research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Zn2(HTeO3)(AsO4)

crossmark logo

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060, Vienna, Austria
*Correspondence e-mail: felix.eder@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 14 April 2021; accepted 22 April 2021; online 27 April 2021)

Single crystals of Zn2(HTeO3)(AsO4), dizinc(II) hydroxidodioxidotellurate(IV) oxidoarsenate(V), were obtained as one of the by-products in a hydro­thermal reaction between Zn(NO3)2·6H2O, TeO2, H3AsO4 and NH3 in molar ratios of 2:1:2:10 at 483 K for seven days. The asymmetric unit of Zn2(HTeO3)(AsO4) contains one Te (site symmetry m), one As (m), one Zn (1), five O (three m, two 1) and one H (m) site. The ZnII atom exhibits a coordination number of 5 and is coordinated by four oxygen atoms and a hydroxide group, forming a distorted trigonal bipyramid. The hydroxide ion is positioned at a significantly larger distance on one of the axial positions of the bipyramid. The [ZnO4OH] polyhedra are connected to each other by corner-sharing to form 2[ZnO3/2(OH)1/2O1/1] layers extending parallel to (001). The TeIV atom is coordinated by three oxygen atoms and a hydroxide group in a one-sided manner in the shape of a bis­phenoid, revealing stereochemical activity of its 5s2 electron lone pair. The AsV atom is coordinated by four oxygen atoms to form the tetra­hedral oxidoarsenate(V) anion. By corner-sharing, [TeO3OH] and [AsO4] groups link adjacent 2[ZnO3/2(OH)1/2O1/1] layers along [001] into a three-dimensional framework structure.

1. Chemical context

Only a few elements have such a diverse crystal chemistry as tellurium, especially in its +IV oxidation state. This can be attributed to the stereochemically active non-bonding 5s2 electron pair of TeIV (Galy et al., 1975[Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142-159.]) that has a similar space requirement as coordinating ligands and therefore often results in one-sided and low-symmetry coordination spheres around TeIV atoms. An extensive review of the rich crystal chemistry of oxidotellurates(IV) was published recently by Christy et al. (2016[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415-545.]).

The peculiar crystal chemistry of TeIV makes it an inter­esting building block in the search for new compounds with crystal structures lacking inversion symmetry. As a prerequisite, a compound must be non-centrosymmetric in order to have ferro-, piezo- or pyroelectric properties or to possess non-linear optical properties (Ok et al., 2006[Ok, K. M., Chi, E. O. & Halasyamani, P. S. (2006). Chem. Soc. Rev. 35, 710-717.]). Another effect of the electron lone pair and its large space consumption is the frequent formation of open-framework structures in (transition) metal oxidotellurates(IV). Different structure units such as clusters, chains, layers or channels resulting from the presence of oxidotellurate(IV) anions are observed in various crystal structures (Stöger & Weil, 2013[Stöger, B. & Weil, M. (2013). Miner. Petrol. 107, 253-263.]). Introducing secondary anions into transition-metal oxidotellurates(IV) can lead to even more structural diversification. Over the past few years, several anions have been incorporated into metal or transition-metal oxidotellurates, viz. sulfates [e.g. Cd4(SO4)(TeO3)3; Weil & Shirkhanlou, 2017a[Weil, M. & Shirkhanlou, M. (2017a). Z. Anorg. Allg. Chem. 643, 330-339.]], selenates [e.g. Zn2(SeO4)(TeO3); Weil & Shirkhanlou, 2017b[Weil, M. & Shirkhanlou, M. (2017b). Z. Anorg. Allg. Chem. 643, 749-756.]], carbonates [e.g. Pb5(SeO4)2(TeO4)(CO3); Weil & Shirkhanlou, 2017c[Weil, M. & Shirkhanlou, M. (2017c). Z. Anorg. Allg. Chem. 643, 757-765.]], nitrates [e.g. Ca6Te5O15(NO3)2; Stöger & Weil, 2013[Stöger, B. & Weil, M. (2013). Miner. Petrol. 107, 253-263.]], phosphates [e.g. Co3Te2O2(PO4)2(OH)4; Zimmermann et al., 2011[Zimmermann, I., Kremer, R. K. & Johnsson, M. (2011). J. Solid State Chem. 184, 3080-3084.]] or, very recently, arsenates [Cu5(TeO3)2(AsO4)2; Missen et al., 2020[Missen, O. P., Weil, M., Mills, S. J. & Libowitzky, E. (2020). Acta Cryst. B76, 1-6.]]. Crystals of Cu5(TeO3)2(AsO4)2 have been grown by a chemical transport reaction (Binnewies et al., 2012[Binnewies, M., Glaum, R., Schmidt, M. & Schmidt, P. (2012). Chemical Vapor Transport Reactions. Berlin: DeGruyter.]), starting from CuO, TeO2 and As2O5 at temperatures of 1023 K (source) and 953 K (sink). The title compound, Zn2(HTeO3)(AsO4), however, was obtained at much milder temperatures (483 K) under hydro­thermal conditions.

2. Structural commentary

The asymmetric unit of Zn2(HTeO3)(AsO4) contains one Te, one As, one Zn, one H and five O atoms located either on a special position with site symmetry m (Wyckoff position 2 a; Te1, As1, O3, O4, O5, H1) or on general positions (Wyckoff position 4 b; Zn1, O1, O2). Selected bond lengths are collated in Table 1[link].

Table 1
Selected bond lengths (Å)

Te1—O2i 1.880 (2) As1—O5 1.716 (3)
Te1—O2ii 1.880 (2) Zn1—O2v 1.979 (3)
Te1—O3iii 2.070 (4) Zn1—O1v 1.987 (3)
Te1—O5 2.131 (4) Zn1—O2 1.993 (3)
As1—O1iv 1.673 (2) Zn1—O4 2.0486 (16)
As1—O1 1.673 (2) Zn1—O3vi 2.3259 (18)
As1—O4 1.709 (3)    
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+1]; (iii) x+1, y, z+1; (iv) [x, -y, z]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (vi) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

The zinc cation (Zn1) is coordinated by five oxygen atoms with one (O3, as part of the hy­droxy group) being at a significantly longer distance [2.3259 (18) Å] than the other four [1.979 (3)–2.0486 (16) Å]. The resulting polyhedron has the shape of a distorted trigonal bipyramid, with the remote O3 site occupying one of the axial positions and the equatorial positions being slightly tilted towards it (Fig. 1[link]). The geometry index τ5 (Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), which is 0 for an ideal square pyramid and 1 for an ideal trigonal bipyramid, amounts to 0.665 for the [ZnO4OH] polyhedron. The [ZnO4OH] polyhedra are connected to each other by sharing four corners with neighbouring polyhedra to form 2[ZnO3/2(OH)1/2O1/1] layers extending parallel to (001). The bond-valence sum (BVS; Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) of Zn1 was calculated to be 1.98 valence units (v.u.) using the values of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Figure 1]
Figure 1
The distorted trigonal–bipyramidal [ZnO4OH] polyhedron in the crystal structure of Zn2(HTeO3)(AsO4). Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes refer to Table 1[link].

The tellurium(IV) atom (Te1) is coordinated by four oxygen atoms with bond lengths in the range 1.880 (2)–2.131 (4) Å. The BVS of Te1 is 4.02 v.u. using the values of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for calculation. With the revised bond-valence values by Mills & Christy (2013[Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145-149.]), a lower BVS of 3.86 v.u. was calculated under consideration of the four nearest oxygen atoms. However, the BVS increases to 4.03 v.u. if all oxygen atoms within a distance of up to 3.5 Å are accounted for, as is suggested by Mills & Christy (2013[Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145-149.]). The resulting [TeO3OH] coordination polyhedron is a bis­phenoid. Under consideration of the space requirement of the 5s2 electron lone pair, the corresponding [ΨTeO3OH] polyhedron has the shape of a distorted trigonal bipyramid with the non-bonding electron pair occupying an equatorial position (Fig. 2[link]). The geometry index τ5 of the [ΨTeO3OH] polyhedron is 0.413. The LPLoc software (Hamani et al., 2020[Hamani, D., Masson, O. & Thomas, P. (2020). J. Appl. Cryst. 53, 1243-1251.]) revealed the position of the electron lone pair with resulting fractional coordinates of x = 0.7781, y = 0, z = 0.5519. The radius of the electron lone pair was calculated to be 1.32 Å with a distance of 1.680 Å from the Te1 position. The oxygen atom (O3) of the hy­droxy group is located on an axial position of the [ΨTeO3OH] polyhedron. Its hydrogen atom is directed to the O5 site, forming a weak linear hydrogen bond towards the O5 site with a O3⋯O5 distance of 3.213 (5) Å (Table 2[link]). It is remarkable that the hydrogen atom is located on the oxidotellurate(IV) unit instead of the oxidoarsenate(V) anion given that for 0.1–0.01 N solutions, the pKb value of the [AsO4]3– anion is much smaller (2.40 at 291 K) than that of the [TeO3]2– anion (6.30 at 298 K) (Weast & Astle, 1982[Weast, R. C. & Astle, M. J. (1982). CRC Handbook of Chemistry and Physics, 63rd Edition, D-173. Boca Raton: CRC Press.]). Even though the conditions during the hydro­thermal experiment are far from the tabulated values, it is surprising that a difference in the equilibrium constants of almost four orders of magnitude was overridden in the resulting crystal. Nevertheless, as evidenced from a difference-Fourier map and BVS calculations (BVS without contribution of the H atom amounts to 1.15 v.u. for O3), the hydroxide group is located on the oxidotellurate(IV) unit.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O5vii 0.94 (9) 2.28 (9) 3.213 (5) 179 (7)
Symmetry code: (vii) [x, y, z-1].
[Figure 2]
Figure 2
The bis­phenoidal [TeO3OH] polyhedron in the crystal structure of Zn2(HTeO3)(AsO4). Displacement ellipsoids are drawn at the 90% probability level. The 5s2 electron lone pair (Ψ, orange) is drawn with an arbitrary radius of 0.2 Å. Symmetry codes refer to Table 1[link].

The arsenic(V) atom (As1) is coordinated tetra­hedrally by four oxygen atoms with distances in the range 1.673 (2)–1.716 (3) Å. The mean As—O bond length of 1.693 (23) Å is slightly longer than those reported for AsO43– groups [1.667 (18) Å; Schwendtner & Kolitsch, 2019[Schwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C75, 1134-1141.]] or for oxidoarsenate groups in general (also including As—OH bonds, with an overall mean of 1.687 (27) Å; Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). The BVS is 4.91 v.u. using the values of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for calculation.

The crystal structure of Zn2(HTeO3)(AsO4) is built up from 2[ZnO3/2(OH)1/2O1/1] layers extending parallel to (001) (Fig. 3[link]). The [TeO3OH] units are situated below a 2[ZnO3/2(OH)1/2O1/1] layer and are isolated from each other. An individual [TeO3OH] unit shares three corners with two [ZnO4OH] polyhedra each, and one corner with an [AsO4] tetra­hedron. Likewise, the oxidoarsenate anions, situated above a 2[ZnO3/2(OH)1/2O1/1] layer, are isolated from each other, but share corners with other building units: two corners with one [ZnO4OH] polyhedron each, one corner with two [ZnO4OH] polyhedra and one corner with a [TeO3OH] unit. This way, a three-dimensional framework structure is established (Fig. 4[link]).

[Figure 3]
Figure 3
The crystal structure of Zn2(HTeO3)(AsO4) in polyhedral representation, projected onto (001). [ZnO4OH] polyhedra are blue, [TeO3OH] polyhedra are green and [AsO4] tetra­hedra are red; H atoms are represented as grey spheres of arbitrary radius. Displacement ellipsoids are drawn at the 90% probability level.
[Figure 4]
Figure 4
Channels in the crystal structure of Zn2(HTeO3)(AsO4) running parallel to [110]. Colour codes and displacement ellipsoids are as in Fig. 3[link]. O—H⋯O hydrogen bonds are shown as orange lines.

In the crystal structure, the spatial requirements of the 5s2 electron lone pairs at the TeIV atoms lead to the formation of channels parallel to [110] (Fig. 4[link]). The weak O—H⋯O hydrogen bond is directed across these channels. There are also smaller channels oriented parallel to [100] that, however, remain empty (Fig. 5[link]).

[Figure 5]
Figure 5
Channels in the structure of Zn2(HTeO3)(AsO4) running parallel to [100]. Colour codes and displacement ellipsoids are as in Fig. 3[link].

3. Synthesis and crystallization

Crystals of Zn2(HTeO3)(AsO4) were obtained by hydro­thermal synthesis. The reactants, 0.1949 g of Zn(NO3)2·6H2O (0.670 mmol), 0.0512 g of TeO2 (0.321 mmol), 0.1365 g 80%wt of H3AsO4 (aq) (0.713 mmol) and 0.22 g of 25%wt NH3 (aq) (3.23 mmol) were weighed into a small Teflon vessel with an inner volume of ca 3 ml. The vessel was filled with deionized water to three-quarters of its volume and the reactants were mixed by manual stirring. The Teflon vessel was then put into a steel autoclave and heated to 483 K for 7 d at autogenous pressure. Afterwards, the autoclave was cooled to room temperature within about 4 h. The resulting product was a colourless multi-phase solid. In the X-ray powder pattern of the bulk, Zn2(HTeO3)(AsO4) was found as a by-product, in addition to (NH4)Zn(AsO4) (Feng et al., 2001[Feng, P., Zhang, T. & Bu, X. (2001). J. Am. Chem. Soc. 123, 8608-8609.]) and the educt TeO2 (α-TeO2; Stehlik & Balak, 1948[Stehlik, B. & Balak, L. (1948). Chem. Zvesti, 2, 6-12.]). Under a polarizing microscope, small colourless block-shaped crystals of Zn2(HTeO3)(AsO4) were visible that were manually separated for the single-crystal X-ray diffraction study.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atom labels and coordinates were standardized with Structure Tidy (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) implemented in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The H atom of the hy­droxy group was located in a difference-Fourier map and was refined freely. The crystal structure was refined under consideration of twinning by inversion, revealing a minor contribution of 3.2 (12)% for the inversion-related twin component.

Table 3
Experimental details

Crystal data
Chemical formula Zn2(HTeO3)(AsO4)
Mr 446.27
Crystal system, space group Monoclinic, Cm
Temperature (K) 100
a, b, c (Å) 6.9040 (12), 7.7212 (13), 5.726 (1)
β (°) 101.196 (5)
V3) 299.43 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 18.25
Crystal size (mm) 0.06 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.538, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 8261, 1986, 1918
Rint 0.044
(sin θ/λ)max−1) 0.915
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.040, 0.92
No. of reflections 1986
No. of parameters 63
No. of restraints 2
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 1.79, −1.17
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.032 (12)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dizinc(II) hydroxidodioxidotellurate(IV) oxidoarsenate(V) top
Crystal data top
Zn2(HTeO3)(AsO4)F(000) = 404
Mr = 446.27Dx = 4.950 Mg m3
Monoclinic, CmMo Kα radiation, λ = 0.71073 Å
a = 6.9040 (12) ÅCell parameters from 5391 reflections
b = 7.7212 (13) Åθ = 3.6–40.6°
c = 5.726 (1) ŵ = 18.25 mm1
β = 101.196 (5)°T = 100 K
V = 299.43 (9) Å3Block, colourless
Z = 20.06 × 0.04 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
1918 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 40.6°, θmin = 3.6°
Tmin = 0.538, Tmax = 0.748h = 1212
8261 measured reflectionsk = 1414
1986 independent reflectionsl = 1010
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.040Δρmax = 1.79 e Å3
S = 0.92Δρmin = 1.16 e Å3
1986 reflectionsExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
63 parametersExtinction coefficient: 0.0043 (5)
2 restraintsAbsolute structure: Refined as an inversion twin
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.032 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.70945 (3)0.0000000.81776 (3)0.00418 (6)
As10.24451 (6)0.0000000.51174 (7)0.00440 (9)
Zn10.46889 (7)0.23359 (4)0.17917 (8)0.00521 (7)
O10.1089 (4)0.1808 (3)0.4941 (4)0.0081 (4)
O20.1998 (4)0.3177 (3)0.0329 (4)0.0062 (4)
O30.0007 (6)0.0000000.0002 (6)0.0087 (6)
O40.3941 (5)0.0000000.3064 (6)0.0063 (5)
O50.3968 (5)0.0000000.7868 (6)0.0065 (5)
H10.114 (13)0.0000000.064 (14)0.015 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.00465 (12)0.00392 (11)0.00381 (11)0.0000.00040 (8)0.000
As10.0040 (2)0.0047 (2)0.00427 (18)0.0000.00031 (16)0.000
Zn10.00389 (15)0.00549 (13)0.00595 (15)0.00021 (15)0.00023 (11)0.00043 (13)
O10.0090 (10)0.0078 (10)0.0068 (9)0.0039 (8)0.0006 (8)0.0004 (7)
O20.0061 (9)0.0058 (9)0.0068 (9)0.0000 (8)0.0015 (7)0.0021 (7)
O30.0055 (14)0.0116 (14)0.0085 (13)0.0000.0001 (11)0.000
O40.0067 (14)0.0064 (13)0.0062 (12)0.0000.0025 (11)0.000
O50.0049 (13)0.0103 (14)0.0041 (11)0.0000.0001 (10)0.000
Geometric parameters (Å, º) top
Te1—O2i1.880 (2)As1—O51.716 (3)
Te1—O2ii1.880 (2)Zn1—O2v1.979 (3)
Te1—O3iii2.070 (4)Zn1—O1v1.987 (3)
Te1—O52.131 (4)Zn1—O21.993 (3)
As1—O1iv1.673 (2)Zn1—O42.0486 (16)
As1—O11.673 (2)Zn1—O3vi2.3259 (18)
As1—O41.709 (3)O3—H10.94 (9)
O2i—Te1—O2ii96.96 (14)O2v—Zn1—O3vi80.87 (12)
O2i—Te1—O3iii79.82 (10)O1v—Zn1—O3vi92.08 (11)
O2ii—Te1—O3iii79.82 (10)O2—Zn1—O3vi71.53 (12)
O2i—Te1—O583.70 (10)O4—Zn1—O3vi170.38 (14)
O2ii—Te1—O583.70 (10)As1—O1—Zn1vii120.01 (13)
O3iii—Te1—O5155.01 (13)Te1viii—O2—Zn1vii124.12 (13)
O1iv—As1—O1113.14 (19)Te1viii—O2—Zn1111.74 (13)
O1iv—As1—O4111.36 (10)Zn1vii—O2—Zn1121.25 (11)
O1—As1—O4111.36 (10)Te1ix—O3—Zn1vii93.51 (11)
O1iv—As1—O5106.93 (11)Te1ix—O3—Zn1x93.51 (11)
O1—As1—O5106.93 (11)Zn1vii—O3—Zn1x124.36 (16)
O4—As1—O5106.69 (17)Te1ix—O3—H1128 (5)
O2v—Zn1—O1v99.25 (11)Zn1vii—O3—H1109.1 (18)
O2v—Zn1—O2130.47 (12)Zn1x—O3—H1109.1 (18)
O1v—Zn1—O2121.53 (11)As1—O4—Zn1118.20 (8)
O2v—Zn1—O4104.71 (11)As1—O4—Zn1iv118.20 (8)
O1v—Zn1—O494.69 (11)Zn1—O4—Zn1iv123.38 (16)
O2—Zn1—O499.06 (12)As1—O5—Te1120.43 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1; (iii) x+1, y, z+1; (iv) x, y, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x1/2, y+1/2, z; (viii) x1/2, y+1/2, z1; (ix) x1, y, z1; (x) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O5xi0.94 (9)2.28 (9)3.213 (5)179 (7)
Symmetry code: (xi) x, y, z1.
 

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal and powder X-ray diffractometers.

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBinnewies, M., Glaum, R., Schmidt, M. & Schmidt, P. (2012). Chemical Vapor Transport Reactions. Berlin: DeGruyter.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415–545.  Web of Science CrossRef CAS Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFeng, P., Zhang, T. & Bu, X. (2001). J. Am. Chem. Soc. 123, 8608–8609.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGaly, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159.  CrossRef CAS Web of Science Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHamani, D., Masson, O. & Thomas, P. (2020). J. Appl. Cryst. 53, 1243–1251.  CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145–149.  CrossRef CAS IUCr Journals Google Scholar
First citationMissen, O. P., Weil, M., Mills, S. J. & Libowitzky, E. (2020). Acta Cryst. B76, 1–6.  CrossRef ICSD IUCr Journals Google Scholar
First citationOk, K. M., Chi, E. O. & Halasyamani, P. S. (2006). Chem. Soc. Rev. 35, 710–717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C75, 1134–1141.  CSD CrossRef ICSD IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStehlik, B. & Balak, L. (1948). Chem. Zvesti, 2, 6–12.  CAS Google Scholar
First citationStöger, B. & Weil, M. (2013). Miner. Petrol. 107, 253–263.  Google Scholar
First citationWeast, R. C. & Astle, M. J. (1982). CRC Handbook of Chemistry and Physics, 63rd Edition, D-173. Boca Raton: CRC Press.  Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017a). Z. Anorg. Allg. Chem. 643, 330–339.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017b). Z. Anorg. Allg. Chem. 643, 749–756.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017c). Z. Anorg. Allg. Chem. 643, 757–765.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimmermann, I., Kremer, R. K. & Johnsson, M. (2011). J. Solid State Chem. 184, 3080–3084.  Web of Science CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds