research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6-amino-8-(2,6-di­chloro­phen­yl)-1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 March 2021; accepted 2 April 2021; online 9 April 2021)

In the mol­ecular structure of the title compound, C16H13Cl2N5, the 1,4-di­hydro­pyridine ring of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system adopts a screw-boat conformation, while the 1,3-diazinane ring is puckered. In the crystal, inter­molecular N—H⋯N and C—H⋯N hydrogen bonds form mol­ecular sheets parallel to the (110) and ([\overline{1}]10) planes, crossing each other. Adjacent mol­ecules are further linked by C—H⋯π inter­actions, which form zigzag chains propagating parallel to [100]. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from N⋯H/H⋯N (28.4%), H⋯H (24.5%), C⋯H/H⋯C (21.4%) and Cl⋯H/H⋯Cl (16.1%) contacts.

1. Chemical context

Chemical transformations comprising carbon–carbon and carbon–heteroatom bond-formation reactions are fundamental tools in modern synthetic organic chemistry (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]). They are also used for the synthesis of valuable building blocks in medicinal chemistry, coordination chemistry and material science (Mahmoudi et al., 2017[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192-205.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]).

Pyrido[l,2-a]pyrimidines constitute a valuable class of heterocycles because many of them possess broad biological activities, such as mono­amine oxidase inhibition, anti­hypertensive, insecticide, serotonergic antagonist, analgesic, anti-inflammatory, cytoprotective, bronchodilatory, phospho­diesterase-inhibitory, anti­thrombotic, anti­allergic, anti­atherosclerotic and hypoglycaemic activities, as well as anti­tumor effects (Hermecz & Mészáros, 1988[Hermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203-230.]; Ukrainets et al., 2018[Ukrainets, I. V., Bereznyakova, N. L., Sim, G. & Davidenko, A. A. (2018). Pharm. Chem. J. 52, 601-605.]). The pyrido[1,2-a]pyrimidine motif is incorporated into the structure of some marketed drugs, including the anti­asthmatic agent pemirolast, the tranquilizer pirenperone, the anti­allergic agent ramastine, and the psychotropic agents risperidone and paliperidone (Awouters et al., 1986[Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95-102.]; Blaton et al., 1995[Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533-535.]; Yahata et al., 2006[Yahata, H., Saito, M., Sendo, T., Itoh, Y., Uchida, M., Hirakawa, T., Nakano, H. & Oishi, R. (2006). Int. J. Cancer, 118, 2636-2638.]; Riva et al., 2011[Riva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). Eur. J. Org. Chem. pp. 2319-2325.]). Over recent decades, a number of synthetic protocols for the synthesis of pyrido[1,2-a]pyrimidines have been reported, and these approaches have focused on two-component reactions (Wu et al., 2003[Wu, Y.-J., He, H., Hu, S., Huang, Y., Scola, P. M., Grant-Young, K., Bertekap, R. L., Wu, D., Gao, Q., Li, Y., Klakouski, C. & Westphal, R. S. (2003). J. Med. Chem. 46, 4834-4837.]; Pryadeina et al., 2005[Pryadeina, M. V., Burgart, Y. V., Kodess, M. I. & Saloutin, V. I. (2005). Russ. Chem. Bull. 54, 2841-2845.]). Multi-component reactions have developed as powerful tools for the design of complex mol­ecules, natural products and drug-like mol­ecules in a minimum number of synthetic steps (Abdelhamid et al., 2014[Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474-478.]; McLaughlin et al., 2014[McLaughlin, E. C., Norman, M. W., Ko Ko, T. & Stolt, I. (2014). Tetrahedron Lett. 55, 2609-2611.]; Janssen et al., 2018[Janssen, G. V., van den Heuvel, J. A. C., Megens, R. P., Benningshof, J. C. J. & Ovaa, H. (2018). Bioorg. Med. Chem. 26, 41-49.]).

[Scheme 1]

As part of our studies on the chemistry of bridgehead nitro­gen heterocycles, as well as taking into account our ongoing structural studies (Mamedov et al., 2013[Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234-239.]; Naghiyev et al., 2020a[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720-723.],b[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235.],c[Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020c). Acta Cryst. E76, 1365-1368.]; Naghiyev et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), we report here the crystal structure and Hirshfeld surface analysis of the title compound, C16H13Cl2N5, obtained by an efficient three-component synthetic protocol.

2. Structural commentary

In the mol­ecular structure of the title compound, (Fig. 1[link]), the 1,4-di­hydro­pyridine ring (N5/C6–C9/C9A) of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system (N1/C2–C4/N5/C6–C9/C9A) adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.520 (3) Å, θ = 120.8 (3)° and φ = 270.4 (3)°, while the 1,3-diazinane ring (N1/C2–C4/N5/C9A) is puckered [QT = 0.160 (3) Å, θ = 75.2 (11)° and φ = 169.4 (10)°]. The di­chloro­phenyl ring (C11–C16) makes a dihedral angle of 80.82 (12)° with the mean plane of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inter­molecular N—H⋯N hydrogen bonds between the amine functions as donor groups and the nitrile N atoms as acceptor groups and inter­molecular C—H⋯N hydrogen bonds lead to the formation of sheets extending parallel to (110) and ([\overline{1}]10) (Table 1[link]; Figs. 2[link], 3[link] and 4[link]). These hydrogen-bonded sheets cross each other (Fig. 5[link]). C—H⋯π inter­actions (Table 1[link]), which form zigzag chains propagating parallel to [100] (Fig. 6[link]), are also involved in the packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 di­chloro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N10i 0.85 (3) 2.43 (3) 3.152 (3) 143 (3)
N6—H6A⋯N17ii 0.85 (4) 2.17 (3) 2.927 (3) 149 (3)
N6—H6B⋯N10iii 0.85 (4) 2.16 (4) 2.953 (3) 156 (3)
C4—H4B⋯N17iv 0.99 2.59 3.440 (4) 144
C2—H2ACg3iv 0.99 2.87 3.653 (3) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view showing details of the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds in the unit cell of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (a) x, 1 − y, −[{1\over 2}] + z; (b) x, 1 − y, [{1\over 2}] + z; (c) −[{1\over 2}] + x, −[{1\over 2}] + y, z; (d) [{1\over 2}] + x, [{1\over 2}] + y, z; (e) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z; (f) −[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z; (g) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z].
[Figure 3]
Figure 3
A view along [100] showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 4]
Figure 4
A view along [010] showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 5]
Figure 5
A view along [001] showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 6]
Figure 6
A view along [010] showing the C—H⋯π inter­actions in the title compound.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). Fig. 7[link](a) and Fig. 7[link](b) show the front and back sides of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over dnorm in the range −0.4776 to +1.4517 a.u., using a `high standard' surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals separations. The red spots highlight the inter­atomic contacts, including the N—H⋯N and C—H⋯N hydrogen bonds.

[Figure 7]
Figure 7
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4776 to +1.4517 a.u.

The overall two-dimensional fingerprint plot for the title compound and those delineated into N⋯H/H⋯N, H⋯H, C⋯H/H⋯C and Cl⋯H/H⋯Cl contacts are illustrated in Fig. 8[link]. Numerical details of the various contacts are given in Table 2[link] and their percentage contributions to the Hirshfeld surfaces are collated in Table 3[link]. N⋯H/H⋯N (28.4%), H⋯H (24.5%), C⋯H/H⋯C (21.4%) and Cl⋯H/H⋯Cl (16.1%) contribute significantly to the packing while Cl⋯C/C⋯Cl, Cl⋯Cl, Cl⋯N/N⋯Cl, C⋯N/N⋯C, C⋯C and N⋯N contacts have a negligible directional impact.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H6B⋯N10 2.16 x, 1 − y, [{1\over 2}] + z
H1⋯N10 2.43 [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z
H4B⋯N17 2.59 [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z
H6A⋯N17 2.16 [{1\over 2}] + x, −[{1\over 2}] + y, z
N10⋯H15 2.81 −1 + x, y, z
H3B⋯H13 2.57 x, y, 1 + z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
N⋯H/H⋯N 28.4
H⋯H 24.5
C⋯H/H⋯C 21.4
Cl⋯H/H⋯Cl 16.1
Cl⋯C/C⋯Cl 3.3
Cl⋯Cl 2.5
Cl⋯N/N⋯Cl 2.3
C⋯N/N⋯C 0.8
C⋯C 0.6
N⋯N 0.2
[Figure 8]
Figure 8
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) N⋯H/H⋯N, (c) H⋯H, (d) C⋯H/H⋯C and (f) Cl⋯H/H⋯Cl inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

The large number of N⋯H/H⋯N, H⋯H, C⋯H/H⋯C and Cl⋯H/H⋯Cl inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

Four related compounds, which have the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, were found in a search of the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): 9-(4-nitro­benzyl­idene)-8,9-di­hydro­pyrido[2,3-d]pyrrolo­[1,2-a]pyrimidin-5(7H)-one (refcode VAMBET; Khodjaniyazov & Ashurov, 2016[Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452-455.]), 11-(amino­methyl­idene)-8,9,10,11-tetra­hydro­pyrido[2′,3′:4,5]pyrimido[1,2-a]azepin-5(7H)-one (HECLUZ; Khodjaniyazov et al., 2017[Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497-1500.]), 7′-amino-1′H-spiro[cyclo­heptane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (LEGLIU; Chen et al., 2012[Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.]) and 11-(2-oxopyrrolidin-1-ylmeth­yl)-1,2,3,4,5,6,11,11a-octa­hydro­pyrido[2,1-b]quinazolin-6-one dihydrate (KUTPEV; Samarov et al., 2010[Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890.]).

In the crystal of VAMBET, mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (101). In the mol­ecule of HECLUZ, the seven-membered penta­methyl­ene ring adopts a twist-boat conformation. In the crystal, hydrogen bonds with 16-membered ring and three chain motifs are generated by N—H⋯N and N—H⋯O contacts. The amino group is located close to the nitro­gen atoms, forming hydrogen bonds with R21(4) and R22(12) graph-set motifs. This amino group also forms a hydrogen bond with the C=O oxygen atom of a mol­ecule translated parallel to [100], which links the mol­ecules into R44(16) rings. Hydrogen-bonded chains are formed along [100] by alternating R22(12) and R44(16) rings. These chains are stabilized by inter­molecular ππ stacking inter­actions observed between the pyridine and pyrimidine rings. In LEGLIU, the mol­ecular structure is built up from two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds between the two N—H groups and the ketone O atoms of the neighbouring mol­ecules. In KUTPEV, water mol­ecules are mutually O—H⋯O hydrogen bonded and form infinite chains propagating parallel to [010]. Neighbouring chains are linked by the quinazoline mol­ecules by means of O—H⋯O=C hydrogen bonds, forming a two-dimensional network.

6. Synthesis and crystallization

To a dissolved mixture of 2-(2,6-di­chloro­benzyl­idene)malono­nitrile (1.14 g; 5.1 mmol) and malono­nitrile (0.34 g; 5.2 mmol) in methanol (40 mL), 1,3-di­amino­propane (0.38 g; 5.2 mmol) was added and was stirred at room temperature for 10 min. Then 25 mL of methanol were removed from the reaction mixture that was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol (yield 78%; m.p. 541–542 K).

1H NMR (300 MHz, DMSO-d6): 1.89 (m, 2H, CH2); 3.13 (m, 2H, CH2); 3.67 (m, 2H, CH2); 5.31 (s, 1H, CH-Ar); 6.14 (s, 2H, NH2); 6.78 (s, 1H, NH); 7.25 (t, 1H, Ar-H, 3JH–H = 7,9); 7.42 (d, 2H, 2Ar-H, 3JH–H = 7,8). 13C NMR (75 MHz, DMSO-d6): 22.30 (CH2), 36.32 (Ar-CH), 38.62 (CH2), 42.92 (CH2), 51.70 (=Cquar), 55.06 (=Cquar), 121.61 (CN), 122.04 (CN), 129.56 (3CHarom), 138.25 (3Car), 152.11 (=Cquar), 154.17 (=Cquar).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). All N-bound H atoms were located in a difference map [N1—H1 = 0.85 (3) Å, N6—H6A = 0.85 (4) Å and N6—H6B = 0.85 (4) Å] and they were refined with the constraint Uiso(H) = 1.2Ueq(N).

Table 4
Experimental details

Crystal data
Chemical formula C16H13Cl2N5
Mr 346.21
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 8.6598 (2), 16.0275 (5), 11.6590 (3)
β (°) 90.7364 (9)
V3) 1618.08 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.30 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.880, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 21346, 5861, 4528
Rint 0.064
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.090, 1.03
No. of reflections 5861
No. of parameters 217
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.32
Absolute structure Flack x determined using 1774 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.27 (3)
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

6-Amino-8-(2,6-dichlorophenyl)-1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile top
Crystal data top
C16H13Cl2N5F(000) = 712
Mr = 346.21Dx = 1.421 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 8.6598 (2) ÅCell parameters from 4611 reflections
b = 16.0275 (5) Åθ = 2.5–32.2°
c = 11.6590 (3) ŵ = 0.41 mm1
β = 90.7364 (9)°T = 100 K
V = 1618.08 (8) Å3Needle, colourless
Z = 40.30 × 0.03 × 0.03 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
4528 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.6°, θmin = 2.5°
Tmin = 0.880, Tmax = 0.980h = 1313
21346 measured reflectionsk = 2424
5861 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2854P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5861 reflectionsΔρmax = 0.25 e Å3
217 parametersΔρmin = 0.32 e Å3
2 restraintsAbsolute structure: Flack x determined using 1774 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.27 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48473 (9)0.76604 (6)0.16871 (7)0.0429 (2)
Cl20.69787 (9)0.56058 (4)0.51124 (7)0.03080 (17)
N10.5635 (3)0.75406 (14)0.7250 (2)0.0199 (5)
H10.604 (4)0.801 (2)0.709 (3)0.024*
C20.5218 (3)0.73373 (16)0.8418 (2)0.0207 (5)
H2A0.41540.75280.85760.025*
H2B0.59340.76110.89690.025*
C30.5326 (4)0.63931 (17)0.8531 (2)0.0248 (6)
H3A0.63920.62060.83730.030*
H3B0.50640.62220.93210.030*
C40.4209 (3)0.59988 (16)0.7681 (2)0.0218 (5)
H4A0.44710.54010.75950.026*
H4B0.31510.60330.79900.026*
N50.4232 (3)0.64027 (13)0.65394 (19)0.0167 (4)
C60.3418 (3)0.60234 (14)0.5649 (2)0.0163 (5)
N60.2511 (3)0.53821 (15)0.5930 (2)0.0236 (5)
H6A0.214 (4)0.506 (2)0.541 (3)0.028*
H6B0.238 (4)0.522 (2)0.661 (3)0.028*
C70.3535 (3)0.63028 (15)0.4540 (2)0.0155 (5)
C80.4667 (3)0.69614 (15)0.4164 (2)0.0167 (5)
H80.40660.73790.37040.020*
C90.5266 (3)0.74104 (16)0.5222 (2)0.0179 (5)
C9A0.5062 (3)0.71289 (15)0.6322 (2)0.0161 (5)
C100.2600 (3)0.59393 (15)0.3682 (2)0.0147 (5)
N100.1851 (3)0.56730 (13)0.2941 (2)0.0194 (5)
C110.5914 (3)0.66149 (18)0.3380 (3)0.0200 (5)
C120.6051 (3)0.6880 (2)0.2246 (3)0.0283 (6)
C130.7126 (4)0.6549 (3)0.1492 (3)0.0375 (8)
H130.71670.67420.07230.045*
C140.8127 (4)0.5940 (2)0.1873 (3)0.0383 (8)
H140.88690.57150.13670.046*
C150.8058 (3)0.56565 (19)0.2989 (3)0.0314 (7)
H150.87460.52350.32540.038*
C160.6971 (3)0.59938 (18)0.3718 (3)0.0240 (6)
C170.5995 (3)0.81835 (17)0.5040 (2)0.0228 (6)
N170.6562 (4)0.88151 (16)0.4841 (2)0.0362 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0391 (4)0.0681 (6)0.0215 (4)0.0012 (4)0.0009 (3)0.0190 (4)
Cl20.0305 (4)0.0267 (3)0.0353 (4)0.0081 (3)0.0050 (3)0.0077 (3)
N10.0294 (12)0.0147 (10)0.0156 (11)0.0072 (9)0.0006 (9)0.0002 (8)
C20.0278 (14)0.0215 (13)0.0127 (12)0.0055 (10)0.0012 (10)0.0013 (10)
C30.0353 (16)0.0207 (13)0.0180 (14)0.0050 (11)0.0071 (12)0.0033 (10)
C40.0328 (14)0.0189 (12)0.0136 (13)0.0088 (11)0.0029 (11)0.0027 (9)
N50.0237 (11)0.0145 (10)0.0120 (10)0.0050 (8)0.0000 (8)0.0003 (7)
C60.0200 (12)0.0127 (10)0.0161 (12)0.0016 (9)0.0006 (9)0.0018 (9)
N60.0354 (13)0.0211 (11)0.0142 (11)0.0141 (10)0.0024 (10)0.0009 (9)
C70.0179 (11)0.0150 (11)0.0137 (12)0.0006 (9)0.0007 (9)0.0013 (9)
C80.0216 (13)0.0135 (10)0.0151 (12)0.0022 (9)0.0001 (10)0.0002 (9)
C90.0242 (13)0.0149 (11)0.0148 (13)0.0040 (9)0.0029 (10)0.0025 (9)
C9A0.0189 (12)0.0131 (10)0.0163 (12)0.0025 (9)0.0001 (9)0.0007 (9)
C100.0179 (11)0.0123 (10)0.0140 (12)0.0010 (9)0.0034 (9)0.0018 (8)
N100.0226 (11)0.0193 (11)0.0163 (12)0.0030 (9)0.0013 (9)0.0016 (8)
C110.0220 (12)0.0199 (11)0.0181 (12)0.0082 (9)0.0022 (10)0.0051 (9)
C120.0257 (15)0.0417 (17)0.0175 (15)0.0130 (13)0.0008 (11)0.0018 (12)
C130.0281 (16)0.067 (2)0.0179 (15)0.0197 (16)0.0048 (12)0.0117 (15)
C140.0248 (15)0.053 (2)0.038 (2)0.0131 (15)0.0123 (13)0.0255 (16)
C150.0214 (14)0.0300 (15)0.043 (2)0.0064 (12)0.0079 (13)0.0150 (14)
C160.0228 (14)0.0229 (13)0.0264 (15)0.0039 (10)0.0037 (11)0.0039 (11)
C170.0329 (15)0.0213 (12)0.0144 (13)0.0073 (11)0.0054 (11)0.0053 (10)
N170.064 (2)0.0259 (12)0.0189 (13)0.0208 (13)0.0093 (12)0.0046 (10)
Geometric parameters (Å, º) top
Cl1—C121.749 (4)N6—H6B0.85 (4)
Cl2—C161.741 (3)C7—C101.406 (4)
N1—C9A1.355 (3)C7—C81.509 (3)
N1—C21.451 (3)C8—C91.514 (4)
N1—H10.85 (3)C8—C111.529 (4)
C2—C31.522 (4)C8—H81.0000
C2—H2A0.9900C9—C9A1.373 (4)
C2—H2B0.9900C9—C171.408 (4)
C3—C41.514 (4)C10—N101.155 (3)
C3—H3A0.9900C11—C121.395 (4)
C3—H3B0.9900C11—C161.405 (4)
C4—N51.481 (3)C12—C131.392 (4)
C4—H4A0.9900C13—C141.375 (5)
C4—H4B0.9900C13—H130.9500
N5—C61.387 (3)C14—C151.380 (5)
N5—C9A1.393 (3)C14—H140.9500
C6—N61.337 (3)C15—C161.385 (4)
C6—C71.373 (4)C15—H150.9500
N6—H6A0.85 (4)C17—N171.150 (3)
C9A—N1—C2123.1 (2)C7—C8—C9108.2 (2)
C9A—N1—H1114 (2)C7—C8—C11112.7 (2)
C2—N1—H1121 (2)C9—C8—C11115.0 (2)
N1—C2—C3106.8 (2)C7—C8—H8106.8
N1—C2—H2A110.4C9—C8—H8106.8
C3—C2—H2A110.4C11—C8—H8106.8
N1—C2—H2B110.4C9A—C9—C17119.5 (2)
C3—C2—H2B110.4C9A—C9—C8123.9 (2)
H2A—C2—H2B108.6C17—C9—C8116.4 (2)
C4—C3—C2108.7 (2)N1—C9A—C9122.4 (2)
C4—C3—H3A110.0N1—C9A—N5116.5 (2)
C2—C3—H3A110.0C9—C9A—N5121.1 (2)
C4—C3—H3B110.0N10—C10—C7176.6 (3)
C2—C3—H3B110.0C12—C11—C16114.7 (3)
H3A—C3—H3B108.3C12—C11—C8121.7 (3)
N5—C4—C3113.0 (2)C16—C11—C8123.5 (3)
N5—C4—H4A109.0C13—C12—C11123.2 (3)
C3—C4—H4A109.0C13—C12—Cl1115.9 (3)
N5—C4—H4B109.0C11—C12—Cl1120.8 (2)
C3—C4—H4B109.0C14—C13—C12119.3 (3)
H4A—C4—H4B107.8C14—C13—H13120.3
C6—N5—C9A119.3 (2)C12—C13—H13120.3
C6—N5—C4117.9 (2)C13—C14—C15120.2 (3)
C9A—N5—C4122.8 (2)C13—C14—H14119.9
N6—C6—C7122.1 (2)C15—C14—H14119.9
N6—C6—N5116.6 (2)C14—C15—C16119.2 (3)
C7—C6—N5121.2 (2)C14—C15—H15120.4
C6—N6—H6A120 (2)C16—C15—H15120.4
C6—N6—H6B124 (2)C15—C16—C11123.3 (3)
H6A—N6—H6B115 (3)C15—C16—Cl2116.0 (3)
C6—C7—C10119.1 (2)C11—C16—Cl2120.6 (2)
C6—C7—C8123.9 (2)N17—C17—C9176.9 (3)
C10—C7—C8117.0 (2)
C9A—N1—C2—C346.5 (3)C17—C9—C9A—N5174.5 (3)
N1—C2—C3—C460.3 (3)C8—C9—C9A—N51.8 (4)
C2—C3—C4—N543.2 (3)C6—N5—C9A—N1170.2 (2)
C3—C4—N5—C6171.2 (2)C4—N5—C9A—N111.5 (4)
C3—C4—N5—C9A7.1 (4)C6—N5—C9A—C99.1 (4)
C9A—N5—C6—N6173.0 (2)C4—N5—C9A—C9169.2 (2)
C4—N5—C6—N68.6 (4)C7—C8—C11—C12116.4 (3)
C9A—N5—C6—C76.4 (4)C9—C8—C11—C12118.9 (3)
C4—N5—C6—C7172.0 (2)C7—C8—C11—C1661.5 (3)
N6—C6—C7—C104.1 (4)C9—C8—C11—C1663.2 (3)
N5—C6—C7—C10175.2 (2)C16—C11—C12—C131.1 (4)
N6—C6—C7—C8173.2 (2)C8—C11—C12—C13176.9 (3)
N5—C6—C7—C87.4 (4)C16—C11—C12—Cl1179.0 (2)
C6—C7—C8—C916.0 (3)C8—C11—C12—Cl13.0 (4)
C10—C7—C8—C9166.6 (2)C11—C12—C13—C141.0 (5)
C6—C7—C8—C11112.3 (3)Cl1—C12—C13—C14179.1 (2)
C10—C7—C8—C1165.1 (3)C12—C13—C14—C150.5 (5)
C7—C8—C9—C9A13.2 (3)C13—C14—C15—C160.2 (5)
C11—C8—C9—C9A113.8 (3)C14—C15—C16—C110.4 (4)
C7—C8—C9—C17163.2 (2)C14—C15—C16—Cl2179.4 (2)
C11—C8—C9—C1769.8 (3)C12—C11—C16—C150.8 (4)
C2—N1—C9A—C9169.2 (3)C8—C11—C16—C15177.2 (3)
C2—N1—C9A—N510.1 (4)C12—C11—C16—Cl2179.0 (2)
C17—C9—C9A—N14.7 (4)C8—C11—C16—Cl23.1 (4)
C8—C9—C9A—N1179.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 dichlorophenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N10i0.85 (3)2.43 (3)3.152 (3)143 (3)
N6—H6A···N17ii0.85 (4)2.17 (3)2.927 (3)149 (3)
N6—H6B···N10iii0.85 (4)2.16 (4)2.953 (3)156 (3)
C4—H4B···N17iv0.992.593.440 (4)144
C2—H2A···Cg3iv0.992.873.653 (3)136
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y1/2, z; (iii) x, y+1, z+1/2; (iv) x1/2, y+3/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H6B···N102.16x, 1 - y, 1/2 + z
H1···N102.431/2 + x, 3/2 - y, 1/2 + z
H4B···N172.59-1/2 + x, 3/2 - y, 1/2 + z
H6A···N172.16-1/2 + x, -1/2 + y, z
N10···H152.81-1 + x, y, z
H3B···H132.57x, y, 1 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
N···H/H···N28.4
H···H24.5
C···H/H···C21.4
Cl···H/H···Cl16.1
Cl···C/C···Cl3.3
Cl···Cl2.5
Cl···N/N···Cl2.3
C···N/N···C0.8
C···C0.6
N···N0.2
 

Acknowledgements

Authors contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, VNK, FNN, TAT and AAA; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and IGM; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, RMR, AAA and FNN; supervision, IGM and MA.

Funding information

This work was supported by Baku State University, and RUDN University Strategic Academic Leadership Program.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478.  Web of Science CSD CrossRef Google Scholar
First citationAwouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102.  CrossRef CAS Web of Science Google Scholar
First citationBlaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533–535.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.  CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203–230.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJanssen, G. V., van den Heuvel, J. A. C., Megens, R. P., Benningshof, J. C. J. & Ovaa, H. (2018). Bioorg. Med. Chem. 26, 41–49.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234–239.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcLaughlin, E. C., Norman, M. W., Ko Ko, T. & Stolt, I. (2014). Tetrahedron Lett. 55, 2609–2611.  Web of Science CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720–723.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020c). Acta Cryst. E76, 1365–1368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPryadeina, M. V., Burgart, Y. V., Kodess, M. I. & Saloutin, V. I. (2005). Russ. Chem. Bull. 54, 2841–2845.  Web of Science CrossRef CAS Google Scholar
First citationRiva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). Eur. J. Org. Chem. pp. 2319–2325.  Web of Science CSD CrossRef Google Scholar
First citationSamarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationUkrainets, I. V., Bereznyakova, N. L., Sim, G. & Davidenko, A. A. (2018). Pharm. Chem. J. 52, 601–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWu, Y.-J., He, H., Hu, S., Huang, Y., Scola, P. M., Grant-Young, K., Bertekap, R. L., Wu, D., Gao, Q., Li, Y., Klakouski, C. & Westphal, R. S. (2003). J. Med. Chem. 46, 4834–4837.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationYahata, H., Saito, M., Sendo, T., Itoh, Y., Uchida, M., Hirakawa, T., Nakano, H. & Oishi, R. (2006). Int. J. Cancer, 118, 2636–2638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds