research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of three disordered 2-substituted benzimidazole esters

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 March 2021; accepted 29 March 2021; online 9 April 2021)

The crystal structures of three benzimidazole esters containing aryl or heterocyclic substituents at position 2 are reported, and all three exhibit disorder of mol­ecular entities. In ethyl 1-methyl-2-[4-(prop-2-yn­oxy)phen­yl]-1H-benzimidazole-5-carboxyl­ate, C20H18N2O3, (I), the prop-2-yn-1-oxyphenyl unit is disordered over two sets of atomic sites having effectively equal occupancies, 0.506 (5) and 0.494 (5). The propyl substituent in ethyl 1-propyl-2-(pyren-1-yl)-1H-benzimidazole-5-carboxyl­ate, C29H24N2O2, (II), is disordered over two sets of atomic sites having occupancies 0.601 (8) and 0.399 (8), and the ester unit in ethyl 1-methyl-2-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1H-benzimidazole-5-carboxyl­ate, C21H19ClN4O2 (III), is disordered over two sets of atomic sites having occupancies 0.645 (7) and 0.355 (7). In each of the C—H⋯π(arene) hydrogen bonds in (I), the donor and acceptor form parts of different disorder components, so that no continuous aggregation is possible. The mol­ecules of (II) are linked by a single C—H⋯O hydrogen bond into C(10) chains, which are linked into sheets by a ππ stacking inter­action, whereas those of (III) are just linked into C(13) chains, again by a single C—H⋯O hydrogen bond. Comparisons are made with the structures of some related compounds.

1. Chemical context

The use of compounds containing the benzo[d]imidazole unit as chemotherapeutic agents having anti­microbial, anti­parasitic, anti­tumour and anti­viral activity has been comprehensively reviewed (Boiani & Gonzalez, 2005[Boiani, M. & González, M. (2005). Mini Rev. Med. Chem. 5, 409-424.]). In particular, 2-substituted benzo[d]imidazoles have recently been evaluated for their anti­microbial and anti­oxidant activity (Zhou et al., 2013[Zhou, R., Li, B., Yi, W., Bu, X. & Ma, L. (2013). Bioorg. Med. Chem. Lett. 23, 3759-3763.]; Bektaş et al., 2020[Bektaş, H., Sökmen, H., Aydın, S., Menteşe, E., Bektaş, A. & Dilekçi, G. (2020). J. Heterocycl. Chem. 57, 2234-2242.]). With these considerations in mind, we have synthesized some new 2-substituted benzo[d]imidazoles and here we report the structures of two new benzimidazole esters, namely ethyl 1-methyl-2-[4-(prop-2-yn­oxy)phen­yl]-1H-benzimidazole-5-carboxyl­ate (I)[link] (Fig. 1[link]) and ethyl 1-propyl-2-(pyren-1-yl)-1H-benzimidazole-5-carboxyl­ate (II)[link] (Fig. 2[link]) carrying aromatic substituents at position 2 of the heterocyclic ring.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme and the disorder. The major disorder form is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme and the disorder. The major disorder form is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

The structure of the related compound ethyl 1-methyl-2-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1H-benzimidazole-5-carboxyl­ate (III)[link] (Fig. 3[link]) was reported recently (Manju et al., 2018[Manju, N., Kalluraya, B., Asma & Kumar, M. S. (2018). Indian J. Heterocycl. Chem. 28, 415-422.]), but the reported refinement was based on a rather unusual disorder model, in which only some of the atoms in the ester function, namely the methyl­ene group and the H atoms of the methyl group, were described as disordered over two sets of atomic sites having occupancies 0.719 (14) and 0.281 (14), but with all other components of this substituent fully ordered. This model leads to some unexpected distances within the eth­oxy unit, O—C =1.480 (4) and 1.618 (13) Å and C—C = 1.274 (6) and 1.295 (10) Å, which in turn cast doubt on the correctness of the disorder model. Accordingly, we have taken the opportunity to collect a new, and rather better data set for compound (III)[link] [4250 reflections with Rint = 0.0126 as against 4010 reflections with Rint = 0.0418 (Manju et al., 2018[Manju, N., Kalluraya, B., Asma & Kumar, M. S. (2018). Indian J. Heterocycl. Chem. 28, 415-422.])] and, using a more realistic disorder model, we have refined the structure of (III)[link] to R1 = 0.0395 as against a value of 0.0526 (Manju et al., 2018[Manju, N., Kalluraya, B., Asma & Kumar, M. S. (2018). Indian J. Heterocycl. Chem. 28, 415-422.]).

[Scheme 1]
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link] showing the atom-labelling scheme and the disorder. The major disorder form is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Compounds (I)–(III) were prepared from the commercially available precursor ethyl 4-chloro-3-nitro­benzoate (A) (Fig. 4[link]), which readily undergoes nucleophilic substitution with primary amines to give the inter­mediates (B): subsequent reaction of (B) with sodium di­thio­nite in the presence of the appropriate aldehyde leads to the products (I)–(III) in overall yields of 58-68%.

[Figure 4]
Figure 4
The synthetic pathway to compounds (I)–(III).

2. Structural commentary

The mol­ecules of compounds (I)–(III) all exhibit disorder. In compound (I)[link] (Fig. 1[link]), the (prop-2-yn-1-oxy)phenyl unit is disordered over two sets of atomic sites having essentially equal occupancies, 0.506 (5) and 0.494 (5), such that the two orientations of the phenyl ring make almost identical dihedral angles with the adjacent imidazole ring, 27.8 (4) and 27.0 (4)° respectively, and with a dihedral angle of 54.7 (3)° between the planes of the two disorder components. The propyl group in compound (II)[link] (Fig. 2[link]) is disordered over two sets of atomic sites having occupancies 0.601 (8) and 0.399 (8), while in compound (III)[link] (Fig. 3[link]), the whole ester unit is disordered over two sets of atomic sites having occupancies 0.645 (7) and 0.355 (7); so, far from there being a single site for the methyl C atom in the ester unit (Manju et al., 2018[Manju, N., Kalluraya, B., Asma & Kumar, M. S. (2018). Indian J. Heterocycl. Chem. 28, 415-422.]), there are two such sites in the present disorder model, separated by 0.931 (11) Å.

Despite the fact that atom O51 acts as a hydrogen-bond acceptor in both (II)[link] and (III)[link], although not in (I)[link], the conformation of the ester unit in (II)[link] is different from that in (I)[link] and (III)[link] (Figs. 1[link]–4[link][link][link]): the cause of this is unclear. The bond lengths in the pyrene fragment of compound (II)[link] present some inter­esting features. While the distances in the rings containing atoms C22 and C27 are all typical of those in delocalized aromatic rings, those in the other two rings exhibit significant bond fixation (Glidewell & Lloyd, 1984[Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.]). Thus the distances C24—C25 and C29—C210, 1.320 (3) and 1.342 (3) Å, are typical of double bonds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]), while those for the bonds C23A—C24, C23B—C25B, C25—C25A, C28A—C29 and C210—C20A are all closely grouped in the d range 1.424 (3)–1.436 (3) Å, typical of single bonds carrying alkenyl or aromatic substituents (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). Hence there can be no continuous peripheral delocalization in this unit.

3. Supra­molecular features

The supra­molecular assembly in compounds (II)[link] and (III)[link] is very simple, but that in compound (I)[link] is less straightforward. In compound (II)[link], mol­ecules that are related by the 21 screw axis along (0.5, y, 0.25) are linked by a C—H⋯O hydrogen bond (Table 1[link]) to form a C(10) chain (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [010] direction (Fig. 5[link]). Two chains of this type, related to one another by inversion, pass through each unit cell, and these chains are linked by a ππ inter­action involving the terminal aromatic ring, containing atom C27 (Fig. 2[link]). The terminal aromatic rings in the mol­ecules at (x, y, z) and (2 − x, 2 − y, 1 − z) are parallel with an inter­planar spacing of 3.430 (2) Å: the ring-centroid separation is 3.727 (2) Å and the ring-centroid offset is 1.459 (2) Å. This inter­action links the hydrogen-bonded chain around the screw axis along (0.5, y, 0.25) (Fig. 5[link]) with the corresponding chains along (1.5, y, 0.75) and (−0.5, y, −0.25), hence generating a π-stacked sheet of hydrogen-bonded chains lying parallel to (10[\overline{2}]) (Fig. 6[link]). There is also another short C-H⋯O contact in the structure of (II)[link], involving atom C11 (Table 1[link]), but the C—H⋯O angle is very small, such that the inter­action energy here is likely to be negligibly small (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). Hence, it is probably better to regard this as an adventitious contact rather than as a structurally significant inter­action: in any event, this contact would not influence the dimensionality of the supra­molecular assembly.

Table 1
Hydrogen bonds and short inter­molecular contacts (Å, °)

Cg1 and Cg2 represent the centroids of the rings (C31–C36) and (C21–C26), respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C23—H23⋯Cg1i 0.93 2.77 3.412 (9) 127
  C26—H26⋯Cg1ii 0.93 2.87 3.508 (9) 127
  C35—H35⋯Cg2iii 0.93 2.87 3.555 (9) 131
(II) C11—H11A⋯O51iv 0.97 2.51 3.253 (3) 133
  C22—H22⋯O51iv 0.93 2.37 3.290 (3) 168
(III) C212—H212⋯O51v 0.93 2.54 3.460 (14) 168
  C212—H212⋯O61v 0.93 2.67 3.59 (2) 170
Symmetry codes: (i) x, 1 + y, z; (ii) x, −1 + y, z; (iii) [{1\over 2}] − x, [{5\over 2}] − y, 1 − z; (iv) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (v) 1 + x, y, z.
[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded C(10) chain parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 6]
Figure 6
A projection along [010] of part of the crystal structure of compound (II)[link] showing the formation of a π-stacked sheet of hydrogen-bonded chains. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the hydrogen bonding have been omitted.

There is just one C—H⋯O hydrogen bond in the structure of compound (III)[link], and its dimensions for the two disorder components are fairly similar, although the distances in the minor component are rather longer than those for the major form (Table 1[link]); only the major disorder form needs to be considered. The hydrogen bond links mol­ecules that are related by translation to form a C(13) chain running parallel to the [100] direction (Fig. 7[link]).

[Figure 7]
Figure 7
Part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded C(13) chain parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.

The structure of compound (I)[link] contains three C—H⋯π(arene) hydrogen bonds, all involving the unfused aryl ring (Table 1[link]), but the alkyne unit acts as neither donor nor acceptor. If all of the donors and acceptors were present with full occupancy, the effect of the hydrogen bonds would be to link the mol­ecules of (I)[link] into a complex ribbon running parallel to the [010] direction (Fig. 8[link]). However, in each of these hydrogen bonds, the donor and the acceptor form parts of different disorder components, so that the ribbon cannot be continuous, but it is punctuated into a succession of short fragments. The punctuated ribbon containing the reference mol­ecule lies along (0.25, y, 0.5) and there are symmetry-related ribbons along (0.25, y, 0), (0.75, y, 0) and (0.75, y, 0.5) (Fig. 9[link]), but with no direction-specific inter­actions between adjacent ribbons.

[Figure 8]
Figure 8
Part of the crystal structure of compound (I)[link] showing the idealized ribbon along [010] that would result if all the hydrogen-bond donors and acceptors had unit occupancy. The disorder components are drawn using full and broken lines. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 9]
Figure 9
A projection along [010] of part of the crystal structure of compound (I)[link] showing the arrangement of the punctuated ribbons within the unit cell. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

4. Database survey

A representative example of a simple 2-substituted benzim­id­azole is provided by 2-(1-naphthyl­meth­yl)-1H-benzo[d]imidazole (IV) (Ding et al., 2007[Ding, M.-W., Hu, Y.-G. & Liu, M.-G. (2007). Acta Cryst. E63, o3184.]); here the mol­ecules are linked by a single N—H⋯N hydrogen bond to form C(4) chains, which are themselves linked into sheets by a C—H⋯π(arene) hydrogen bond. Structures have been reported for a number of esters derived from substituted benzimidazole-5-carb­oxy­lic acids, including: ethyl 1-[3-(1H-imidazol-1-yl)prop­yl]-2-(4-chloro­phen­yl)-1H-benzo[d]imidazole- 5-caboxylate dehydrate (V) (Yoon et al., 2011[Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.]), where a combination of O—H⋯O and O—H⋯N hydrogen bonds generates complex sheets, rather than the three-dimensional assembly specified in the original report (Yoon et al., 2011[Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.]); the two closely related esters methyl 2-(4-bromo­phen­yl)-1-(5-tert-butyl-1H-pyrazol-3-yl)-1H-benzimidazole-5-carboxyl­ate (VI) (Cortés et al., 2011[Cortés, E., Abonía, R., Cobo, J. & Glidewell, C. (2011). Acta Cryst. C67, o64-o66.]) and octyl 1-(5-tert-butyl-1H-pyrazol-3-yl)-2-(4-chloro­phen­yl)1H-benzimidazole-5-carboxyl­ate (VII) (Cortés et al., 2014[Cortés, E., Abonía, R., Cobo, J. & Glidewell, C. (2014). Acta Cryst. C70, 617-621.]), where the mol­ecules are linked into chains of edge-fused rings in (VI) by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds, but into complex sheets in (VII) generated by a combination of N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds; and ethyl 1-(4-fluoro­benz­yl)-2-(4-meth­oxy­phen­yl)-1H-benzo[d]imidazole-5-carboxyl­ate (VIII) Naveen et al., 2016[Naveen, S., Kumar, V., Poojary, B., Vishwanatha, P., Lokanath, N. K. & Abdoh, M. M. M. (2016). IUCrData, 1, x161744.]), in which inversion-related pairs of mol­ecules are linked by C—H⋯O hydrogen bonds to form cyclic, centrosymmetric R22(22) dimers. It is notable that, in marked contrast to the compounds (I)–(III) reported here, none of compounds (IV)–(VIII) exhibits any disorder: we also note the contrasting patterns of supra­molecular inter­actions and assembly in the closely related esters (VI) and (VII).

5. Synthesis and crystallization

All reagents were obtained commercially, and all were used as received. For the synthesis of the inter­mediates of type (B) (Fig. 4[link]), ethyl 4-chloro-3-nitro­benzoate (2.29 g, 0.01 mol) was dissolved in tetra­hydro­furan (20 ml) and 0.01 mol of the appropriate amine was added [0.80 ml of a 40% aqueous solution of methyl­amine when R = Me, or 0.059 g of propyl­amine when R = prop­yl], and these mixtures were then stirred at ambient temperature for 4 h. The resulting solid inter­mediates (B) were collected by filtration, dried in air and used without further purification. For the synthesis of the products (I)–(III), sodium di­thio­nite (1.74 g, 0.01 mol) was added to a mixture of (B) (0.01 mol) and the appropriate aldehyde (0.01 mol) [1.61 g of 4-propynyloxybenzaldehyde for (I)[link]; 2.30 g of pyrene-1-carboxaldehyde for (II)[link]; 2.20 g of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carboxaldehyde for (III)], in di­methyl­sulfoxide (30 ml). The reaction mixtures were then subjected to microwave irradiation (600 W) for 5 min for (I)[link], 6.5 min for (II)[link] and 6 min for (III)[link]. When the reactions were complete, as judged by thin-later chromatography, the resulting solid products were collected by filtration and dried in air.

Compound (I)[link]. Yield 62%, m.p. 465 K; IR (cm−1) 2218 (C≡C), 1708 (C=O), 1624(C=N); NMR (CDCl3) δ(1H) 1.37 (3H, t, J = 7.1 Hz, ester CH3), 3.48 (1H, t, J = 2.4 Hz, propynyl CH), 3.97 (3H, s, N—CH3), 4.36 (2H, q, J = 7.1 Hz, ester CH2), 4.90 (2H, d, J = 2.4 Hz, propynyl CH2), 7.22 (2H, d, J = 6.9 Hz) and 7.87 (2H, d, J = 6.9 Hz) (–C6H4–), 7.76 (1H, d, J = 8.6 Hz, H-7), 8.01 (1H, dd, J = 8.6 Hz and 1.3 Hz, H-6), 8.29 (1H, d, J = 1.3 Hz, H-4).

Compound (II)[link]. Yield 68%, m.p. 553 K; IR (cm−1) 1716 (C=O), 1615 (C=N); NMR (CDCl3) δ(1H) 0.62 (23H, t, J = 7.4 Hz, propyl CH3), 1.45 (3H, t, J = 7.1 Hz, ester CH3), 1.63 (2H, m, central CH2 of prop­yl), 4.06 (2H, t, J = 7.4 Hz), N—CH2), 4.45 (2H, q, J = 7.1 Hz, ester CH2), 7.53 (1H, d, J = 8.5 Hz, H-7), 7.91 (1H, dd, J = 8.5 Hz and 0.9 Hz, H-6), 8.05–8.32 (9H, m, pyrene), 8.67 (1H, d, J = 0.9 Hz, H-4).

Compound (III)[link]. Yield 58%, m.p. 435 K; IR (cm−1) 1703 (C=O), 1614 (C=N); NMR (CDCl3) δ(1H) 1.37 (3H, t, J = 7.0 Hz, ester CH3), 2.33 (3H, s, pyrazole CH3), 3.85 (3H, s, N—CH3), 4.36 (2H, q, J = 7.0 Hz, ester CH2), 7.51–8.30 (8H, m, aromatic).

Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethanol-aceto­nitrile (initial composition 3:1 v/v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two bad outlier reflections (2 2 9) and (1 1 19) were omitted from the final refinement of compound (I)[link]. All H atoms, apart from those in the minor disorder components, were located in difference maps. The H atoms were then all treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 Å (alkenyl, alkynyl and aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for all other H atoms. For the disorder components, the corresponding distances between bonding components and the 1,3 distances between non-bonding components were restrained to be equal, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, for compound (I)[link], similarity restraints were applied to the atoms of each orientation of the disordered aryl ring, while the anisotropic displacement parameters for corresponding pairs of atoms in the propyn­yloxy unit were constrained to be the same. Similarity restraints were applied to the displacement parameters of the terminal C atoms of the two disorder components of the propyl group in compound (II)[link], and to those of corresponding pairs of atoms in the disordered ester unit of compound (III)[link]. Subject to these conditions, the site occupancies for the disordered fragments refined to 0.506 (5) and 0.494 (5) in (I)[link], 0.601 (8) and 0.399 (8) in (II)[link], and 0.645 (7) and 0.355 (7) in (III)[link].

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C20H18N2O3 C29H24N2O2 C21H19ClN4O2
Mr 334.36 432.50 394.85
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 293 296 296
a, b, c (Å) 17.947 (2), 4.5907 (5), 41.305 (4) 18.467 (2), 8.6860 (8), 14.242 (1) 11.1095 (4), 9.5126 (4), 18.6747 (8)
β (°) 91.016 (8) 95.359 (7) 95.079 (4)
V3) 3402.6 (6) 2274.5 (4) 1965.80 (14)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.08 0.22
Crystal size (mm) 0.36 × 0.18 × 0.18 0.48 × 0.32 × 0.24 0.48 × 0.40 × 0.40
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.956, 0.984 0.905, 0.981 0.808, 0.916
No. of measured, independent and observed [I > 2σ(I)] reflections 7151, 3350, 2002 9384, 4691, 2593 8067, 4250, 3323
Rint 0.038 0.022 0.013
(sin θ/λ)max−1) 0.618 0.629 0.656
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.187, 1.04 0.052, 0.147, 1.01 0.040, 0.109, 1.02
No. of reflections 3350 4691 4250
No. of parameters 286 320 294
No. of restraints 93 9 28
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.23 0.15, −0.17 0.32, −0.29
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

Ethyl 1-methyl-2-[4-(prop-2-yn-1-oxy)phenyl)-1H-benzimidazole-5-carboxylate (I) top
Crystal data top
C20H18N2O3F(000) = 1408
Mr = 334.36Dx = 1.305 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.947 (2) ÅCell parameters from 3698 reflections
b = 4.5907 (5) Åθ = 2.5–27.9°
c = 41.305 (4) ŵ = 0.09 mm1
β = 91.016 (8)°T = 293 K
V = 3402.6 (6) Å3Needle, yellow
Z = 80.36 × 0.18 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3350 independent reflections
Radiation source: Enhance (Mo) X-ray Source2002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2022
Tmin = 0.956, Tmax = 0.984k = 55
7151 measured reflectionsl = 5150
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0762P)2 + 3.8366P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3350 reflectionsΔρmax = 0.24 e Å3
286 parametersΔρmin = 0.23 e Å3
93 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.43626 (12)1.0912 (5)0.59851 (6)0.0489 (6)
C20.38294 (15)0.9896 (6)0.57634 (7)0.0446 (7)
N30.33476 (13)0.8107 (6)0.58926 (6)0.0512 (7)
C3A0.35648 (15)0.7906 (7)0.62171 (7)0.0495 (7)
C40.32625 (17)0.6286 (8)0.64653 (7)0.0566 (8)
H40.28400.51480.64290.068*
C50.36027 (17)0.6401 (7)0.67670 (7)0.0544 (8)
C60.42355 (19)0.8131 (8)0.68213 (8)0.0637 (9)
H60.44550.81700.70270.076*
C70.45376 (18)0.9757 (8)0.65814 (8)0.0619 (9)
H70.49571.09080.66200.074*
C7A0.41952 (16)0.9633 (7)0.62761 (7)0.0482 (7)
C110.4975 (2)1.2924 (9)0.59433 (9)0.0821 (12)
H11A0.51751.26890.57310.123*
H11B0.53581.25310.61030.123*
H11C0.48001.48850.59690.123*
C210.38139 (14)1.0664 (6)0.54171 (7)0.0411 (6)0.494 (5)
C220.4071 (3)1.3274 (12)0.52923 (13)0.0475 (16)0.494 (5)
H220.42821.46370.54330.057*0.494 (5)
C230.4023 (3)1.3911 (13)0.49670 (13)0.0467 (15)0.494 (5)
H230.42031.56750.48900.056*0.494 (5)
C240.370 (2)1.190 (10)0.4754 (3)0.043 (4)0.494 (5)
C250.3444 (3)0.9279 (13)0.48742 (13)0.0438 (15)0.494 (5)
H250.32340.79130.47340.053*0.494 (5)
C260.3497 (3)0.8692 (12)0.52000 (12)0.0433 (15)0.494 (5)
H260.33160.69300.52770.052*0.494 (5)
O240.374 (4)1.250 (18)0.4431 (5)0.059 (3)0.494 (5)
C270.3276 (10)1.101 (4)0.4211 (3)0.064 (4)0.494 (5)
H27A0.27621.11960.42760.076*0.494 (5)
H27B0.34040.89600.42090.076*0.494 (5)
C280.336 (2)1.224 (9)0.3893 (4)0.066 (7)0.494 (5)
C290.347 (2)1.295 (7)0.3629 (5)0.087 (6)0.494 (5)
H290.35501.35330.34170.104*0.494 (5)
C310.38139 (14)1.0664 (6)0.54171 (7)0.0411 (6)0.506 (5)
C320.4451 (3)1.1350 (13)0.52509 (12)0.0436 (14)0.506 (5)
H320.49071.14270.53610.052*0.506 (5)
C330.4418 (3)1.1920 (13)0.49242 (12)0.0432 (15)0.506 (5)
H330.48501.23960.48150.052*0.506 (5)
C340.3741 (18)1.179 (9)0.4755 (3)0.041 (3)0.506 (5)
C350.3100 (3)1.1029 (14)0.49176 (12)0.0417 (14)0.506 (5)
H350.26461.09000.48060.050*0.506 (5)
C360.3141 (3)1.0467 (14)0.52448 (12)0.0451 (15)0.506 (5)
H360.27110.99450.53530.054*0.506 (5)
O340.373 (4)1.268 (18)0.4439 (5)0.059 (3)0.506 (5)
C370.3125 (9)1.196 (4)0.4235 (3)0.064 (4)0.506 (5)
H37A0.26751.28740.43130.076*0.506 (5)
H37B0.30510.98660.42350.076*0.506 (5)
C380.328 (2)1.296 (9)0.3913 (3)0.066 (7)0.506 (5)
C390.331 (2)1.388 (6)0.3653 (5)0.087 (6)0.506 (5)
H390.33291.46210.34430.104*0.506 (5)
C510.3279 (2)0.4646 (8)0.70302 (8)0.0633 (9)
O510.26896 (15)0.3386 (7)0.70080 (5)0.0852 (9)
O520.37052 (14)0.4589 (6)0.72963 (5)0.0762 (8)
C520.3433 (2)0.2891 (10)0.75689 (8)0.0840 (12)
H52A0.29910.37980.76550.101*
H52B0.33040.09390.74980.101*
C530.4009 (3)0.2764 (15)0.78145 (10)0.125 (2)
H53A0.38200.18220.80040.187*
H53B0.41660.47040.78690.187*
H53C0.44250.16810.77350.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0422 (13)0.0431 (14)0.0613 (16)0.0045 (11)0.0053 (11)0.0034 (12)
C20.0377 (14)0.0422 (17)0.0538 (17)0.0026 (13)0.0032 (12)0.0030 (14)
N30.0463 (13)0.0586 (16)0.0486 (14)0.0093 (13)0.0047 (11)0.0011 (12)
C3A0.0455 (16)0.0568 (19)0.0459 (16)0.0009 (15)0.0051 (13)0.0032 (15)
C40.0532 (17)0.065 (2)0.0511 (18)0.0082 (16)0.0030 (14)0.0004 (16)
C50.0539 (18)0.061 (2)0.0477 (18)0.0026 (16)0.0044 (14)0.0045 (16)
C60.065 (2)0.072 (2)0.0534 (19)0.0010 (18)0.0143 (16)0.0040 (18)
C70.0579 (19)0.067 (2)0.060 (2)0.0075 (17)0.0166 (16)0.0065 (18)
C7A0.0456 (16)0.0505 (18)0.0483 (17)0.0038 (14)0.0041 (13)0.0057 (15)
C110.077 (2)0.087 (3)0.081 (3)0.040 (2)0.018 (2)0.005 (2)
C210.0351 (13)0.0366 (15)0.0517 (16)0.0024 (12)0.0005 (12)0.0031 (13)
C220.045 (3)0.041 (3)0.057 (3)0.001 (3)0.007 (3)0.008 (3)
C230.041 (3)0.039 (3)0.060 (3)0.006 (3)0.003 (3)0.004 (3)
C240.037 (6)0.038 (6)0.055 (6)0.001 (6)0.003 (5)0.002 (5)
C250.037 (3)0.040 (3)0.055 (3)0.004 (3)0.005 (2)0.004 (3)
C260.034 (3)0.038 (3)0.058 (3)0.003 (3)0.001 (2)0.002 (3)
O240.0579 (19)0.069 (7)0.0488 (14)0.017 (4)0.0034 (16)0.001 (3)
C270.052 (6)0.079 (10)0.059 (3)0.019 (6)0.006 (3)0.001 (4)
C280.062 (8)0.078 (17)0.057 (2)0.015 (10)0.004 (3)0.010 (5)
C290.099 (14)0.104 (17)0.057 (3)0.015 (10)0.000 (4)0.001 (7)
C310.0351 (13)0.0366 (15)0.0517 (16)0.0024 (12)0.0005 (12)0.0031 (13)
C320.033 (3)0.042 (3)0.056 (3)0.002 (2)0.005 (2)0.007 (3)
C330.034 (3)0.042 (3)0.053 (3)0.003 (3)0.008 (2)0.002 (3)
C340.037 (6)0.041 (6)0.046 (5)0.001 (5)0.004 (5)0.002 (5)
C350.035 (3)0.042 (3)0.048 (3)0.000 (3)0.006 (2)0.002 (3)
C360.036 (3)0.047 (3)0.053 (3)0.005 (3)0.005 (2)0.000 (3)
O340.0579 (19)0.069 (7)0.0488 (14)0.017 (4)0.0034 (16)0.001 (3)
C370.052 (6)0.079 (10)0.059 (3)0.019 (6)0.006 (3)0.001 (4)
C380.062 (8)0.078 (17)0.057 (2)0.015 (10)0.004 (3)0.010 (5)
C390.099 (14)0.104 (17)0.057 (3)0.015 (10)0.000 (4)0.001 (7)
C510.066 (2)0.075 (2)0.0492 (19)0.0015 (19)0.0055 (16)0.0023 (18)
O510.0768 (17)0.121 (2)0.0578 (15)0.0251 (17)0.0062 (12)0.0157 (15)
O520.0784 (16)0.098 (2)0.0520 (13)0.0068 (15)0.0122 (12)0.0099 (13)
C520.094 (3)0.103 (3)0.055 (2)0.005 (2)0.0054 (19)0.017 (2)
C530.118 (4)0.180 (6)0.075 (3)0.014 (4)0.024 (3)0.039 (3)
Geometric parameters (Å, º) top
N1—C7A1.376 (4)O24—C271.403 (18)
N1—C21.393 (3)C27—C281.439 (7)
N1—C111.449 (4)C27—H27A0.9700
C2—N31.313 (4)C27—H27B0.9700
C2—C211.473 (4)C28—C291.156 (8)
N3—C3A1.392 (4)C29—H290.9300
C3A—C41.385 (4)C32—C331.375 (6)
C3A—C7A1.399 (4)C32—H320.9300
C4—C51.379 (4)C33—C341.39 (2)
C4—H40.9300C33—H330.9300
C5—C61.401 (5)C34—O341.369 (9)
C5—C511.480 (5)C34—C351.39 (2)
C6—C71.361 (5)C35—C361.376 (6)
C6—H60.9300C35—H350.9300
C7—C7A1.394 (4)C36—H360.9300
C7—H70.9300O34—C371.404 (18)
C11—H11A0.9600C37—C381.440 (7)
C11—H11B0.9600C37—H37A0.9700
C11—H11C0.9600C37—H37B0.9700
C21—C221.386 (6)C38—C391.157 (8)
C21—C261.389 (5)C39—H390.9300
C22—C231.376 (7)C51—O511.208 (4)
C22—H220.9300C51—O521.328 (4)
C23—C241.39 (2)O52—C521.460 (4)
C23—H230.9300C52—C531.436 (5)
C24—O241.368 (9)C52—H52A0.9700
C24—C251.38 (2)C52—H52B0.9700
C25—C261.374 (6)C53—H53A0.9600
C25—H250.9300C53—H53B0.9600
C26—H260.9300C53—H53C0.9600
C7A—N1—C2105.9 (2)C25—C26—H26119.2
C7A—N1—C11123.7 (3)C21—C26—H26119.2
C2—N1—C11130.5 (3)C24—O24—C27119.6 (12)
N3—C2—N1113.1 (2)O24—C27—C28109.0 (11)
N3—C2—C21122.9 (2)O24—C27—H27A109.9
N1—C2—C21124.0 (3)C28—C27—H27A109.9
C2—N3—C3A104.9 (2)O24—C27—H27B109.9
C4—C3A—N3129.9 (3)C28—C27—H27B109.9
C4—C3A—C7A120.1 (3)H27A—C27—H27B108.3
N3—C3A—C7A110.0 (3)C29—C28—C27173 (5)
C5—C4—C3A118.4 (3)C28—C29—H29180.0
C5—C4—H4120.8C33—C32—H32119.7
C3A—C4—H4120.8C32—C33—C34120.4 (7)
C4—C5—C6120.8 (3)C32—C33—H33119.8
C4—C5—C51118.0 (3)C34—C33—H33119.8
C6—C5—C51121.2 (3)O34—C34—C35123 (3)
C7—C6—C5121.8 (3)O34—C34—C33117 (2)
C7—C6—H6119.1C35—C34—C33119.6 (5)
C5—C6—H6119.1C36—C35—C34119.4 (7)
C6—C7—C7A117.5 (3)C36—C35—H35120.3
C6—C7—H7121.3C34—C35—H35120.3
C7A—C7—H7121.3C35—C36—H36119.3
N1—C7A—C7132.3 (3)C34—O34—C37119.8 (12)
N1—C7A—C3A106.1 (2)O34—C37—C38108.8 (10)
C7—C7A—C3A121.5 (3)O34—C37—H37A109.9
N1—C11—H11A109.5C38—C37—H37A109.9
N1—C11—H11B109.5O34—C37—H37B109.9
H11A—C11—H11B109.5C38—C37—H37B109.9
N1—C11—H11C109.5H37A—C37—H37B108.3
H11A—C11—H11C109.5C39—C38—C37171 (4)
H11B—C11—H11C109.5C38—C39—H39180.0
C22—C21—C26117.3 (4)O51—C51—O52123.0 (3)
C22—C21—C2124.6 (3)O51—C51—C5124.0 (3)
C26—C21—C2118.1 (3)O52—C51—C5113.0 (3)
C23—C22—C21122.1 (5)C51—O52—C52116.9 (3)
C23—C22—H22119.0C53—C52—O52108.7 (3)
C21—C22—H22119.0C53—C52—H52A110.0
C22—C23—C24119.5 (8)O52—C52—H52A110.0
C22—C23—H23120.3C53—C52—H52B110.0
C24—C23—H23120.3O52—C52—H52B110.0
O24—C24—C25123 (3)H52A—C52—H52B108.3
O24—C24—C23117 (2)C52—C53—H53A109.5
C25—C24—C23119.3 (5)C52—C53—H53B109.5
C26—C25—C24120.2 (8)H53A—C53—H53B109.5
C26—C25—H25119.9C52—C53—H53C109.5
C24—C25—H25119.9H53A—C53—H53C109.5
C25—C26—C21121.6 (5)H53B—C53—H53C109.5
C7A—N1—C2—N30.1 (3)N1—C2—C21—C26152.4 (4)
C11—N1—C2—N3178.9 (3)C26—C21—C22—C230.5 (7)
C7A—N1—C2—C21178.2 (2)C2—C21—C22—C23178.1 (4)
C11—N1—C2—C212.8 (5)C21—C22—C23—C240 (3)
N1—C2—N3—C3A0.0 (3)C22—C23—C24—O24173 (5)
C21—C2—N3—C3A178.4 (3)C22—C23—C24—C250 (5)
C2—N3—C3A—C4178.9 (3)O24—C24—C25—C26173 (5)
C2—N3—C3A—C7A0.2 (3)C23—C24—C25—C261 (5)
N3—C3A—C4—C5177.9 (3)C24—C25—C26—C211 (3)
C7A—C3A—C4—C50.7 (5)C22—C21—C26—C250.5 (7)
C3A—C4—C5—C60.4 (5)C2—C21—C26—C25178.3 (4)
C3A—C4—C5—C51179.6 (3)C25—C24—O24—C2724 (11)
C4—C5—C6—C70.1 (5)C23—C24—O24—C27163 (6)
C51—C5—C6—C7179.9 (3)C24—O24—C27—C28174 (7)
C5—C6—C7—C7A0.3 (5)C32—C33—C34—O34173 (5)
C2—N1—C7A—C7178.1 (3)C32—C33—C34—C351 (5)
C11—N1—C7A—C72.8 (5)O34—C34—C35—C36173 (5)
C2—N1—C7A—C3A0.2 (3)C33—C34—C35—C361 (5)
C11—N1—C7A—C3A178.9 (3)C35—C34—O34—C3721 (11)
C6—C7—C7A—N1178.2 (3)C33—C34—O34—C37165 (6)
C6—C7—C7A—C3A0.0 (5)C34—O34—C37—C38176 (7)
C4—C3A—C7A—N1179.1 (3)C4—C5—C51—O518.8 (5)
N3—C3A—C7A—N10.3 (3)C6—C5—C51—O51171.1 (4)
C4—C3A—C7A—C70.5 (5)C4—C5—C51—O52171.1 (3)
N3—C3A—C7A—C7178.3 (3)C6—C5—C51—O528.9 (5)
N3—C2—C21—C22151.8 (4)O51—C51—O52—C520.3 (5)
N1—C2—C21—C2230.0 (5)C5—C51—O52—C52179.6 (3)
N3—C2—C21—C2625.8 (5)C51—O52—C52—C53172.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···Cg1i0.932.773.412 (9)127
C26—H26···Cg1ii0.932.873.508 (9)127
C35—H35···Cg2iii0.932.873.555 (9)131
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y+5/2, z+1.
Ethyl 1-propyl-2-(pyren-1-yl)-1H-benzimidazole-5-carboxylate (II) top
Crystal data top
C29H24N2O2F(000) = 912
Mr = 432.50Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.467 (2) ÅCell parameters from 4909 reflections
b = 8.6860 (8) Åθ = 2.6–27.8°
c = 14.242 (1) ŵ = 0.08 mm1
β = 95.359 (7)°T = 296 K
V = 2274.5 (4) Å3Block, yellow
Z = 40.48 × 0.32 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4691 independent reflections
Radiation source: Enhance (Mo) X-ray Source2593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1823
Tmin = 0.905, Tmax = 0.981k = 107
9384 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.389P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4691 reflectionsΔρmax = 0.15 e Å3
320 parametersΔρmin = 0.17 e Å3
9 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.65691 (9)0.7408 (2)0.23708 (12)0.0594 (5)
C20.69734 (11)0.8183 (3)0.30919 (15)0.0568 (5)
N30.66307 (9)0.8333 (2)0.38560 (12)0.0614 (5)
C3A0.59665 (10)0.7619 (2)0.36420 (15)0.0551 (5)
C40.53959 (11)0.7415 (2)0.41957 (16)0.0595 (6)
H40.54180.78210.48020.071*
C50.47943 (11)0.6597 (3)0.38271 (16)0.0608 (6)
C60.47627 (13)0.6019 (3)0.29037 (18)0.0747 (7)
H60.43510.54780.26670.090*
C70.53147 (13)0.6219 (3)0.23378 (17)0.0755 (7)
H70.52850.58350.17260.091*
C7A0.59237 (11)0.7029 (2)0.27223 (15)0.0581 (6)
C210.77089 (11)0.8787 (2)0.29866 (14)0.0543 (5)
C220.78055 (13)0.9853 (3)0.22785 (15)0.0660 (6)
H220.74041.01780.18860.079*
C230.84795 (13)1.0433 (3)0.21471 (16)0.0686 (6)
H230.85271.11430.16690.082*
C23A0.90911 (12)0.9973 (2)0.27184 (15)0.0575 (5)
C240.98059 (14)1.0554 (3)0.26061 (18)0.0760 (7)
H240.98671.12490.21230.091*
C251.03788 (14)1.0128 (3)0.3170 (2)0.0791 (7)
H251.08321.05300.30700.095*
C25A1.03266 (11)0.9067 (3)0.39295 (16)0.0623 (6)
C261.09224 (13)0.8616 (3)0.4536 (2)0.0786 (7)
H261.13790.90200.44590.094*
C271.08436 (14)0.7582 (3)0.5245 (2)0.0823 (8)
H271.12490.72960.56440.099*
C281.01793 (13)0.6961 (3)0.53772 (17)0.0752 (7)
H281.01390.62530.58590.090*
C28A0.95602 (11)0.7384 (3)0.47925 (15)0.0575 (5)
C290.88535 (12)0.6795 (3)0.49081 (16)0.0672 (6)
H290.88000.60880.53870.081*
C2100.82629 (11)0.7225 (3)0.43487 (15)0.0606 (6)
H2100.78120.68140.44520.073*
C20A0.83110 (10)0.8306 (2)0.35956 (13)0.0488 (5)
C23B0.90095 (10)0.8902 (2)0.34558 (13)0.0492 (5)
C25B0.96325 (10)0.8449 (2)0.40574 (14)0.0516 (5)
C110.67891 (14)0.6952 (3)0.14429 (16)0.0754 (7)0.601 (8)
H11A0.69170.78730.11100.090*0.601 (8)
H11B0.63740.64860.10820.090*0.601 (8)
C120.7423 (3)0.5839 (5)0.1472 (3)0.0673 (16)0.601 (8)
H12A0.78500.63170.17960.081*0.601 (8)
H12B0.75290.56050.08330.081*0.601 (8)
C130.7256 (9)0.4347 (13)0.1976 (10)0.118 (5)0.601 (8)
H13A0.76730.36840.20050.177*0.601 (8)
H13B0.68500.38420.16360.177*0.601 (8)
H13C0.71390.45780.26040.177*0.601 (8)
C140.67891 (14)0.6952 (3)0.14429 (16)0.0754 (7)0.399 (8)
H14A0.72420.74580.13330.090*0.399 (8)
H14B0.64200.72690.09510.090*0.399 (8)
C150.6886 (8)0.5245 (9)0.1412 (6)0.125 (5)0.399 (8)
H15A0.70100.49470.07910.150*0.399 (8)
H15B0.64310.47460.15210.150*0.399 (8)
C160.7483 (12)0.4707 (19)0.2155 (15)0.114 (6)0.399 (8)
H16A0.75730.36300.20710.172*0.399 (8)
H16B0.73310.48780.27730.172*0.399 (8)
H16C0.79210.52770.20870.172*0.399 (8)
C510.41793 (12)0.6277 (3)0.43984 (19)0.0696 (6)
O510.36732 (9)0.5459 (2)0.41475 (14)0.1016 (6)
O520.42445 (8)0.6961 (2)0.52331 (13)0.0863 (5)
C520.36844 (13)0.6652 (4)0.58661 (19)0.0901 (8)
H52A0.38840.68170.65130.108*
H52B0.35350.55830.58030.108*
C530.30450 (18)0.7653 (4)0.5657 (2)0.1197 (12)
H53A0.27140.75130.61320.180*
H53B0.28060.73890.50510.180*
H53C0.31980.87090.56530.180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0625 (11)0.0609 (11)0.0535 (10)0.0061 (9)0.0013 (8)0.0059 (9)
C20.0557 (12)0.0581 (14)0.0559 (13)0.0049 (11)0.0022 (10)0.0014 (10)
N30.0505 (10)0.0701 (12)0.0635 (11)0.0064 (9)0.0052 (8)0.0140 (9)
C3A0.0488 (11)0.0558 (13)0.0587 (12)0.0018 (10)0.0052 (9)0.0074 (10)
C40.0533 (12)0.0630 (14)0.0607 (13)0.0022 (11)0.0032 (10)0.0086 (11)
C50.0504 (12)0.0593 (14)0.0700 (14)0.0004 (10)0.0096 (10)0.0005 (11)
C60.0634 (14)0.0779 (17)0.0781 (16)0.0121 (13)0.0175 (13)0.0093 (14)
C70.0763 (16)0.0815 (18)0.0650 (14)0.0075 (14)0.0128 (13)0.0140 (13)
C7A0.0575 (13)0.0550 (14)0.0593 (13)0.0059 (11)0.0074 (10)0.0029 (11)
C210.0583 (12)0.0519 (13)0.0534 (12)0.0042 (10)0.0086 (9)0.0048 (10)
C220.0747 (15)0.0627 (15)0.0605 (14)0.0115 (12)0.0049 (11)0.0077 (12)
C230.0854 (17)0.0586 (15)0.0639 (14)0.0042 (13)0.0178 (12)0.0109 (12)
C23A0.0712 (14)0.0465 (12)0.0576 (13)0.0023 (11)0.0214 (11)0.0037 (10)
C240.0880 (18)0.0624 (16)0.0828 (17)0.0119 (14)0.0351 (15)0.0031 (13)
C250.0704 (16)0.0733 (17)0.0985 (19)0.0165 (14)0.0335 (15)0.0126 (16)
C25A0.0564 (13)0.0593 (14)0.0728 (15)0.0020 (11)0.0152 (11)0.0223 (12)
C260.0588 (14)0.0823 (19)0.0951 (19)0.0004 (13)0.0096 (14)0.0338 (16)
C270.0648 (16)0.093 (2)0.0861 (19)0.0166 (15)0.0078 (13)0.0238 (17)
C280.0741 (16)0.0770 (17)0.0732 (16)0.0168 (14)0.0005 (12)0.0047 (13)
C28A0.0603 (13)0.0567 (13)0.0555 (12)0.0068 (11)0.0054 (10)0.0077 (11)
C290.0738 (15)0.0660 (15)0.0625 (14)0.0041 (13)0.0100 (12)0.0122 (12)
C2100.0570 (13)0.0623 (15)0.0635 (13)0.0041 (11)0.0111 (10)0.0076 (11)
C20A0.0569 (12)0.0446 (11)0.0461 (11)0.0002 (10)0.0107 (9)0.0034 (9)
C23B0.0579 (12)0.0415 (11)0.0499 (11)0.0004 (9)0.0141 (9)0.0104 (9)
C25B0.0557 (12)0.0476 (12)0.0526 (12)0.0012 (10)0.0115 (9)0.0142 (10)
C110.0969 (18)0.0789 (18)0.0503 (13)0.0105 (15)0.0062 (12)0.0079 (12)
C120.077 (3)0.065 (3)0.062 (2)0.011 (2)0.017 (2)0.000 (2)
C130.175 (13)0.073 (6)0.113 (6)0.030 (7)0.053 (6)0.014 (6)
C140.0969 (18)0.0789 (18)0.0503 (13)0.0105 (15)0.0062 (12)0.0079 (12)
C150.196 (14)0.093 (8)0.095 (6)0.012 (8)0.061 (7)0.028 (6)
C160.118 (10)0.066 (8)0.170 (12)0.022 (8)0.069 (9)0.016 (8)
C510.0540 (13)0.0631 (15)0.0888 (18)0.0051 (12)0.0090 (12)0.0000 (14)
O510.0718 (11)0.1071 (15)0.1238 (15)0.0365 (11)0.0019 (10)0.0166 (12)
O520.0664 (10)0.1052 (14)0.0885 (12)0.0267 (10)0.0129 (9)0.0138 (11)
C520.0686 (16)0.111 (2)0.0919 (19)0.0163 (16)0.0125 (14)0.0105 (17)
C530.129 (3)0.100 (2)0.138 (3)0.023 (2)0.051 (2)0.017 (2)
Geometric parameters (Å, º) top
N1—C7A1.375 (3)C28—C28A1.399 (3)
N1—C21.386 (3)C28—H280.9300
N1—C111.472 (3)C28A—C25B1.413 (3)
C2—N31.315 (3)C28A—C291.426 (3)
C2—C211.477 (3)C29—C2101.342 (3)
N3—C3A1.383 (2)C29—H290.9300
C3A—C41.385 (3)C210—C20A1.434 (3)
C3A—C7A1.402 (3)C210—H2100.9300
C4—C51.381 (3)C20A—C23B1.421 (3)
C4—H40.9300C23B—C25B1.424 (3)
C5—C61.404 (3)C11—C121.516 (4)
C5—C511.484 (3)C11—H11A0.9700
C6—C71.368 (3)C11—H11B0.9700
C6—H60.9300C12—C131.526 (10)
C7—C7A1.394 (3)C12—H12A0.9700
C7—H70.9300C12—H12B0.9700
C21—C221.392 (3)C13—H13A0.9600
C21—C20A1.408 (3)C13—H13B0.9600
C22—C231.372 (3)C13—H13C0.9600
C22—H220.9300C15—C161.529 (12)
C23—C23A1.388 (3)C15—H15A0.9700
C23—H230.9300C15—H15B0.9700
C23A—C23B1.421 (3)C16—H16A0.9600
C23A—C241.436 (3)C16—H16B0.9600
C24—C251.320 (3)C16—H16C0.9600
C24—H240.9300C51—O511.202 (3)
C25—C25A1.431 (3)C51—O521.324 (3)
C25—H250.9300O52—C521.459 (3)
C25A—C261.390 (3)C52—C531.474 (4)
C25A—C25B1.417 (3)C52—H52A0.9700
C26—C271.370 (4)C52—H52B0.9700
C26—H260.9300C53—H53A0.9600
C27—C281.369 (3)C53—H53B0.9600
C27—H270.9300C53—H53C0.9600
C7A—N1—C2105.76 (17)C210—C29—C28A122.2 (2)
C7A—N1—C11125.70 (18)C210—C29—H29118.9
C2—N1—C11128.37 (19)C28A—C29—H29118.9
N3—C2—N1113.17 (18)C29—C210—C20A121.5 (2)
N3—C2—C21124.54 (18)C29—C210—H210119.2
N1—C2—C21122.28 (18)C20A—C210—H210119.2
C2—N3—C3A104.99 (17)C21—C20A—C23B118.70 (18)
N3—C3A—C4129.65 (19)C21—C20A—C210123.67 (19)
N3—C3A—C7A109.96 (18)C23B—C20A—C210117.62 (18)
C4—C3A—C7A120.38 (19)C20A—C23B—C23A120.15 (18)
C5—C4—C3A118.5 (2)C20A—C23B—C25B120.52 (18)
C5—C4—H4120.7C23A—C23B—C25B119.32 (18)
C3A—C4—H4120.7C28A—C25B—C25A119.50 (19)
C4—C5—C6120.1 (2)C28A—C25B—C23B119.98 (18)
C4—C5—C51121.2 (2)C25A—C25B—C23B120.5 (2)
C6—C5—C51118.7 (2)N1—C11—C12115.1 (2)
C7—C6—C5122.6 (2)N1—C11—H11A108.5
C7—C6—H6118.7C12—C11—H11A108.5
C5—C6—H6118.7N1—C11—H11B108.5
C6—C7—C7A116.8 (2)C12—C11—H11B108.5
C6—C7—H7121.6H11A—C11—H11B107.5
C7A—C7—H7121.6C11—C12—C13111.4 (7)
N1—C7A—C7132.3 (2)C11—C12—H12A109.3
N1—C7A—C3A106.11 (17)C13—C12—H12A109.3
C7—C7A—C3A121.6 (2)C11—C12—H12B109.3
C22—C21—C20A119.75 (19)C13—C12—H12B109.3
C22—C21—C2119.41 (19)H12A—C12—H12B108.0
C20A—C21—C2120.84 (19)C12—C13—H13A109.5
C23—C22—C21121.5 (2)C12—C13—H13B109.5
C23—C22—H22119.3H13A—C13—H13B109.5
C21—C22—H22119.3C12—C13—H13C109.5
C22—C23—C23A120.9 (2)H13A—C13—H13C109.5
C22—C23—H23119.5H13B—C13—H13C109.5
C23A—C23—H23119.5C16—C15—H15A109.4
C23—C23A—C23B119.0 (2)C16—C15—H15B109.4
C23—C23A—C24122.7 (2)H15A—C15—H15B108.0
C23B—C23A—C24118.3 (2)C15—C16—H16A109.5
C25—C24—C23A121.8 (2)C15—C16—H16B109.5
C25—C24—H24119.1H16A—C16—H16B109.5
C23A—C24—H24119.1C15—C16—H16C109.5
C24—C25—C25A122.3 (2)H16A—C16—H16C109.5
C24—C25—H25118.9H16B—C16—H16C109.5
C25A—C25—H25118.9O51—C51—O52122.4 (2)
C26—C25A—C25B119.1 (2)O51—C51—C5124.2 (2)
C26—C25A—C25123.1 (2)O52—C51—C5113.46 (19)
C25B—C25A—C25117.8 (2)C51—O52—C52117.52 (19)
C27—C26—C25A120.7 (2)O52—C52—C53111.6 (2)
C27—C26—H26119.7O52—C52—H52A109.3
C25A—C26—H26119.7C53—C52—H52A109.3
C28—C27—C26121.2 (2)O52—C52—H52B109.3
C28—C27—H27119.4C53—C52—H52B109.3
C26—C27—H27119.4H52A—C52—H52B108.0
C27—C28—C28A120.5 (2)C52—C53—H53A109.5
C27—C28—H28119.7C52—C53—H53B109.5
C28A—C28—H28119.7H53A—C53—H53B109.5
C28—C28A—C25B119.0 (2)C52—C53—H53C109.5
C28—C28A—C29122.9 (2)H53A—C53—H53C109.5
C25B—C28A—C29118.15 (19)H53B—C53—H53C109.5
C7A—N1—C2—N30.8 (2)C26—C27—C28—C28A0.7 (4)
C11—N1—C2—N3176.1 (2)C27—C28—C28A—C25B0.7 (3)
C7A—N1—C2—C21179.88 (19)C27—C28—C28A—C29178.9 (2)
C11—N1—C2—C214.7 (3)C28—C28A—C29—C210179.2 (2)
N1—C2—N3—C3A0.3 (2)C25B—C28A—C29—C2100.4 (3)
C21—C2—N3—C3A179.40 (19)C28A—C29—C210—C20A0.3 (4)
C2—N3—C3A—C4178.9 (2)C22—C21—C20A—C23B1.4 (3)
C2—N3—C3A—C7A0.3 (2)C2—C21—C20A—C23B179.00 (17)
N3—C3A—C4—C5177.3 (2)C22—C21—C20A—C210179.4 (2)
C7A—C3A—C4—C51.2 (3)C2—C21—C20A—C2100.2 (3)
C3A—C4—C5—C61.3 (3)C29—C210—C20A—C21179.6 (2)
C3A—C4—C5—C51177.2 (2)C29—C210—C20A—C23B0.4 (3)
C4—C5—C6—C70.6 (4)C21—C20A—C23B—C23A0.5 (3)
C51—C5—C6—C7178.0 (2)C210—C20A—C23B—C23A179.80 (18)
C5—C6—C7—C7A0.4 (4)C21—C20A—C23B—C25B179.80 (18)
C2—N1—C7A—C7178.2 (2)C210—C20A—C23B—C25B0.9 (3)
C11—N1—C7A—C72.7 (4)C23—C23A—C23B—C20A0.6 (3)
C2—N1—C7A—C3A0.9 (2)C24—C23A—C23B—C20A179.60 (18)
C11—N1—C7A—C3A176.41 (19)C23—C23A—C23B—C25B178.71 (19)
C6—C7—C7A—N1178.5 (2)C24—C23A—C23B—C25B0.3 (3)
C6—C7—C7A—C3A0.5 (3)C28—C28A—C25B—C25A0.2 (3)
N3—C3A—C7A—N10.7 (2)C29—C28A—C25B—C25A179.43 (18)
C4—C3A—C7A—N1179.50 (19)C28—C28A—C25B—C23B179.73 (19)
N3—C3A—C7A—C7178.5 (2)C29—C28A—C25B—C23B0.1 (3)
C4—C3A—C7A—C70.3 (3)C26—C25A—C25B—C28A0.3 (3)
N3—C2—C21—C22120.0 (2)C25—C25A—C25B—C28A179.22 (19)
N1—C2—C21—C2259.0 (3)C26—C25A—C25B—C23B179.24 (19)
N3—C2—C21—C20A59.6 (3)C25—C25A—C25B—C23B1.2 (3)
N1—C2—C21—C20A121.4 (2)C20A—C23B—C25B—C28A0.8 (3)
C20A—C21—C22—C231.1 (3)C23A—C23B—C25B—C28A179.91 (18)
C2—C21—C22—C23179.3 (2)C20A—C23B—C25B—C25A178.75 (17)
C21—C22—C23—C23A0.0 (3)C23A—C23B—C25B—C25A0.5 (3)
C22—C23—C23A—C23B0.9 (3)C7A—N1—C11—C12112.6 (3)
C22—C23—C23A—C24179.9 (2)C2—N1—C11—C1261.9 (4)
C23—C23A—C24—C25178.5 (2)N1—C11—C12—C1359.1 (9)
C23B—C23A—C24—C250.5 (3)C4—C5—C51—O51173.1 (2)
C23A—C24—C25—C25A0.2 (4)C6—C5—C51—O515.5 (4)
C24—C25—C25A—C26179.4 (2)C4—C5—C51—O525.7 (3)
C24—C25—C25A—C25B1.1 (3)C6—C5—C51—O52175.8 (2)
C25B—C25A—C26—C270.3 (3)O51—C51—O52—C521.8 (4)
C25—C25A—C26—C27179.2 (2)C5—C51—O52—C52177.0 (2)
C25A—C26—C27—C280.1 (4)C51—O52—C52—C5383.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O51i0.972.513.253 (3)133
C22—H22···O51i0.932.373.290 (3)168
Symmetry code: (i) x+1, y+1/2, z+1/2.
Ethyl 1-methyl-2-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1H-benzimidazole-5-carboxylate (III) top
Crystal data top
C21H19ClN4O2F(000) = 824
Mr = 394.85Dx = 1.334 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1095 (4) ÅCell parameters from 4250 reflections
b = 9.5126 (4) Åθ = 2.8–27.8°
c = 18.6747 (8) ŵ = 0.22 mm1
β = 95.079 (4)°T = 296 K
V = 1965.80 (14) Å3Block, yellow
Z = 40.48 × 0.40 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4250 independent reflections
Radiation source: Enhance (Mo) X-ray Source3323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.8°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.808, Tmax = 0.916k = 1210
8067 measured reflectionsl = 2024
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.5825P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4250 reflectionsΔρmax = 0.32 e Å3
294 parametersΔρmin = 0.29 e Å3
28 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.68249 (11)0.22101 (15)0.52839 (7)0.0373 (3)
C20.67704 (14)0.25652 (17)0.59966 (8)0.0369 (3)
N30.56674 (12)0.25655 (16)0.61981 (7)0.0423 (3)
C3A0.49392 (14)0.22047 (17)0.55799 (8)0.0367 (3)
C40.36951 (14)0.20581 (18)0.54660 (9)0.0405 (4)
H40.32050.22040.58380.049*
C50.31969 (14)0.16872 (18)0.47826 (9)0.0391 (4)
C60.39284 (15)0.14650 (19)0.42181 (9)0.0429 (4)
H60.35720.12140.37670.051*
C70.51670 (15)0.1612 (2)0.43215 (8)0.0431 (4)
H70.56560.14670.39490.052*
C7A0.56520 (13)0.19862 (17)0.50056 (8)0.0358 (3)
C110.78783 (15)0.1939 (2)0.48958 (9)0.0458 (4)
H11A0.80210.27310.45960.069*
H11B0.77390.11170.46020.069*
H11C0.85710.17900.52330.069*
N210.95909 (11)0.39053 (14)0.68756 (7)0.0368 (3)
N220.92990 (12)0.30048 (15)0.74036 (7)0.0404 (3)
C230.82543 (14)0.24234 (18)0.71555 (8)0.0388 (4)
C240.78630 (14)0.29305 (17)0.64600 (8)0.0362 (3)
C250.87371 (14)0.38756 (17)0.63130 (8)0.0365 (3)
Cl250.87732 (4)0.50148 (5)0.56105 (2)0.05466 (15)
C2111.07114 (14)0.46565 (17)0.69408 (8)0.0380 (4)
C2121.15160 (15)0.44554 (19)0.64275 (9)0.0444 (4)
H2121.13360.38310.60500.053*
C2131.25950 (17)0.5195 (2)0.64814 (11)0.0557 (5)
H2131.31440.50670.61390.067*
C2141.28538 (19)0.6115 (3)0.70383 (12)0.0660 (6)
H2141.35750.66160.70720.079*
C2151.2046 (2)0.6295 (3)0.75463 (12)0.0740 (7)
H2151.22280.69180.79240.089*
C2161.09661 (18)0.5567 (2)0.75048 (10)0.0572 (5)
H2161.04230.56910.78510.069*
C2310.76612 (18)0.1354 (2)0.75887 (10)0.0566 (5)
H31A0.73970.05770.72860.085*
H31C0.69780.17690.77880.085*
H31B0.82270.10260.79710.085*
C510.18619 (16)0.1561 (2)0.46711 (10)0.0466 (4)
O510.1166 (12)0.1806 (17)0.5157 (6)0.0532 (18)0.645 (7)
O520.1484 (4)0.1283 (5)0.4013 (3)0.0534 (11)0.645 (7)
C520.0170 (3)0.1216 (6)0.3863 (2)0.0619 (12)0.645 (7)
H52A0.01730.06170.42130.074*0.645 (7)
H52B0.01750.21480.38950.074*0.645 (7)
C530.0108 (4)0.0652 (7)0.3143 (3)0.101 (2)0.645 (7)
H53A0.02940.12010.28050.151*0.645 (7)
H53B0.09650.06870.30210.151*0.645 (7)
H53C0.01630.03050.31300.151*0.645 (7)
O610.119 (2)0.188 (3)0.5021 (11)0.054 (3)0.355 (7)
O620.1531 (6)0.0711 (9)0.4014 (6)0.0539 (19)0.355 (7)
C620.0248 (6)0.0360 (9)0.3824 (4)0.0618 (19)0.355 (7)
H62A0.01770.05260.35670.074*0.355 (7)
H62B0.01780.02830.42540.074*0.355 (7)
C630.0251 (7)0.1499 (9)0.3370 (6)0.083 (3)0.355 (7)
H63A0.10710.12820.32000.125*0.355 (7)
H63B0.02210.16130.29680.125*0.355 (7)
H63C0.02330.23550.36440.125*0.355 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0295 (6)0.0475 (8)0.0354 (7)0.0004 (6)0.0057 (5)0.0019 (6)
C20.0349 (8)0.0412 (9)0.0347 (8)0.0008 (7)0.0040 (6)0.0013 (6)
N30.0351 (7)0.0575 (9)0.0348 (7)0.0004 (6)0.0054 (5)0.0028 (6)
C3A0.0343 (8)0.0428 (9)0.0336 (8)0.0017 (7)0.0058 (6)0.0001 (6)
C40.0337 (8)0.0505 (10)0.0384 (8)0.0030 (7)0.0093 (6)0.0006 (7)
C50.0313 (8)0.0450 (9)0.0409 (8)0.0020 (7)0.0033 (6)0.0042 (7)
C60.0388 (8)0.0543 (10)0.0353 (8)0.0015 (8)0.0016 (7)0.0024 (7)
C70.0377 (8)0.0589 (11)0.0335 (8)0.0007 (8)0.0080 (6)0.0040 (7)
C7A0.0305 (8)0.0412 (9)0.0361 (8)0.0011 (6)0.0054 (6)0.0013 (6)
C110.0346 (8)0.0577 (11)0.0466 (9)0.0007 (8)0.0123 (7)0.0047 (8)
N210.0356 (7)0.0413 (7)0.0330 (6)0.0028 (6)0.0005 (5)0.0028 (5)
N220.0424 (7)0.0464 (8)0.0324 (7)0.0024 (6)0.0022 (5)0.0051 (6)
C230.0376 (8)0.0444 (9)0.0349 (8)0.0002 (7)0.0061 (6)0.0015 (7)
C240.0329 (8)0.0412 (9)0.0345 (8)0.0010 (6)0.0034 (6)0.0001 (6)
C250.0373 (8)0.0388 (8)0.0331 (8)0.0012 (7)0.0009 (6)0.0028 (6)
Cl250.0594 (3)0.0554 (3)0.0473 (3)0.0094 (2)0.0065 (2)0.0195 (2)
C2110.0363 (8)0.0398 (9)0.0372 (8)0.0022 (7)0.0001 (6)0.0010 (6)
C2120.0433 (9)0.0458 (9)0.0443 (9)0.0010 (8)0.0048 (7)0.0041 (7)
C2130.0444 (10)0.0655 (13)0.0582 (11)0.0057 (9)0.0104 (8)0.0054 (10)
C2140.0524 (12)0.0774 (15)0.0665 (13)0.0264 (11)0.0042 (10)0.0033 (11)
C2150.0748 (15)0.0873 (17)0.0589 (12)0.0327 (13)0.0006 (11)0.0247 (12)
C2160.0562 (11)0.0709 (13)0.0447 (10)0.0107 (10)0.0064 (8)0.0150 (9)
C2310.0574 (11)0.0665 (13)0.0461 (10)0.0141 (10)0.0060 (8)0.0122 (9)
C510.0349 (9)0.0557 (11)0.0489 (10)0.0006 (8)0.0014 (8)0.0053 (8)
O510.035 (2)0.077 (3)0.049 (3)0.0055 (19)0.013 (2)0.001 (3)
O520.0304 (12)0.073 (3)0.0555 (15)0.0031 (15)0.0027 (10)0.016 (2)
C520.0280 (14)0.081 (3)0.074 (2)0.0052 (18)0.0104 (14)0.022 (2)
C530.056 (2)0.126 (5)0.113 (4)0.014 (3)0.029 (2)0.062 (3)
O610.038 (4)0.071 (5)0.057 (7)0.011 (4)0.019 (4)0.004 (5)
O620.036 (2)0.076 (5)0.049 (3)0.011 (3)0.0015 (19)0.007 (4)
C620.063 (4)0.065 (4)0.060 (4)0.012 (3)0.014 (3)0.010 (3)
C630.072 (5)0.080 (6)0.096 (7)0.005 (4)0.000 (5)0.003 (5)
Geometric parameters (Å, º) top
N1—C7A1.3761 (19)C212—H2120.9300
N1—C21.380 (2)C213—C2141.370 (3)
N1—C111.453 (2)C213—H2130.9300
C2—N31.313 (2)C214—C2151.373 (3)
C2—C241.469 (2)C214—H2140.9300
N3—C3A1.393 (2)C215—C2161.381 (3)
C3A—C41.387 (2)C215—H2150.9300
C3A—C7A1.404 (2)C216—H2160.9300
C4—C51.391 (2)C231—H31A0.9600
C4—H40.9300C231—H31C0.9600
C5—C61.403 (2)C231—H31B0.9600
C5—C511.484 (2)C51—O611.080 (19)
C6—C71.380 (2)C51—O511.265 (10)
C6—H60.9300C51—O521.290 (6)
C7—C7A1.388 (2)C51—O621.488 (10)
C7—H70.9300O52—C521.463 (4)
C11—H11A0.9600C52—C531.455 (5)
C11—H11B0.9600C52—H52A0.9700
C11—H11C0.9600C52—H52B0.9700
N21—C251.3521 (19)C53—H53A0.9600
N21—N221.3666 (18)C53—H53B0.9600
N21—C2111.431 (2)C53—H53C0.9600
N22—C231.331 (2)O62—C621.477 (7)
C23—C241.417 (2)C62—C631.455 (7)
C23—C2311.489 (2)C62—H62A0.9700
C24—C251.369 (2)C62—H62B0.9700
C25—Cl251.7047 (15)C63—H63A0.9600
C211—C2161.374 (2)C63—H63B0.9600
C211—C2121.381 (2)C63—H63C0.9600
C212—C2131.386 (3)
C7A—N1—C2106.34 (12)C214—C213—C212120.10 (18)
C7A—N1—C11124.17 (13)C214—C213—H213120.0
C2—N1—C11129.10 (13)C212—C213—H213120.0
N3—C2—N1113.46 (14)C213—C214—C215119.88 (19)
N3—C2—C24125.07 (14)C213—C214—H214120.1
N1—C2—C24121.45 (14)C215—C214—H214120.1
C2—N3—C3A104.52 (13)C214—C215—C216121.06 (19)
C4—C3A—N3130.53 (14)C214—C215—H215119.5
C4—C3A—C7A119.33 (14)C216—C215—H215119.5
N3—C3A—C7A110.14 (13)C211—C216—C215118.57 (18)
C3A—C4—C5118.46 (14)C211—C216—H216120.7
C3A—C4—H4120.8C215—C216—H216120.7
C5—C4—H4120.8C23—C231—H31A109.5
C4—C5—C6121.19 (14)C23—C231—H31C109.5
C4—C5—C51117.43 (15)H31A—C231—H31C109.5
C6—C5—C51121.37 (15)C23—C231—H31B109.5
C7—C6—C5121.10 (15)H31A—C231—H31B109.5
C7—C6—H6119.5H31C—C231—H31B109.5
C5—C6—H6119.5O51—C51—O52123.5 (6)
C6—C7—C7A117.12 (14)O61—C51—C5129.0 (13)
C6—C7—H7121.4O51—C51—C5123.5 (6)
C7A—C7—H7121.4O52—C51—C5112.8 (3)
N1—C7A—C7131.66 (14)O61—C51—O62121.3 (13)
N1—C7A—C3A105.54 (13)C5—C51—O62109.3 (3)
C7—C7A—C3A122.80 (14)C51—O52—C52115.3 (4)
N1—C11—H11A109.5C53—C52—O52108.7 (4)
N1—C11—H11B109.5C53—C52—H52A110.0
H11A—C11—H11B109.5O52—C52—H52A110.0
N1—C11—H11C109.5C53—C52—H52B110.0
H11A—C11—H11C109.5O52—C52—H52B110.0
H11B—C11—H11C109.5H52A—C52—H52B108.3
C25—N21—N22110.65 (12)C52—C53—H53A109.5
C25—N21—C211128.44 (13)C52—C53—H53B109.5
N22—N21—C211120.77 (12)H53A—C53—H53B109.5
C23—N22—N21105.33 (12)C52—C53—H53C109.5
N22—C23—C24111.40 (14)H53A—C53—H53C109.5
N22—C23—C231120.57 (14)H53B—C53—H53C109.5
C24—C23—C231128.01 (15)C62—O62—C51119.0 (7)
C25—C24—C23104.00 (13)C63—C62—O62106.4 (6)
C25—C24—C2126.95 (14)C63—C62—H62A110.5
C23—C24—C2129.04 (15)O62—C62—H62A110.5
N21—C25—C24108.61 (13)C63—C62—H62B110.5
N21—C25—Cl25121.47 (12)O62—C62—H62B110.5
C24—C25—Cl25129.59 (12)H62A—C62—H62B108.6
C216—C211—C212121.17 (16)C62—C63—H63A109.5
C216—C211—N21119.91 (15)C62—C63—H63B109.5
C212—C211—N21118.91 (14)H63A—C63—H63B109.5
C211—C212—C213119.22 (17)C62—C63—H63C109.5
C211—C212—H212120.4H63A—C63—H63C109.5
C213—C212—H212120.4H63B—C63—H63C109.5
C7A—N1—C2—N30.98 (19)C211—N21—C25—C24175.07 (15)
C11—N1—C2—N3171.98 (16)N22—N21—C25—Cl25173.36 (11)
C7A—N1—C2—C24177.73 (15)C211—N21—C25—Cl2510.9 (2)
C11—N1—C2—C249.3 (3)C23—C24—C25—N210.95 (18)
N1—C2—N3—C3A0.72 (19)C2—C24—C25—N21179.91 (15)
C24—C2—N3—C3A177.93 (16)C23—C24—C25—Cl25172.42 (13)
C2—N3—C3A—C4179.16 (18)C2—C24—C25—Cl256.7 (3)
C2—N3—C3A—C7A0.20 (18)C25—N21—C211—C216124.20 (19)
N3—C3A—C4—C5179.75 (17)N22—N21—C211—C21660.5 (2)
C7A—C3A—C4—C50.4 (2)C25—N21—C211—C21255.3 (2)
C3A—C4—C5—C60.0 (3)N22—N21—C211—C212120.02 (17)
C3A—C4—C5—C51178.95 (16)C216—C211—C212—C2130.4 (3)
C4—C5—C6—C70.2 (3)N21—C211—C212—C213179.05 (16)
C51—C5—C6—C7178.64 (17)C211—C212—C213—C2140.1 (3)
C5—C6—C7—C7A0.1 (3)C212—C213—C214—C2150.5 (3)
C2—N1—C7A—C7179.74 (18)C213—C214—C215—C2160.3 (4)
C11—N1—C7A—C76.9 (3)C212—C211—C216—C2150.6 (3)
C2—N1—C7A—C3A0.77 (17)N21—C211—C216—C215178.90 (19)
C11—N1—C7A—C3A172.62 (15)C214—C215—C216—C2110.2 (4)
C6—C7—C7A—N1179.79 (17)C4—C5—C51—O6111 (2)
C6—C7—C7A—C3A0.4 (3)C6—C5—C51—O61167 (2)
C4—C3A—C7A—N1179.81 (15)C4—C5—C51—O511.8 (10)
N3—C3A—C7A—N10.38 (18)C6—C5—C51—O51177.1 (9)
C4—C3A—C7A—C70.6 (3)C4—C5—C51—O52176.7 (3)
N3—C3A—C7A—C7179.92 (16)C6—C5—C51—O522.2 (3)
C25—N21—N22—C230.02 (18)C4—C5—C51—O62160.8 (4)
C211—N21—N22—C23176.07 (14)C6—C5—C51—O6220.3 (5)
N21—N22—C23—C240.60 (18)O61—C51—O52—C529.8 (19)
N21—N22—C23—C231179.07 (16)O51—C51—O52—C522.1 (11)
N22—C23—C24—C250.97 (19)C5—C51—O52—C52177.1 (3)
C231—C23—C24—C25179.30 (18)O62—C51—O52—C5298.2 (16)
N22—C23—C24—C2179.91 (16)C51—O52—C52—C53169.9 (6)
C231—C23—C24—C21.6 (3)O61—C51—O62—C623 (2)
N3—C2—C24—C25128.63 (19)O51—C51—O62—C6213.4 (13)
N1—C2—C24—C2549.9 (2)O52—C51—O62—C6280.8 (13)
N3—C2—C24—C2350.3 (3)C5—C51—O62—C62175.7 (5)
N1—C2—C24—C23131.15 (18)C51—O62—C62—C6389.5 (11)
N22—N21—C25—C240.65 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C212—H212···O51i0.932.543.460 (14)168
C212—H212···O61i0.932.673.59 (2)170
Symmetry code: (i) x+1, y, z.
Hydrogen bonds and short intermolecular contacts (Å, °) top
Cg1 and Cg2 represent the centroids of the rings (C31–C36) and (C21–C26), respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)C23—H23···Cg1i0.932.773.412 (9)127
C26—H26···Cg1ii0.932.873.508 (9)127
C35—H35···Cg2iii0.932.873.555 (9)131
(II)C11—H11A···O51iv0.972.513.253 (3)133
C22—H22···O51iv0.932.373.290 (3)168
(III)C212—H212···O51v0.932.543.460 (14)168
C212—H212···O61v0.932.673.59 (2)170
Symmetry codes: (i) x, 1 + y, z; (ii) x, -1 + y, z; (iii) 0.5 - x, 5/2 - y, 1 - z; (iv) 1 - x, 1/2 + y, 1/2 - z; (v) 1 + x, y, z.
 

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBektaş, H., Sökmen, H., Aydın, S., Menteşe, E., Bektaş, A. & Dilekçi, G. (2020). J. Heterocycl. Chem. 57, 2234–2242.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoiani, M. & González, M. (2005). Mini Rev. Med. Chem. 5, 409–424.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCortés, E., Abonía, R., Cobo, J. & Glidewell, C. (2011). Acta Cryst. C67, o64–o66.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCortés, E., Abonía, R., Cobo, J. & Glidewell, C. (2014). Acta Cryst. C70, 617–621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M.-W., Hu, Y.-G. & Liu, M.-G. (2007). Acta Cryst. E63, o3184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472.  CrossRef CAS Web of Science Google Scholar
First citationManju, N., Kalluraya, B., Asma & Kumar, M. S. (2018). Indian J. Heterocycl. Chem. 28, 415–422.  Google Scholar
First citationNaveen, S., Kumar, V., Poojary, B., Vishwanatha, P., Lokanath, N. K. & Abdoh, M. M. M. (2016). IUCrData, 1, x161744.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationYoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, R., Li, B., Yi, W., Bu, X. & Ma, L. (2013). Bioorg. Med. Chem. Lett. 23, 3759–3763.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds