research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,14-di­methyl-2,13-di­aza-6,17-diazo­niatri­cyclo­[16.4.0.07,12]do­cosane bis­­(per­chlorate) from synchrotron X-ray data

crossmark logo

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 7 April 2021; accepted 20 April 2021; online 23 April 2021)

The crystal structure of the title salt, C20H42N42+·2ClO4, has been determined using synchrotron radiation at 220 (2) K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit comprises one half of the organic dication, which lies about a center of inversion, and one perchlorate anion. The macrocyclic dication adopts the most stable endodentate trans-III conformation. The crystal structure is stabilized by intra­molecular N—H⋯N, and inter­molecular N—H⋯O and C–H⋯O hydrogen bonds involving the macrocycle N—H and C—H groups as donors and the O atoms of perchlorate anions as acceptors, giving rise to a three-dimensional network.

1. Chemical context

The macrocyclic compound, 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane (C20H40N4) contains a cyclam backbone with two cyclo­hexane subunits and two methyl groups are also attached to carbon atoms 3 and 14 of the propyl chains that bridge opposite pairs of N atoms in the structure. The macrocycle is basic and readily captures two or four protons to form the [C20H42N4]2+ dication or the [C20H44N4]4+ tetra­cation in which all of the N—H bonds are generally available for hydrogen-bond formation (Moon et al., 2021[Moon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.]).

Previously, the crystal structures of [Cu(C20H40N4)](NO3)2·3H2O, [Cu(C20H40N4)](NO3)2, [Cu(C20H40N4)](ClO4)2 and [Cu(C20H40N4)(H2O)2](BF4)2·2H2O were reported together with [Zn(C20H40N4)(OCOCH3)2]. In these structures, the copper(II) or zinc(II) cations have tetra­gonally distorted octa­hedral environments with the four N atoms of the macrocyclic ligand in equatorial positions and the O atoms of the counter-anions, water mol­ecules or acetato ligands in axial positions (Choi et al., 2006[Choi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383-m2385.], 2007[Choi, J.-H., Ryoo, K. S. & Park, K.-M. (2007). Acta Cryst. E63, m2674-m2675.], 2012a[Choi, J.-H., Joshi, T. & Spiccia, L. (2012a). Z. Anorg. Allg. Chem. 638, 146-151.],b[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012b). Acta Cryst. E68, m190.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). In these CuII and ZnII complexes, the macrocyclic ligands adopt their most stable trans-III configurations. The crystal structures of (C20H40N4)·2(C11H10O) (Choi et al., 2012c[Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.]), (C20H40N4)·2(NO2OH) (Moon et al., 2020[Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2020). Asian J. Chem. 32, 697-702.]), [C20H42N4](SO4)·2MeOH (White et al., 2015[White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.]), [C20H42N4]Br2·2H2O (Moon et al., 2021[Moon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.]) and [C20H44N4]Br4·4H2O (Moon et al., 2021[Moon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.]) have also been determined.

We report here the preparation of a new dicationic compound, [C20H42N4](ClO4)2, (I)[link] and its structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

An ellipsoid plot of the mol­ecular components in (I)[link] with the atom-numbering scheme is shown in Fig. 1[link]. The asymmetric unit consists of one half of the macrocyclic dication, which lies about a center of inversion, and one perchlorate anion. The four N atoms are coplanar, and the two methyl substituents are anti with respect to the macrocyclic plane as a result of the mol­ecular inversion symmetry. The [C20H42N4]2+ dication adopts an endodentate conformation and trans-III configuration along the center of the macrocyclic cavity. The endo conformation of the dication may be due to the intra­molecular N—H⋯N hydrogen-bonding inter­action. Within the centrosymmetric diprotonated amine unit, the C—C and N—C bond lengths range from 1.5173 (18) to 1.5368 (18) Å and from 1.4795 (16) to 1.5044 (16) Å, respectively. The range of N—C—C and C—N—C angles is 108.89 (11) to 113.50 (11)° and 113.46 (11) to 114.61 (11)°, respectively. The bond lengths and angles within the dication are comparable to those found in the free ligand or other cations in (C20H40N4)·2C11H10O (Choi et al., 2012c[Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.]), [C20H42N4](SO4)·2MeOH (White et al., 2015[White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.]) and [C20H42N4][Fe{HB(pz)3}(CN)3]2·2H2O·2MeOH (Kim et al., 2004[Kim, J., Han, S., Cho, I.-K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333-1339.]; pz = pyrazol­yl). The protonation of the N atoms may depend on the location of the neighboring counter-anions involved in hydrogen bonding. The bond-length difference can be noticed for several N—C bonds. The N—C bond length involving the non-protonated N1 atom is shorter than that involving protonated N2 atom, e.g. N1—C2 [1.4817 (18) Å] and N1—C3 [1.4795 (16) Å] are slightly shorter than N2—C8 [1.5044 (16) Å] and N2—C9 [1.4952 (18) Å]. Each of the two hydrogen atoms of N2 and N2′ (−x + 1, −y + 2, −z + 1) is involved in hydrogen bonding with both of the two remaining nitro­gen atoms (Table 1[link]). The intra­molecular hydrogen bonding plays a substantial role in maintaining the endodentate geometry of the diprotonated macrocyclic cation. The Cl—O bond distances in the tetra­hedral ClO4 anion vary from 1.4218 (19) to 1.4529 (16) Å, and the O—Cl—O angles vary from 106.45 (10) to 110.51 (12)°. The distorted geometry of the ClO4 anion undoubtedly results from its involvement in hydrogen-bonding inter­actions with the organic cation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.86 (2) 2.22 (2) 3.007 (2) 152.4 (18)
N2—H2A⋯O1 0.90 2.09 2.970 (2) 164
N2—H2A⋯O2 0.90 2.56 3.239 (2) 132
N2—H2B⋯N1ii 0.90 2.29 2.9846 (16) 134
N2—H2B⋯N1 0.90 2.39 2.8230 (17) 109
C7—H7A⋯O2iii 0.98 2.57 3.423 (3) 145
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions and primed atoms are related by the symmetry operation (−x + 1, −y + 2, −z + 1).

3. Supra­molecular features

Three N—H⋯O, C–H⋯O and N—H⋯N hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). The O atoms of the perchlorate anions serve as hydrogen-bond acceptors. The ClO4 anions are connected to the [C20H42N4]2+ dication by N—H⋯O hydrogen bonds. The macrocyclic dication is linked to a neighboring ClO4 anion through a very weak C—H⋯O hydrogen bond. The extensive array of these contacts generates a three-dimensional network structure (Fig. 2[link]), and these hydrogen-bonding inter­actions help to stabilize the crystal structure.

[Figure 2]
Figure 2
Crystal packing in compound (I)[link], viewed perpendicular to the ac plane. Dashed lines represent N—H⋯O (cyan), N—H⋯N (blue) and C—H⋯O (purple) hydrogen-bonding inter­actions, respectively.

4. Database survey

A search of the Cambridge Structural (Version 5.42, Update 1, February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 121 hits for organic and transition-metal compounds containing the macrocycles (C20H40N4), [C20H42N4]2+ or [C20H44N4]4+. The crystal structures of (C20H40N4)·2C11H10O (Choi et al., 2012c[Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.]), [C20H42N4](SO4)·2MeOH (White et al., 2015[White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.]), [C20H42N4]Br2·2H2O (Moon et al., 2021[Moon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.]), [C20H44N4]Cl4·4H2O (Moon et al., 2018[Moon, D. & Choi, J.-H. (2018). Acta Cryst. E74, 1039-1041.]) and [C20H44N4]Br4·4H2O (Moon et al., 2021[Moon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.]) were reported previously and commented on in the Chemical context section.

5. Synthesis and crystallization

Commercially available trans-1,2-cyclo­hexa­nedi­amine and methyl vinyl ketone (Sigma-Aldrich) were used as provided. All chemicals were reagent grade and used without further purification. As a starting material, macrocycle 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane, L, was prepared according to a published procedure (Kang et al., 1991[Kang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483-487.]). Macrocycle L (0.034 g, 0.1 mmol) was suspended in methanol (20 mL) and the pH was adjusted to 3.0 with 0.5 M HClO4. The mixture was stirred magnetically for 30 min and the resulting solution was filtered. The neat filtrate was allowed to stand for one week to give block-like colorless crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. All C-bound H atoms and the hydrogen atoms of the diprotonated amine (H2A and H2B) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.98 Å and an N—H distance of 0.99 Å, and with Uiso(H) values of 1.5 and 1.2 times, respectively, that of the parent atoms. The one N-bound H atom (H1N1) of the amine was assigned based on a difference-Fourier map, and a Uiso(H) value of 1.5Ueq(N1).

Table 2
Experimental details

Crystal data
Chemical formula C20H42N42+·2ClO4
Mr 537.47
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 10.689 (2), 8.4450 (17), 14.020 (3)
β (°) 92.90 (3)
V3) 1263.9 (4)
Z 2
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 0.22
Crystal size (mm) 0.08 × 0.08 × 0.08
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.957, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12842, 3549, 3164
Rint 0.063
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.172, 1.11
No. of reflections 3549
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.44
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

3,14-Dimethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane bis(perchlorate) top
Crystal data top
C20H42N42+·2ClO4F(000) = 576
Mr = 537.47Dx = 1.412 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.630 Å
a = 10.689 (2) ÅCell parameters from 41946 reflections
b = 8.4450 (17) Åθ = 0.4–33.6°
c = 14.020 (3) ŵ = 0.22 mm1
β = 92.90 (3)°T = 220 K
V = 1263.9 (4) Å3Block, colorless
Z = 20.08 × 0.08 × 0.08 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
3164 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.063
ω scanθmax = 26.0°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski et al., 2003)
h = 1414
Tmin = 0.957, Tmax = 1.000k = 1111
12842 measured reflectionsl = 1919
3549 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.4023P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3549 reflectionsΔρmax = 0.86 e Å3
158 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35546 (11)1.04262 (14)0.58019 (8)0.0179 (2)
H1N10.3881 (18)1.135 (3)0.5913 (14)0.027*
N20.58037 (10)0.87373 (14)0.61832 (7)0.0189 (2)
H2A0.5569800.7716530.6125840.023*
H2B0.5563740.9233910.5636130.023*
C10.17869 (17)0.8824 (2)0.51236 (13)0.0357 (4)
H1A0.1044020.8909890.4700040.054*
H1B0.1587720.8235020.5690450.054*
H1C0.2438960.8274820.4798160.054*
C20.22417 (13)1.04715 (17)0.54095 (10)0.0208 (3)
H20.1710261.0864740.5917040.025*
C30.37355 (13)0.95865 (16)0.67248 (9)0.0186 (3)
H30.3397450.8500080.6647200.022*
C40.30834 (15)1.03951 (18)0.75469 (10)0.0254 (3)
H4A0.3374061.1493170.7603960.030*
H4B0.2177951.0415050.7397480.030*
C50.33416 (16)0.95505 (19)0.85002 (10)0.0270 (3)
H5A0.2962871.0151860.9009320.032*
H5B0.2955020.8498160.8473130.032*
C60.47429 (16)0.9383 (2)0.87300 (10)0.0284 (3)
H6A0.4880760.8772690.9320530.034*
H6B0.5112441.0434740.8833620.034*
C70.53896 (14)0.85522 (19)0.79198 (9)0.0258 (3)
H7A0.6293650.8496580.8071060.031*
H7B0.5069760.7469300.7845220.031*
C80.51363 (13)0.94746 (16)0.69916 (9)0.0187 (3)
H80.5462601.0563000.7088440.022*
C90.71994 (13)0.8814 (2)0.63136 (9)0.0257 (3)
H9A0.7475880.8107820.6837240.031*
H9B0.7446480.9895100.6494560.031*
C100.78531 (13)0.83475 (19)0.54199 (9)0.0239 (3)
H10A0.7505850.7333640.5192650.029*
H10B0.8741930.8175600.5594940.029*
Cl10.54918 (4)0.43816 (5)0.65415 (3)0.03296 (16)
O10.45977 (15)0.55690 (19)0.61926 (13)0.0495 (4)
O20.67029 (15)0.5118 (2)0.65563 (14)0.0618 (5)
O30.5462 (2)0.3046 (2)0.59233 (17)0.0762 (6)
O40.51936 (16)0.3923 (2)0.74864 (12)0.0598 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0238 (5)0.0176 (5)0.0127 (5)0.0015 (4)0.0047 (4)0.0024 (4)
N20.0246 (5)0.0218 (6)0.0109 (4)0.0014 (4)0.0056 (4)0.0023 (4)
C10.0388 (8)0.0307 (8)0.0374 (9)0.0110 (7)0.0011 (6)0.0010 (7)
C20.0229 (6)0.0235 (7)0.0165 (6)0.0007 (5)0.0065 (4)0.0003 (5)
C30.0262 (6)0.0175 (6)0.0128 (5)0.0000 (5)0.0073 (4)0.0028 (4)
C40.0347 (7)0.0271 (7)0.0155 (6)0.0061 (6)0.0121 (5)0.0040 (5)
C50.0407 (8)0.0275 (7)0.0139 (6)0.0017 (6)0.0128 (5)0.0031 (5)
C60.0427 (8)0.0326 (8)0.0105 (6)0.0001 (6)0.0061 (5)0.0000 (5)
C70.0349 (7)0.0315 (7)0.0113 (5)0.0049 (6)0.0060 (5)0.0046 (5)
C80.0265 (6)0.0194 (6)0.0106 (5)0.0004 (5)0.0063 (4)0.0006 (4)
C90.0242 (6)0.0387 (8)0.0146 (6)0.0006 (6)0.0047 (4)0.0006 (5)
C100.0264 (6)0.0291 (7)0.0168 (6)0.0062 (5)0.0063 (5)0.0030 (5)
Cl10.0328 (2)0.0270 (3)0.0393 (3)0.00471 (14)0.00435 (17)0.00776 (14)
O10.0454 (8)0.0462 (9)0.0564 (9)0.0068 (6)0.0015 (7)0.0120 (7)
O20.0423 (8)0.0658 (11)0.0770 (12)0.0215 (8)0.0003 (8)0.0287 (10)
O30.1111 (16)0.0318 (8)0.0893 (14)0.0193 (10)0.0399 (12)0.0118 (9)
O40.0577 (9)0.0755 (12)0.0463 (9)0.0126 (9)0.0036 (7)0.0284 (9)
Geometric parameters (Å, º) top
N1—C31.4795 (16)C5—C61.523 (2)
N1—C21.4817 (18)C5—H5A0.9800
N1—H1N10.86 (2)C5—H5B0.9800
N2—C91.4952 (18)C6—C71.530 (2)
N2—C81.5044 (16)C6—H6A0.9800
N2—H2A0.9000C6—H6B0.9800
N2—H2B0.9000C7—C81.5290 (18)
C1—C21.521 (2)C7—H7A0.9800
C1—H1A0.9700C7—H7B0.9800
C1—H1B0.9700C8—H80.9900
C1—H1C0.9700C9—C101.5173 (18)
C2—C10i1.5314 (19)C9—H9A0.9800
C2—H20.9900C9—H9B0.9800
C3—C81.5278 (19)C10—H10A0.9800
C3—C41.5368 (18)C10—H10B0.9800
C3—H30.9900Cl1—O31.4218 (19)
C4—C51.528 (2)Cl1—O41.4315 (16)
C4—H4A0.9800Cl1—O21.4354 (15)
C4—H4B0.9800Cl1—O11.4529 (16)
C3—N1—C2114.61 (11)H5A—C5—H5B108.0
C3—N1—H1N1103.8 (13)C5—C6—C7111.23 (13)
C2—N1—H1N1114.3 (13)C5—C6—H6A109.4
C9—N2—C8113.46 (11)C7—C6—H6A109.4
C9—N2—H2A108.9C5—C6—H6B109.4
C8—N2—H2A108.9C7—C6—H6B109.4
C9—N2—H2B108.9H6A—C6—H6B108.0
C8—N2—H2B108.9C8—C7—C6109.34 (13)
H2A—N2—H2B107.7C8—C7—H7A109.8
C2—C1—H1A109.5C6—C7—H7A109.8
C2—C1—H1B109.5C8—C7—H7B109.8
H1A—C1—H1B109.5C6—C7—H7B109.8
C2—C1—H1C109.5H7A—C7—H7B108.3
H1A—C1—H1C109.5N2—C8—C3109.71 (11)
H1B—C1—H1C109.5N2—C8—C7111.10 (11)
N1—C2—C1110.99 (12)C3—C8—C7111.66 (11)
N1—C2—C10i108.89 (11)N2—C8—H8108.1
C1—C2—C10i112.81 (13)C3—C8—H8108.1
N1—C2—H2108.0C7—C8—H8108.1
C1—C2—H2108.0N2—C9—C10112.70 (11)
C10i—C2—H2108.0N2—C9—H9A109.1
N1—C3—C8109.08 (10)C10—C9—H9A109.1
N1—C3—C4113.50 (11)N2—C9—H9B109.1
C8—C3—C4108.65 (12)C10—C9—H9B109.1
N1—C3—H3108.5H9A—C9—H9B107.8
C8—C3—H3108.5C9—C10—C2i116.25 (13)
C4—C3—H3108.5C9—C10—H10A108.2
C5—C4—C3112.33 (12)C2i—C10—H10A108.2
C5—C4—H4A109.1C9—C10—H10B108.2
C3—C4—H4A109.1C2i—C10—H10B108.2
C5—C4—H4B109.1H10A—C10—H10B107.4
C3—C4—H4B109.1O3—Cl1—O4110.51 (12)
H4A—C4—H4B107.9O3—Cl1—O2110.20 (14)
C6—C5—C4111.15 (12)O4—Cl1—O2110.28 (11)
C6—C5—H5A109.4O3—Cl1—O1110.37 (13)
C4—C5—H5A109.4O4—Cl1—O1108.95 (11)
C6—C5—H5B109.4O2—Cl1—O1106.45 (10)
C4—C5—H5B109.4
C3—N1—C2—C167.02 (15)C9—N2—C8—C765.28 (15)
C3—N1—C2—C10i168.21 (11)N1—C3—C8—N253.86 (14)
C2—N1—C3—C8173.99 (10)C4—C3—C8—N2178.05 (10)
C2—N1—C3—C464.72 (15)N1—C3—C8—C7177.48 (11)
N1—C3—C4—C5177.06 (12)C4—C3—C8—C758.32 (15)
C8—C3—C4—C555.52 (16)C6—C7—C8—N2177.49 (12)
C3—C4—C5—C654.72 (17)C6—C7—C8—C359.68 (16)
C4—C5—C6—C755.07 (17)C8—N2—C9—C10169.40 (12)
C5—C6—C7—C857.14 (16)N2—C9—C10—C2i71.50 (17)
C9—N2—C8—C3170.77 (11)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3ii0.86 (2)2.22 (2)3.007 (2)152.4 (18)
N2—H2A···O10.902.092.970 (2)164
N2—H2A···O20.902.563.239 (2)132
N2—H2B···N1i0.902.292.9846 (16)134
N2—H2B···N10.902.392.8230 (17)109
C7—H7A···O2iii0.982.573.423 (3)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2012a). Z. Anorg. Allg. Chem. 638, 146–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Ryoo, K. S. & Park, K.-M. (2007). Acta Cryst. E63, m2674–m2675.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Subhan, M. A. & Ng, S. W. (2012b). Acta Cryst. E68, m190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383–m2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483–487.  CAS Google Scholar
First citationKim, J., Han, S., Cho, I.-K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333–1339.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2018). Acta Cryst. E74, 1039–1041.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.  CSD CrossRef Google Scholar
First citationMoon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2020). Asian J. Chem. 32, 697–702.  CrossRef CAS Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds