.097 (19)*
N10.28457 (7)0.2024 (3)0.0774 (2)0.0240 (5)
C10.27160 (8)0.1117 (3)0.0267 (3)0.0240 (6)
C20.23661 (8)0.1606 (3)0.1047 (3)0.0229 (6)
C30.29578 (8)0.0422 (3)0.0500 (3)0.0280 (6)
H3A0.3055540.0793130.0404430.034*
H3B0.2746890.1214520.0822270.034*
C40.38202 (9)0.0765 (4)0.0748 (3)0.0352 (7)
H4A0.3643840.1489690.0108570.042*
H4B0.4017180.1419460.1392180.042*
C50.41100 (9)0.0265 (4)0.0116 (3)0.0335 (7)
H5A0.3917560.1081610.0593550.040*
H5B0.4227440.0401430.0849550.040*
C60.44979 (9)0.1079 (4)0.0676 (3)0.0326 (7)
C70.22055 (9)0.0650 (3)0.2220 (3)0.0283 (6)
H7A0.2012110.1323520.2758930.034*
H7B0.2466200.0335830.2856640.034*
C80.14217 (9)0.0295 (4)0.0628 (3)0.0329 (7)
H8A0.1524270.0552190.0020310.039*
H8B0.1283120.1131890.0016070.039*
C90.10744 (9)0.0371 (4)0.1528 (3)0.0350 (7)
H9A0.0998260.0443790.2208950.042*
H9B0.1204750.1281850.2063580.042*
C100.06542 (9)0.0895 (4)0.0702 (3)0.0307 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0254 (4)0.0547 (6)0.0267 (5)0.0000.0009 (3)0.000
S10.0189 (3)0.0428 (5)0.0297 (4)0.0034 (3)0.0011 (3)0.0042 (3)
S20.0224 (4)0.0335 (4)0.0466 (5)0.0003 (3)0.0027 (3)0.0034 (3)
O10.0302 (11)0.0590 (15)0.0320 (11)0.0130 (10)0.0022 (9)0.0023 (10)
O20.0246 (10)0.0633 (15)0.0319 (11)0.0051 (10)0.0024 (9)0.0077 (10)
O30.0259 (10)0.0554 (15)0.0278 (11)0.0021 (9)0.0032 (8)0.0038 (9)
O40.0266 (12)0.0804 (19)0.0356 (13)0.0138 (12)0.0085 (10)0.0044 (12)
N10.0156 (10)0.0304 (13)0.0255 (12)0.0007 (9)0.0019 (9)0.0021 (10)
C10.0152 (12)0.0299 (16)0.0256 (14)0.0007 (11)0.0048 (10)0.0038 (11)
C20.0159 (11)0.0278 (15)0.0239 (14)0.0009 (11)0.0036 (10)0.0026 (11)
C30.0187 (13)0.0317 (16)0.0331 (15)0.0022 (11)0.0012 (11)0.0003 (12)
C40.0210 (13)0.0424 (19)0.0421 (18)0.0024 (13)0.0018 (12)0.0070 (14)
C50.0213 (13)0.051 (2)0.0280 (15)0.0009 (12)0.0017 (12)0.0039 (13)
C60.0185 (13)0.053 (2)0.0268 (15)0.0019 (13)0.0047 (11)0.0024 (14)
C70.0229 (14)0.0366 (16)0.0251 (14)0.0005 (12)0.0013 (11)0.0024 (12)
C80.0224 (14)0.0422 (19)0.0338 (16)0.0034 (12)0.0011 (12)0.0009 (13)
C90.0208 (14)0.056 (2)0.0280 (15)0.0017 (13)0.0037 (12)0.0032 (14)
C100.0217 (13)0.0388 (18)0.0321 (16)0.0033 (12)0.0052 (12)0.0013 (13)
Geometric parameters (Å, º) top
K1—O12.828 (2)C1—C21.403 (4)
K1—O1i2.828 (2)C1—C31.501 (4)
K1—O2ii3.056 (3)C2—C71.498 (4)
K1—O2iii3.056 (3)C3—H3A0.9900
K1—O3iv2.682 (2)C3—H3B0.9900
K1—O3v2.682 (2)C4—C51.525 (4)
K1—O4vi3.069 (3)C4—H4A0.9900
K1—O4vii3.069 (3)C4—H4B0.9900
S1—C41.814 (3)C5—C61.506 (4)
S1—C31.816 (3)C5—H5A0.9900
S2—C81.809 (3)C5—H5B0.9900
S2—C71.812 (3)C7—H7A0.9900
O1—C61.252 (4)C7—H7B0.9900
O2—C61.284 (4)C8—C91.517 (4)
O2—H201.239 (15)C8—H8A0.9900
O3—C101.211 (3)C8—H8B0.9900
O4—C101.321 (3)C9—C101.502 (4)
O4—H4O0.80 (5)C9—H9A0.9900
N1—C2viii1.339 (4)C9—H9B0.9900
N1—C11.343 (4)
O3iv—K1—O3v143.00 (11)C1—C2—C7122.9 (3)
O3iv—K1—O1114.30 (6)C1—C3—S1114.31 (19)
O3v—K1—O172.78 (6)C1—C3—H3A108.7
O3iv—K1—O1i72.78 (6)S1—C3—H3A108.7
O3v—K1—O1i114.30 (6)C1—C3—H3B108.7
O1—K1—O1i159.05 (11)S1—C3—H3B108.7
O3iv—K1—O2ii130.71 (7)H3A—C3—H3B107.6
O3v—K1—O2ii85.98 (6)C5—C4—S1114.4 (2)
O1—K1—O2ii78.37 (7)C5—C4—H4A108.7
O1i—K1—O2ii82.42 (6)S1—C4—H4A108.7
O3iv—K1—O2iii85.98 (6)C5—C4—H4B108.7
O3v—K1—O2iii130.71 (7)S1—C4—H4B108.7
O1—K1—O2iii82.42 (6)H4A—C4—H4B107.6
O1i—K1—O2iii78.37 (7)C6—C5—C4116.2 (2)
O2ii—K1—O2iii46.99 (8)C6—C5—H5A108.2
O3iv—K1—O4vi73.54 (7)C4—C5—H5A108.2
O3v—K1—O4vi73.75 (7)C6—C5—H5B108.2
O1—K1—O4vi125.54 (7)C4—C5—H5B108.2
O1i—K1—O4vi75.02 (7)H5A—C5—H5B107.4
O2ii—K1—O4vi139.50 (6)O1—C6—O2124.5 (3)
O2iii—K1—O4vi150.17 (6)O1—C6—C5119.6 (3)
O3iv—K1—O4vii73.75 (7)O2—C6—C5115.9 (3)
O3v—K1—O4vii73.54 (7)C2—C7—S2114.24 (19)
O1—K1—O4vii75.02 (7)C2—C7—H7A108.7
O1i—K1—O4vii125.54 (7)S2—C7—H7A108.7
O2ii—K1—O4vii150.17 (6)C2—C7—H7B108.7
O2iii—K1—O4vii139.50 (6)S2—C7—H7B108.7
O4vi—K1—O4vii54.87 (9)H7A—C7—H7B107.6
C4—S1—C399.68 (14)C9—C8—S2112.4 (2)
C8—S2—C7102.17 (14)C9—C8—H8A109.1
C6—O1—K1134.73 (19)S2—C8—H8A109.1
C6—O2—K1ii129.17 (19)C9—C8—H8B109.1
C6—O2—H20125 (2)S2—C8—H8B109.1
K1ii—O2—H2077 (4)H8A—C8—H8B107.9
C10—O3—K1ix137.58 (18)C10—C9—C8113.5 (2)
C10—O4—K1vii111.2 (2)C10—C9—H9A108.9
C10—O4—H4O110 (4)C8—C9—H9A108.9
K1vii—O4—H4O114 (4)C10—C9—H9B108.9
C2viii—N1—C1118.6 (2)C8—C9—H9B108.9
N1—C1—C2120.3 (2)H9A—C9—H9B107.7
N1—C1—C3116.2 (2)O3—C10—O4123.4 (3)
C2—C1—C3123.5 (2)O3—C10—C9124.3 (2)
N1viii—C2—C1121.1 (2)O4—C10—C9112.3 (2)
N1viii—C2—C7116.0 (2)
C2viii—N1—C1—C20.1 (4)K1ii—O2—C6—C560.6 (3)
C2viii—N1—C1—C3178.5 (2)C4—C5—C6—O1161.6 (3)
N1—C1—C2—N1viii0.1 (4)C4—C5—C6—O221.4 (4)
C3—C1—C2—N1viii178.4 (2)N1viii—C2—C7—S2107.9 (2)
N1—C1—C2—C7180.0 (2)C1—C2—C7—S272.0 (3)
C3—C1—C2—C71.5 (4)C8—S2—C7—C262.3 (2)
N1—C1—C3—S191.6 (3)C7—S2—C8—C977.5 (2)
C2—C1—C3—S189.8 (3)S2—C8—C9—C10173.8 (2)
C4—S1—C3—C172.3 (2)K1ix—O3—C10—O41.7 (5)
C3—S1—C4—C590.3 (2)K1ix—O3—C10—C9177.7 (2)
S1—C4—C5—C676.4 (3)K1vii—O4—C10—O3110.5 (3)
K1—O1—C6—O2127.8 (3)K1vii—O4—C10—C970.0 (3)
K1—O1—C6—C548.8 (4)C8—C9—C10—O317.9 (5)
K1ii—O2—C6—O1116.1 (3)C8—C9—C10—O4162.6 (3)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z; (iii) x, y, z1/2; (iv) x+1/2, y1/2, z1/2; (v) x+1/2, y1/2, z; (vi) x+1/2, y1/2, z1/2; (vii) x+1/2, y1/2, z; (viii) x+1/2, y+1/2, z; (ix) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1ix0.80 (5)1.86 (5)2.661 (3)180 (7)
O2—H20···O2x1.24 (1)1.24 (1)2.436 (3)159 (7)
C4—H4A···N10.992.523.340 (4)140
C4—H4B···O3viii0.992.493.114 (4)121
C5—H5B···O2iii0.992.603.467 (4)146
C7—H7B···N1xi0.992.603.454 (4)144
C9—H9A···O3xi0.992.583.465 (4)149
Symmetry codes: (iii) x, y, z1/2; (viii) x+1/2, y+1/2, z; (ix) x1/2, y+1/2, z; (x) x+1, y, z+1/2; (xi) x, y, z+1/2.
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1) top
Crystal data top
[K2(C20H26N2O8S4)]F(000) = 1304
Mr = 628.87Dx = 1.602 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.908 (2) ÅCell parameters from 20250 reflections
b = 8.2916 (6) Åθ = 1.8–29.6°
c = 11.3035 (9) ŵ = 0.73 mm1
β = 94.753 (6)°T = 153 K
V = 2606.7 (3) Å3Plate, colourless
Z = 40.50 × 0.50 × 0.05 mm
Data collection top
STOE IPDS 2
diffractometer
3646 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.042
φ + ω scansθmax = 29.6°, θmin = 2.6°
Absorption correction: empirical (using intensity measurements)
(ShxAbs; Spek, 2020)
h = 3838
Tmin = 0.416, Tmax = 0.803k = 1111
19423 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0541P)2 + 3.5192P]
where P = (Fo2 + 2Fc2)/3
3646 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.76 e Å3
1 restraintΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.0000000.82906 (7)0.7500000.02908 (13)
K20.0000000.64758 (6)0.2500000.02585 (12)
S10.15530 (2)0.94369 (6)0.36528 (5)0.03200 (12)
S20.31454 (2)0.91861 (6)0.30731 (4)0.02972 (12)
O10.03202 (5)0.90961 (16)0.37679 (12)0.0288 (3)
O20.03173 (4)0.75961 (15)0.53962 (10)0.0251 (2)
O30.44445 (5)1.07891 (16)0.64145 (11)0.0264 (3)
O40.45504 (4)1.14483 (16)0.45457 (11)0.0246 (2)
H4O0.4811 (7)1.187 (3)0.485 (2)0.037*
N10.22122 (5)1.18192 (18)0.58094 (13)0.0226 (3)
C10.23166 (6)1.10103 (19)0.48370 (15)0.0214 (3)
C20.26072 (6)1.1694 (2)0.40166 (14)0.0214 (3)
C30.20952 (6)0.9373 (2)0.46641 (17)0.0261 (3)
H3A0.2015090.8944390.5441050.031*
H3B0.2330730.8632520.4343000.031*
C40.11775 (7)1.0635 (2)0.4543 (2)0.0344 (4)
H4A0.1382861.1424710.5004990.041*
H4B0.0946321.1250240.4005760.041*
C50.08989 (6)0.9666 (2)0.53952 (18)0.0301 (4)
H5A0.1120070.8898250.5832500.036*
H5B0.0772771.0406760.5982310.036*
C60.04848 (6)0.8740 (2)0.47738 (14)0.0215 (3)
C70.27238 (6)1.0859 (2)0.28997 (15)0.0260 (3)
H7A0.2856091.1669100.2371960.031*
H7B0.2419981.0452560.2491830.031*
C80.37036 (6)1.0182 (3)0.35882 (16)0.0295 (4)
H8A0.3970730.9669950.3202750.035*
H8B0.3685971.1324250.3332620.035*
C90.38174 (6)1.0126 (2)0.49202 (15)0.0243 (3)
H9A0.3802840.8990370.5184800.029*
H9B0.3565831.0730930.5301280.029*
C100.43036 (6)1.08130 (19)0.53492 (14)0.0216 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0442 (3)0.0240 (2)0.0186 (2)0.0000.0001 (2)0.000
K20.0356 (3)0.0230 (2)0.0189 (2)0.0000.00191 (18)0.000
S10.0250 (2)0.0304 (2)0.0399 (3)0.00503 (16)0.00202 (17)0.00557 (18)
S20.0236 (2)0.0297 (2)0.0355 (2)0.00158 (16)0.00042 (16)0.00746 (17)
O10.0311 (6)0.0272 (6)0.0269 (6)0.0064 (5)0.0040 (5)0.0023 (5)
O20.0235 (5)0.0282 (6)0.0233 (5)0.0027 (5)0.0009 (4)0.0005 (5)
O30.0276 (6)0.0300 (6)0.0217 (5)0.0011 (5)0.0019 (4)0.0021 (5)
O40.0228 (5)0.0299 (6)0.0212 (5)0.0051 (5)0.0024 (4)0.0004 (5)
N10.0196 (6)0.0235 (6)0.0242 (6)0.0010 (5)0.0004 (5)0.0030 (5)
C10.0173 (6)0.0206 (7)0.0256 (7)0.0002 (5)0.0027 (5)0.0020 (6)
C20.0183 (7)0.0230 (7)0.0223 (7)0.0002 (5)0.0022 (5)0.0019 (6)
C30.0214 (7)0.0213 (7)0.0353 (9)0.0017 (6)0.0007 (6)0.0016 (6)
C40.0220 (8)0.0231 (8)0.0576 (12)0.0023 (6)0.0009 (8)0.0060 (8)
C50.0230 (8)0.0295 (9)0.0368 (9)0.0023 (6)0.0035 (7)0.0092 (7)
C60.0180 (7)0.0212 (7)0.0250 (7)0.0004 (5)0.0006 (5)0.0046 (6)
C70.0250 (8)0.0290 (8)0.0237 (7)0.0007 (6)0.0005 (6)0.0005 (6)
C80.0211 (7)0.0402 (10)0.0271 (8)0.0049 (7)0.0021 (6)0.0020 (7)
C90.0218 (7)0.0250 (8)0.0261 (7)0.0017 (6)0.0025 (6)0.0010 (6)
C100.0224 (7)0.0205 (7)0.0220 (7)0.0019 (5)0.0031 (6)0.0003 (5)
Geometric parameters (Å, º) top
K1—O1i2.7084 (14)O1—C61.227 (2)
K1—O1ii2.7084 (14)O4—C101.296 (2)
K1—O22.6682 (12)O4—H4O0.855 (16)
K1—O2iii2.6683 (12)O3—C101.236 (2)
K1—O3iv2.8099 (14)N1—C11.340 (2)
K1—O3v2.8099 (13)N1—C2xi1.341 (2)
K1—C6iii3.4864 (17)C1—C21.401 (2)
K1—C63.4865 (17)C1—C31.498 (2)
K1—K2vi3.9521 (8)C2—C71.499 (2)
K1—K2ii4.3395 (8)C3—H3A0.9900
K2—O1vii2.7131 (13)C3—H3B0.9900
K2—O12.7132 (13)C4—C51.518 (3)
K2—O3viii2.6683 (13)C4—H4A0.9900
K2—O3ix2.6682 (13)C4—H4B0.9900
K2—O4x2.7209 (12)C5—C61.511 (2)
K2—O4iv2.7209 (12)C5—H5A0.9900
K2—C6vii3.3739 (16)C5—H5B0.9900
K2—C63.3739 (16)C7—H7A0.9900
K2—C10viii3.5364 (16)C7—H7B0.9900
K2—C10ix3.5364 (16)C8—C91.513 (2)
S1—C41.809 (2)C8—H8A0.9900
S1—C31.8200 (18)C8—H8B0.9900
S2—C81.8159 (18)C9—C101.514 (2)
S2—C71.8190 (19)C9—H9A0.9900
O2—C61.291 (2)C9—H9B0.9900
O2—K1—O2iii155.07 (6)O3ix—K2—K1vi45.27 (3)
O2—K1—O1i121.67 (4)O1vii—K2—K1vi143.21 (3)
O2iii—K1—O1i79.65 (4)O1—K2—K1vi143.21 (3)
O2—K1—O1ii79.65 (4)O4x—K2—K1vi89.52 (3)
O2iii—K1—O1ii121.67 (4)O4iv—K2—K1vi89.52 (3)
O1i—K1—O1ii73.73 (6)C6vii—K2—K1vi123.80 (3)
O2—K1—O3iv70.32 (4)C6—K2—K1vi123.80 (3)
O2iii—K1—O3iv91.03 (4)C10viii—K2—K1vi57.55 (3)
O1i—K1—O3iv165.36 (4)C10ix—K2—K1vi57.55 (3)
O1ii—K1—O3iv102.33 (4)O3viii—K2—K1ii134.73 (3)
O2—K1—O3v91.03 (4)O3ix—K2—K1ii134.73 (3)
O2iii—K1—O3v70.32 (4)O1vii—K2—K1ii36.79 (3)
O1i—K1—O3v102.33 (4)O1—K2—K1ii36.79 (3)
O1ii—K1—O3v165.36 (4)O4x—K2—K1ii90.48 (3)
O3iv—K1—O3v84.85 (5)O4iv—K2—K1ii90.48 (3)
O2—K1—C6iii172.97 (4)C6vii—K2—K1ii56.20 (3)
O2iii—K1—C6iii18.84 (4)C6—K2—K1ii56.20 (3)
O1i—K1—C6iii65.30 (4)C10viii—K2—K1ii122.45 (3)
O1ii—K1—C6iii104.31 (4)C10ix—K2—K1ii122.45 (3)
O3iv—K1—C6iii102.96 (4)K1vi—K2—K1ii180.0
O3v—K1—C6iii86.17 (4)C4—S1—C399.00 (9)
O2—K1—C618.84 (4)C8—S2—C7102.58 (9)
O2iii—K1—C6172.97 (4)C6—O2—K1119.28 (10)
O1i—K1—C6104.31 (4)C6—O1—K1ii139.92 (11)
O1ii—K1—C665.30 (4)C6—O1—K2112.22 (11)
O3iv—K1—C686.17 (4)K1ii—O1—K2106.34 (4)
O3v—K1—C6102.96 (4)C10—O4—K2xii155.24 (11)
C6iii—K1—C6167.74 (6)C10—O4—H4O111.3 (17)
O2—K1—K2vi77.54 (3)K2xii—O4—H4O84.7 (17)
O2iii—K1—K2vi77.54 (3)C10—O3—K2ix125.83 (11)
O1i—K1—K2vi143.13 (3)C10—O3—K1xii122.23 (11)
O1ii—K1—K2vi143.13 (3)K2ix—O3—K1xii92.31 (4)
O3iv—K1—K2vi42.42 (3)C1—N1—C2xi118.43 (14)
O3v—K1—K2vi42.42 (3)N1—C1—C2121.17 (15)
C6iii—K1—K2vi96.13 (3)N1—C1—C3116.44 (15)
C6—K1—K2vi96.13 (3)C2—C1—C3122.37 (15)
O2—K1—K2ii102.46 (3)N1xi—C2—C1120.40 (15)
O2iii—K1—K2ii102.46 (3)N1xi—C2—C7116.30 (15)
O1i—K1—K2ii36.87 (3)C1—C2—C7123.28 (15)
O1ii—K1—K2ii36.87 (3)C1—C3—S1111.60 (12)
O3iv—K1—K2ii137.58 (3)C1—C3—H3A109.3
O3v—K1—K2ii137.58 (3)S1—C3—H3A109.3
C6iii—K1—K2ii83.87 (3)C1—C3—H3B109.3
C6—K1—K2ii83.87 (3)S1—C3—H3B109.3
K2vi—K1—K2ii180.0H3A—C3—H3B108.0
O3viii—K2—O3ix90.54 (6)C5—C4—S1114.41 (14)
O3viii—K2—O1vii99.63 (4)C5—C4—H4A108.7
O3ix—K2—O1vii163.72 (4)S1—C4—H4A108.7
O3viii—K2—O1163.72 (4)C5—C4—H4B108.7
O3ix—K2—O199.63 (4)S1—C4—H4B108.7
O1vii—K2—O173.59 (6)H4A—C4—H4B107.6
O3viii—K2—O4x83.95 (4)C6—C5—C4112.73 (16)
O3ix—K2—O4x95.38 (4)C6—C5—H5A109.0
O1vii—K2—O4x73.30 (4)C4—C5—H5A109.0
O1—K2—O4x107.50 (4)C6—C5—H5B109.0
O3viii—K2—O4iv95.38 (4)C4—C5—H5B109.0
O3ix—K2—O4iv83.95 (4)H5A—C5—H5B107.8
O1vii—K2—O4iv107.50 (4)O1—C6—O2123.88 (15)
O1—K2—O4iv73.30 (4)O1—C6—C5121.42 (16)
O4x—K2—O4iv179.04 (6)O2—C6—C5114.67 (15)
O3viii—K2—C6vii81.96 (4)O1—C6—K248.11 (8)
O3ix—K2—C6vii157.35 (4)O2—C6—K282.31 (9)
O1vii—K2—C6vii19.67 (4)C5—C6—K2151.60 (11)
O1—K2—C6vii92.90 (4)O1—C6—K1134.60 (11)
O4x—K2—C6vii62.69 (4)O2—C6—K141.88 (8)
O4iv—K2—C6vii117.91 (4)C5—C6—K188.93 (10)
O3viii—K2—C6157.35 (4)K2—C6—K1116.96 (5)
O3ix—K2—C681.96 (4)C2—C7—S2116.42 (12)
O1vii—K2—C692.90 (4)C2—C7—H7A108.2
O1—K2—C619.67 (4)S2—C7—H7A108.2
O4x—K2—C6117.91 (4)C2—C7—H7B108.2
O4iv—K2—C662.69 (4)S2—C7—H7B108.2
C6vii—K2—C6112.40 (6)H7A—C7—H7B107.3
O3viii—K2—C10viii16.46 (4)C9—C8—S2114.13 (13)
O3ix—K2—C10viii101.75 (4)C9—C8—H8A108.7
O1vii—K2—C10viii85.89 (4)S2—C8—H8A108.7
O1—K2—C10viii158.61 (4)C9—C8—H8B108.7
O4x—K2—C10viii71.16 (4)S2—C8—H8B108.7
O4iv—K2—C10viii108.29 (4)H8A—C8—H8B107.6
C6vii—K2—C10viii67.17 (4)C8—C9—C10114.57 (14)
C6—K2—C10viii170.09 (4)C8—C9—H9A108.6
O3viii—K2—C10ix101.75 (4)C10—C9—H9A108.6
O3ix—K2—C10ix16.46 (4)C8—C9—H9B108.6
O1vii—K2—C10ix158.61 (4)C10—C9—H9B108.6
O1—K2—C10ix85.89 (4)H9A—C9—H9B107.6
O4x—K2—C10ix108.29 (4)O3—C10—O4122.99 (16)
O4iv—K2—C10ix71.16 (4)O3—C10—C9120.71 (15)
C6vii—K2—C10ix170.09 (4)O4—C10—C9116.27 (14)
C6—K2—C10ix67.17 (4)O3—C10—K2ix37.72 (8)
C10viii—K2—C10ix115.09 (5)O4—C10—K2ix113.96 (10)
O3viii—K2—K1vi45.27 (3)C9—C10—K2ix116.44 (10)
C2xi—N1—C1—C20.0 (2)C4—C5—C6—O118.7 (2)
C2xi—N1—C1—C3178.32 (14)C4—C5—C6—O2162.94 (15)
N1—C1—C2—N1xi0.0 (3)C4—C5—C6—K240.3 (3)
C3—C1—C2—N1xi178.22 (14)C4—C5—C6—K1162.96 (14)
N1—C1—C2—C7178.30 (15)N1xi—C2—C7—S2108.63 (15)
C3—C1—C2—C70.1 (2)C1—C2—C7—S272.98 (19)
N1—C1—C3—S197.64 (16)C8—S2—C7—C267.34 (15)
C2—C1—C3—S180.62 (18)C7—S2—C8—C997.89 (15)
C4—S1—C3—C165.81 (15)S2—C8—C9—C10174.51 (12)
C3—S1—C4—C587.72 (15)K2ix—O3—C10—O487.24 (18)
S1—C4—C5—C673.29 (18)K1xii—O3—C10—O433.7 (2)
K1ii—O1—C6—O2128.23 (16)K2ix—O3—C10—C994.51 (17)
K2—O1—C6—O235.0 (2)K1xii—O3—C10—C9144.57 (12)
K1ii—O1—C6—C549.9 (3)K1xii—O3—C10—K2ix120.92 (16)
K2—O1—C6—C5146.80 (13)K2xii—O4—C10—O3125.1 (2)
K1ii—O1—C6—K2163.2 (2)K2xii—O4—C10—C956.6 (3)
K1ii—O1—C6—K174.9 (2)K2xii—O4—C10—K2ix83.1 (3)
K2—O1—C6—K188.34 (15)C8—C9—C10—O3177.68 (16)
K1—O2—C6—O1121.20 (15)C8—C9—C10—O43.9 (2)
K1—O2—C6—C557.09 (17)C8—C9—C10—K2ix134.75 (13)
K1—O2—C6—K2146.73 (7)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+2, z+1; (iii) x, y, z+3/2; (iv) x1/2, y1/2, z; (v) x+1/2, y1/2, z+3/2; (vi) x, y+1, z+1; (vii) x, y, z+1/2; (viii) x1/2, y+3/2, z1/2; (ix) x+1/2, y+3/2, z+1; (x) x+1/2, y1/2, z+1/2; (xi) x+1/2, y+5/2, z+1; (xii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2xii0.85 (2)1.61 (2)2.4637 (16)177 (3)
C4—H4A···N10.992.443.266 (2)141
C8—H8A···O3xiii0.992.533.436 (2)151
Symmetry codes: (xii) x+1/2, y+1/2, z; (xiii) x, y+2, z1/2.
Selected torsion angles (°) along the Car—CH2—S—CH2—CH2—CO2H side chains in compounds H4L1_A, H4L1_B, H3L1K and H2L1K2 top
Torsion angleH4L1_AH4L1_BH3L1KH2L1K2
C1—C3—S1—C4174.1 (2)-72.6 (4)-72.32)-65.81 (15)
C3—S1—C4—C5-155.3 (2)-86.7 (4)-90.3 (2)-87.72 (15)
S1—C4—C5—C6-167.9 (2)-65.0 (6)-76.4 (3)-73.19 (18)
C2—C7—S2—C857.6 (2)-66.8 (4)-62.3 (2)-67.34 (15)
C7—C2—S2—C965.7 (2)-178.1 (5)-77.5 (2)97.89 (15)
S2—C8—C9—C10174.8 (2)-172.5 (5)-173.8 (2)174.51 (12)
Short contacts (Å) in the crystal structures of H4L1_A and H4L1_Ba top
Atom 1Atom 2LengthLength - VdWSymm. op. 1Symm. op. 2
H4L1_A
O1H2O1.798-0.922x, y, z-1 - x, -y, -z
O3H4O1.843-0.877x, y, z1 - x, 1 - y, -z
O1O22.667-0.373x, y, z-1 - x, -y, -z
O3O42.673-0.367x, y, z1 - x, 1 - y, -z
O4H8A2.399-0.321x, y, z-1 + x, y, z
O2O43.015-0.025x, y, z-x, 1 - y, -z
C6H2O2.667-0.233x, y, z-1 - x, -y, -z
C10H4O2.668-0.232x, y, z1 - x, 1 - y, -z
H5AO32.549-0.171x, y, z-1 + x, y, z
H4OH4O2.371-0.029x, y, z1 - x, 1 - y, -z
H2OH2O2.389-0.011x, y, z-1 - x, -y, -z
N1H3A2.8070.057x, y, z1 - x, 1 - y, 1 - z
O4C83.3080.088x, y, z-1 + x, y, z
O2H8A2.8200.100x, y, z1 - x, 1 - y, -z
H4L1_Ba
H4OO11.879-0.841x, y, zx, y, -1 + z
O4O12.658-0.382x, y, zx, y, -1 + z
O3O22.663-0.377x, y, zx, y, -1 + z
H4OC62.580-0.320x, y, zx, y, -1 + z
O4O22.799-0.241x, y, z-1 + x, y, -1 + z
H4OH2O2.173-0.227x, y, zx, y, -1 + z
O1O22.982-0.058x, y, z-1 + x, y, z
S1H3A2.951-0.049x, y, z-1 + x, y, z
S1S23.590-0.010x, y, z1 - x, -y, 1 - z
O4O33.0410.001x, y, z-1 + x, y, z
S2S23.6130.013x, y, z1 - x, -y, 1 - z
H8AO32.7490.029x, y, z-1 + x, y, z
S1H5A3.0470.047x, y, z-1 + x, y, z
H4OO22.7750.055x, y, z-1 + x, y, -1 + z
O4H2O2.7760.056x, y, z-1 + x, y, -1 + z
C10H2O2.9600.060x, y, z2 - x, -y, 1 - z
O3H2O2.7960.076x, y, z2 - x, -y, 1 - z
H7BC32.9740.074x, y, z-1 + x, y, z
S2H7B3.0820.082x, y, z1 - x, -y, 1 - z
O2H5B2.8020.0822 - x, 1 - y, 1 - z-1 + x, y, -1 + z
S1H9A3.0850.085x, y, z1 - x, -y, 1 - z
Note: (a) major component of H4L1_B.
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of H4L1_A and H4L1_Ba top
Contact% contribution% contribution
H4L1_AH4L1_Ba
H···H37.236.3
O···H/H···O37.732.3
S···H/H···S13.416.1
C···H/H···C4.54.9
C···N00.8
C···O1.00.7
C···S1.20
N···S0.40.4
O···O1.34.9
O···S0.20
S···S0.21.2
Note: (a) major component of H4L1_B.
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

First citationAssoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHayati, P., Rezvani, A. R., Morsali, A. & Retailleau, P. (2017). Ultrason. Sonochem. 34, 195–205.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090–2096.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870-7874.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004–1011.  CSD CrossRef CAS Web of Science Google Scholar
First citationMasci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004–2010.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationPacifico, J. (2003). PhD Thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2020). Private communications (CCDC 2036276, 2041654 and 2041655). CCDC, Cambridge, England.  Google Scholar
First citationSantra, S., Das, B. & Baruah, J. B. (2011). J. Chem. Crystallogr. 41, 1981–1987.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X. & Zou, R. (2019). Inorg. Chem. Commun. 104, 78–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, L. (1887). Ber. Dtsch. Chem. Ges. 20, 425–433.  CrossRef Google Scholar
First citationWolff, L. (1893). Ber. Dtsch. Chem. Ges. 26, 721–725.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds