research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy calculation of 1-decyl-2,3-di­hydro-1H-benzimidazol-2-one

crossmark logo

aLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cFaculty of Medicine and Health Sciences, Sana'a University, San'a, Yemen, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: Bushraamer2014@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 April 2021; accepted 21 April 2021; online 27 April 2021)

The title mol­ecule, C17H26N2O, adopts an L-shaped conformation, with the straight n-decyl chain positioned nearly perpendicular to the di­hydro­benzimidazole moiety. The di­hydro­benzimidazole portion is not quite planar as there is a dihedral angle of 1.20 (6)° between the constituent planes. In the crystal, N—H⋯O hydrogen bonds form inversion dimers, which are connected into the three-dimensional structure by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (75.9%), H⋯C/C⋯H (12.5%) and H⋯O/O⋯H (7.0%) inter­actions. Based on computational chemistry using the CE–B3LYP/6–31 G(d,p) energy model, C—H⋯O hydrogen bond energies are −74.9 (for N—H⋯O) and −42.7 (for C—H⋯O) kJ mol−1.

1. Chemical context

Benzimidazol-2-one derivatives constitute an important class of heterocyclic systems. They are used as precursors for the preparation of novel N-substituted benzimidazol-2-one deriv­atives with potential biological and pharmacological properties (Lakhrissi et al., 2008[Lakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421-433.]; Saber et al., 2019[Saber, A., Sebbar, N. K. & Essassi, E. M. (2019). J. Mar. Chem. Heterocycl. 18, 1-50.]; Mamedov et al., 2017[Mamedov, V. A., Zhukova, N. A. & Sinyashin, O. G. (2017). Mendeleev Commun. 27, 1-11.]), including anti­tumor (Khodarahmi et al., 2005[Khodarahmi, G. A., Chen, C. S., Hakimelahi, G. H., Tseng, C. T. & Chern, J. W. (2005). J. Iran. Chem. Soc. 2, 124-134.]), anti­bacterial (Saber et al., 2020a[Saber, A., Sebbar, N. K., Hökelek, T., Labd Taha, M., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020a). Acta Cryst. E76, 95-101.]; Vira et al., 2010[Vira, J. J., Patel, D. R., Bhimani, N. V. & Ajudia, P. A. (2010). Pharma Chem. 2, 178-183.]), anti-HIV (Barreca et al., 2007[Barreca, M. L., Rao, A., De Luca, L., Iraci, N., Monforte, A. M., Maga, G., De Clercq, E., Pannecouque, C., Balzarini, J. & Chimirri, A. (2007). Bioorg. Med. Chem. Lett. 17, 1956-1960.]), and anti­trichinellosis (Mavrova et al., 2005[Mavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Kondeva, M. S. & Micheva, M. K. (2005). Bioorg. Med. Chem. 13, 5550-5559.]) activities.

[Scheme 1]

In continuation of our investigations on the synthesis, physico-chemical characterization and biological properties of novel N-substituted benzimidazol-2-one derivatives, we have studied the reaction of 1-bromo­decane with 1-isopropenyl-1H-1,3-benzimidazol-2(3H)-one under phase-transfer catalysis conditions (Saber et al., 2020b[Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020b). J. Mol. Struct. 1200, 127174.]; Srhir et al., 2020[Srhir, M., Sebbar, N. K., Hökelek, T., Moussaif, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 370-376.]), We report herein the synthesis, and the mol­ecular and crystal structures along with the Hirshfeld surface analysis and the inter­molecular inter­action energies of the title compound, C17H26N2O, (I)[link].

2. Structural commentary

The title mol­ecule adopts an L-shaped conformation with the straight n-decyl chain arranged nearly perpendicular to the di­hydro­benzimidazole portion, as indicated by the C1—N2—C8—C9 torsion angle of −75.91 (12)° (Fig. 1[link]). The di­hydro­benzimidazole portion is not planar, as indicated by the dihedral angle of 1.20 (6)° between the constituent planes.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], inversion dimers are formed by N1—H1⋯O1 hydrogen bonds (Table 1[link]) that are linked into chains extending parallel to the b axis by C8—H8A⋯O1 hydrogen bonds (Table 1[link], Fig. 2[link]). The alkyl groups extend from both sides of the chain and inter­calate with alkyl groups of adjacent chains while linking them together through C17—H17CCg2 inter­actions (Table 2[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1ii 0.923 (16) 1.932 (16) 2.8393 (12) 167.0 (13)
C8—H8A⋯O1viii 0.995 (13) 2.573 (13) 3.4648 (12) 149.1 (9)
C17—H17CCg2v 1.00 (2) 2.985 (19) 3.6656 (17) 126.0 (14)
Symmetry codes: (ii) [-x, -y+1, -z+1]; (v) [-x+1, -y+1, -z+1]; (viii) [x, y-1, z].

Table 2
Selected interatomic distances (Å)

O1⋯C1i 3.2784 (12) H9B⋯H11B 2.53 (2)
O1⋯N1ii 2.8394 (11) H10A⋯H12A 2.55 (2)
C4⋯O1iii 3.2820 (14) H10B⋯H12B 2.58 (2)
O1⋯H8B 2.486 (11) H11A⋯H13A 2.58 (2)
O1⋯H1ii 1.934 (16) H11A⋯H16Av 2.43 (2)
O1⋯H8Aiv 2.571 (11) H11B⋯H13B 2.51 (2)
H4⋯O1iii 2.417 (13) H12A⋯H14A 2.55 (2)
N1⋯H8Aiv 2.878 (12) H12A⋯H15Av 2.57 (2)
N1⋯H8Bi 2.949 (12) H12B⋯H14B 2.53 (2)
N2⋯H10A 2.843 (14) H13A⋯H15A 2.55 (2)
C7⋯C7i 3.2937 (14) H13A⋯H14Av 2.52 (2)
C2⋯H17Cv 2.90 (2) H13B⋯H15B 2.57 (2)
C7⋯H1ii 2.828 (16) H13B⋯H16Bvii 2.47 (2)
C7⋯H8Aiv 2.774 (11) H14A⋯H16A 2.51 (2)
H2⋯H9A 2.572 (19) H14B⋯H16B 2.56 (2)
H2⋯H17Avi 2.34 (2) H14B⋯H16Bvii 2.54 (2)
H8B⋯H10B 2.507 (18) H15A⋯H17A 2.60 (2)
H9A⋯H11A 2.550 (19) H15B⋯H17B 2.54 (2)
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [-x+1, -y+1, -z+1]; (vi) [-x+1, -y, -z+1]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A portion of one chain viewed along the c-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by blue and black dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with hydrogen bonds depicted as in Fig. 2[link] and C—H⋯π(ring) inter­actions by green dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). A view of the three-dimensional Hirshfeld surface of (I)[link], plotted over dnorm and the electrostatic potential map are shown in Fig. 4[link]a and b, respectively. The shape-index of the HS reveals that there are no ππ inter­actions in (I)[link], as shown in Fig. 4[link]c. The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯O/O⋯C, N⋯O/O⋯N, C⋯N/N⋯C and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]bi, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2[link]) contributing 75.9% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.08 Å. In the presence of C—H⋯π inter­actions, the pair of characteristic wings are seen in the fingerprint plot (Fig. 5[link]c) delineated into H⋯C/C⋯H contacts (12.5% contribution; Table 2[link]), with the tips at de + di = 2.66 Å. The pair of the scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts, Fig. 5[link]d, with a 7.0% contribution to the HS, has a distribution of points with the tips at de + di = 1.83 Å. The H⋯N/N⋯H contacts, Fig. 5[link]e, with a 2.3% contribution to the HS have the tips at de + di = 2.92 Å. The C⋯O/O⋯C contacts, Fig. 5[link]f, with a 1.2% contribution to the HS appear as a pair of scattered points of spikes with the tips at de + di = 3.25 Å. Finally, the N⋯O/O⋯N (Fig. 5[link]g), N⋯C/C⋯N (Fig. 5[link]h) and C⋯C (Fig. 5[link]i) contacts have 0.6%, 0.3% and 0.3% contributions, respectively, to the HS with low-density distributions of points.

[Figure 4]
Figure 4
(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm in the range of −0.5871 to 1.6590 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. (c) Hirshfeld surface of the title compound plotted over shape-index.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯O/O⋯C, (g) N⋯O/O⋯N, (h) C⋯N/N⋯C and (i) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 6[link]ac, respectively.

[Figure 6]
Figure 6
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is used by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a default radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated as −91.9 (Eele), −21.4 (Epol), −14.5 (Edis), 82.1 (Erep) and −74.9 (Etot) for N1—H1⋯O1 and −9.2 (Eele), −0.6 (Epol), −65.8 (Edis), 39.9 (Erep) and −42.7 (Etot) for C8—H8A⋯O1.

6. Database survey

A search of the Cambridge Structural Database (CSD2021, updated to 2 February, 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the fragment below, where X = Y = H, R = (CH2)4C, found nine similar structures. These are IJUGIE [X = Y = H, R = (CH2)8CH3; Ouzidan et al., 2011a[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.]], SECBUZ [X = Y = H, R = (CH2)11CH3; Belaziz et al., 2012b[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012b). Acta Cryst. E68, o3069.]], ZANXET [X = Y = H, R = (CH2)7CH3; Belaziz et al., 2012a[Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012a). Acta Cryst. E68, o1276.]], OCAJIN [X = H, Y = Cl, R = (CH2)8CH3; Kandri Rodi et al., 2011[Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340-o3341.]], ULEDEV [X = H, Y = NO2, R = (CH2)7CH3; Ouzidan et al., 2011b[Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o558.]], ULEPIL [X = H, Y = NO2, R = (CH2)9CH3; Ouzidan et al., 2011c[Ouzidan, Y., Kandri Rodi, Y., Ladeira, S., Essassi, E. M. & Ng, S. W. (2011c). Acta Cryst. E67, o613.]], ULEZAN [X = H, Y = NO2, R = (CH2)8CH3; Ouzidan et al., 2011d[Ouzidan, Y., Kandri Rodi, Y., Essassi, E. M., El Ammari, L., Fronczek, F. R. & Venkatraman, R. (2011d). Acta Cryst. E67, o669.]], QUDJAC [X = NO2, Y = H, R = (CH2)8CH3; Venkatraman & Fronczek, 2015[Venkatraman, R. & Fronczek, F. R. (2015). CSD Communication (refcode QUDJAC). CCDC, Cambridge, England.]] and YAGQII [X = NO2, Y = H, R = (CH2)9CH3; Ouzidan et al., 2011e[Ouzidan, Y., Kandri Rodi, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011e). Acta Cryst. E67, o2937.]]. In all of these mol­ecules, the long alkyl substituent has a straight shape rather than being folded back on itself. This is likely driven by packing considerations as straight alkyl chains can efficiently inter­calate, thereby minimizing void space in the crystal.

[Scheme 2]

7. Synthesis and crystallization

The title compound was prepared in two steps. In the first step, 1-bromo­decane (11.4 mmol) was added to a mixture of 1-isopropenyl-1H-1,3-benzimidazol-2(3H)-one (5.7 mmol), potassium hydroxide (5.7 mmol) and tetra-n-butyl ammonium bromide (0.15 mmol) in CH2Cl2 (15 ml). Stirring was continued at room temperature for 48 h. The formed salts were removed by filtration, and the filtrate was concentrated under reduced pressure. The residue obtained was purified by recrystallization from ethanol to obtain 1-(prop-1-en-2-yl)-3-decyl-2,3di­hydro-1H-benzimidazol-2(3H)-one in 82% yield. In the second step, 1-(prop-1-en-2-yl)-3-decyl-2,3-di­hydro-1H-benzimidazol-2-one (7.0 mmol) was dissolved in a mixture of di­methyl­formamide (DMF; 10 ml) and cold sulfuric acid (15 ml, 50%wt). The reaction mixture was stirred at room temperature for 12 h. The precipitate obtained was filtered off and washed with water and subsequently dried. The resulting residue was purified by recrystallization from ethanol to obtain colourless crystals in 75% yield.

1H NMR (300 MHz, DMSO-d6): 0.87 (t, 3H, CH3); 1.25–1.67 (m, 16H, CH2); 2.80–3.04 (m, 2H, CH2); 6.99–7.12 (m, 4H, Harom); 10.58 (s,1H, NH). 13C NMR (75 MHz, DMSO-d6): 14.14 (CH3); 22.70, 26.90, 28.44, 29.31, 29.51, 29.56, 29.74, 31.90, 41.44 (CH2); 107.84, 108.45, 121.20, 121.65 (CHarom); 128.52, 129.64 (Cq), 153.43 (C=O).

8. Refinement

Crystal, data collection and refinement details are presented in Table 3[link]. Hydrogen atoms were located in difference-Fourier maps and were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C17H26N2O
Mr 274.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 17.3256 (5), 5.5662 (2), 16.7244 (5)
β (°) 97.433 (1)
V3) 1599.31 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.55
Crystal size (mm) 0.26 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 11457, 3082, 2857
Rint 0.028
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.08
No. of reflections 3082
No. of parameters 286
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Decyl-2,3-dihydro-1H-benzimidazol-2-one top
Crystal data top
C17H26N2OF(000) = 600
Mr = 274.40Dx = 1.140 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 17.3256 (5) ÅCell parameters from 9927 reflections
b = 5.5662 (2) Åθ = 2.6–72.4°
c = 16.7244 (5) ŵ = 0.55 mm1
β = 97.433 (1)°T = 150 K
V = 1599.31 (9) Å3Parallelepiped, colourless
Z = 40.26 × 0.17 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3082 independent reflections
Radiation source: INCOATEC IµS micro–focus source2857 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 5.6°
ω scansh = 1921
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 66
Tmin = 0.88, Tmax = 0.95l = 2017
11457 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.3296P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3082 reflectionsΔρmax = 0.19 e Å3
286 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0415 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04776 (4)0.28130 (13)0.44474 (4)0.0303 (2)
N10.05137 (5)0.31336 (16)0.58449 (5)0.0277 (2)
H10.0208 (9)0.449 (3)0.5834 (8)0.049 (4)*
N20.11079 (5)0.00636 (15)0.53573 (5)0.0257 (2)
C10.11866 (6)0.02174 (17)0.61924 (6)0.0255 (2)
C20.15374 (6)0.20007 (19)0.66878 (7)0.0303 (3)
H20.1796 (8)0.337 (3)0.6474 (8)0.039 (3)*
C30.15165 (7)0.1745 (2)0.75149 (7)0.0337 (3)
H30.1783 (8)0.300 (2)0.7883 (8)0.042 (4)*
C40.11570 (7)0.0218 (2)0.78254 (7)0.0332 (3)
H40.1157 (8)0.039 (2)0.8423 (8)0.037 (3)*
C50.07947 (6)0.19953 (19)0.73228 (6)0.0302 (3)
H50.0528 (7)0.334 (2)0.7533 (7)0.033 (3)*
C60.08152 (6)0.17382 (17)0.65026 (6)0.0261 (2)
C70.06765 (6)0.20902 (17)0.51435 (6)0.0253 (2)
C80.13586 (6)0.16239 (18)0.47772 (6)0.0284 (3)
H8A0.1186 (7)0.327 (2)0.4909 (7)0.031 (3)*
H8B0.1074 (7)0.116 (2)0.4234 (8)0.030 (3)*
C90.22347 (6)0.16205 (19)0.47500 (7)0.0308 (3)
H9A0.2512 (8)0.205 (2)0.5293 (8)0.035 (3)*
H9B0.2344 (8)0.290 (2)0.4382 (8)0.035 (3)*
C100.25501 (6)0.0740 (2)0.44707 (7)0.0325 (3)
H10A0.2498 (8)0.199 (3)0.4881 (8)0.042 (4)*
H10B0.2229 (8)0.128 (2)0.3965 (8)0.038 (3)*
C110.33982 (7)0.0550 (2)0.43186 (7)0.0355 (3)
H11A0.3717 (8)0.020 (2)0.4812 (8)0.041 (3)*
H11B0.3434 (8)0.060 (3)0.3859 (8)0.042 (4)*
C120.37542 (7)0.2942 (2)0.41212 (8)0.0371 (3)
H12A0.3739 (8)0.409 (3)0.4593 (8)0.044 (4)*
H12B0.3426 (8)0.369 (3)0.3659 (8)0.040 (3)*
C130.45872 (7)0.2725 (2)0.39272 (8)0.0374 (3)
H13A0.4913 (9)0.197 (3)0.4389 (9)0.045 (4)*
H13B0.4594 (8)0.161 (3)0.3467 (9)0.044 (4)*
C140.49438 (7)0.5123 (2)0.37418 (8)0.0383 (3)
H14A0.4944 (9)0.622 (3)0.4218 (9)0.050 (4)*
H14B0.4604 (8)0.589 (3)0.3278 (8)0.042 (4)*
C150.57697 (7)0.4932 (2)0.35263 (8)0.0383 (3)
H15A0.6106 (9)0.409 (3)0.3983 (9)0.047 (4)*
H15B0.5772 (8)0.385 (3)0.3040 (8)0.044 (4)*
C160.61285 (7)0.7340 (2)0.33601 (8)0.0416 (3)
H16A0.6112 (9)0.842 (3)0.3852 (9)0.054 (4)*
H16B0.5799 (10)0.814 (3)0.2910 (9)0.053 (4)*
C170.69572 (9)0.7119 (3)0.31580 (10)0.0540 (4)
H17A0.7312 (11)0.646 (3)0.3640 (11)0.072 (5)*
H17B0.6977 (10)0.598 (3)0.2673 (10)0.066 (5)*
H17C0.7161 (11)0.872 (4)0.3005 (11)0.076 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (4)0.0285 (4)0.0273 (4)0.0019 (3)0.0055 (3)0.0041 (3)
N10.0307 (4)0.0240 (4)0.0289 (5)0.0026 (3)0.0066 (3)0.0010 (3)
N20.0292 (4)0.0237 (4)0.0251 (4)0.0005 (3)0.0063 (3)0.0006 (3)
C10.0261 (5)0.0245 (5)0.0264 (5)0.0041 (4)0.0051 (4)0.0002 (4)
C20.0343 (5)0.0253 (5)0.0315 (6)0.0005 (4)0.0049 (4)0.0011 (4)
C30.0391 (6)0.0307 (6)0.0307 (6)0.0021 (4)0.0022 (4)0.0053 (4)
C40.0376 (6)0.0359 (6)0.0267 (6)0.0055 (4)0.0061 (4)0.0006 (4)
C50.0329 (5)0.0288 (5)0.0301 (6)0.0031 (4)0.0087 (4)0.0032 (4)
C60.0255 (5)0.0246 (5)0.0284 (5)0.0035 (4)0.0049 (4)0.0012 (4)
C70.0255 (5)0.0231 (5)0.0279 (5)0.0033 (4)0.0061 (4)0.0011 (4)
C80.0337 (5)0.0235 (5)0.0288 (5)0.0009 (4)0.0071 (4)0.0030 (4)
C90.0340 (6)0.0294 (6)0.0299 (6)0.0050 (4)0.0072 (4)0.0000 (4)
C100.0321 (5)0.0309 (6)0.0355 (6)0.0020 (4)0.0080 (5)0.0003 (4)
C110.0336 (6)0.0365 (6)0.0376 (6)0.0025 (5)0.0090 (5)0.0021 (5)
C120.0339 (6)0.0375 (6)0.0408 (7)0.0002 (5)0.0081 (5)0.0009 (5)
C130.0347 (6)0.0385 (6)0.0399 (7)0.0005 (5)0.0086 (5)0.0020 (5)
C140.0355 (6)0.0377 (7)0.0423 (7)0.0010 (5)0.0070 (5)0.0013 (5)
C150.0366 (6)0.0370 (6)0.0423 (7)0.0022 (5)0.0081 (5)0.0007 (5)
C160.0389 (6)0.0401 (7)0.0454 (7)0.0055 (5)0.0037 (5)0.0002 (5)
C170.0432 (7)0.0588 (9)0.0612 (9)0.0130 (6)0.0111 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—C71.2378 (12)C10—H10A0.988 (14)
N1—C71.3706 (13)C10—H10B0.996 (14)
N1—C61.3920 (13)C11—C121.5214 (16)
N1—H10.923 (16)C11—H11A1.021 (14)
N2—C71.3747 (13)C11—H11B1.009 (14)
N2—C11.3944 (13)C12—C131.5245 (16)
N2—C81.4564 (12)C12—H12A1.017 (14)
C1—C21.3823 (14)C12—H12B0.989 (14)
C1—C61.3981 (14)C13—C141.5197 (16)
C2—C31.3958 (16)C13—H13A0.990 (15)
C2—H20.974 (14)C13—H13B0.990 (15)
C3—C41.3910 (16)C14—C151.5239 (16)
C3—H31.003 (14)C14—H14A1.004 (16)
C4—C51.3940 (16)C14—H14B1.007 (14)
C4—H41.004 (13)C15—C161.5182 (17)
C5—C61.3841 (15)C15—H15A1.014 (15)
C5—H50.970 (13)C15—H15B1.013 (15)
C8—C91.5246 (15)C16—C171.5221 (19)
C8—H8A0.995 (13)C16—H16A1.020 (16)
C8—H8B1.009 (13)C16—H16B0.989 (16)
C9—C101.5195 (15)C17—H17A1.017 (19)
C9—H9A1.000 (13)C17—H17B1.033 (18)
C9—H9B0.974 (13)C17—H17C1.00 (2)
C10—C111.5269 (15)
O1···N2i3.2324 (11)H8B···H10B2.507 (18)
O1···C1i3.2784 (12)H9A···H11A2.550 (19)
O1···N1ii2.8394 (11)H9B···H11B2.53 (2)
C4···O1iii3.2820 (14)H10A···H12A2.55 (2)
O1···H8B2.486 (11)H10B···H12B2.58 (2)
O1···H1ii1.934 (16)H11A···H13A2.58 (2)
O1···H8Aiv2.571 (11)H11A···H16Av2.43 (2)
H4···O1iii2.417 (13)H11B···H13B2.51 (2)
N1···C2iv3.4382 (14)H12A···H14A2.55 (2)
N1···C8i3.3820 (14)H12A···H15Av2.57 (2)
N2···C7i3.3206 (14)H12B···H14B2.53 (2)
N1···H8Aiv2.878 (12)H13A···H15A2.55 (2)
N1···H8Bi2.949 (12)H13A···H14Av2.52 (2)
N2···H10A2.843 (14)H13B···H15B2.57 (2)
C7···C8i3.5550 (15)H13B···H16Bvii2.47 (2)
C7···C7i3.2937 (14)H14A···H16A2.51 (2)
C2···H17Cv2.90 (2)H14B···H16B2.56 (2)
C7···H1ii2.828 (16)H14B···H16Bvii2.54 (2)
C7···H8Aiv2.774 (11)H15A···H17A2.60 (2)
H2···H9A2.572 (19)H15B···H17B2.54 (2)
H2···H17Avi2.34 (2)
C7—N1—C6110.01 (9)H10A—C10—H10B106.7 (11)
C7—N1—H1120.8 (9)C12—C11—C10113.68 (10)
C6—N1—H1129.0 (9)C12—C11—H11A109.9 (8)
C7—N2—C1109.39 (8)C10—C11—H11A109.0 (8)
C7—N2—C8123.71 (8)C12—C11—H11B109.0 (8)
C1—N2—C8126.57 (8)C10—C11—H11B109.0 (8)
C2—C1—N2131.25 (9)H11A—C11—H11B106.0 (11)
C2—C1—C6121.63 (9)C11—C12—C13113.47 (10)
N2—C1—C6107.11 (8)C11—C12—H12A109.2 (8)
C1—C2—C3117.07 (10)C13—C12—H12A109.6 (8)
C1—C2—H2121.9 (8)C11—C12—H12B109.1 (8)
C3—C2—H2121.0 (8)C13—C12—H12B109.3 (8)
C4—C3—C2121.36 (10)H12A—C12—H12B105.9 (11)
C4—C3—H3120.8 (8)C14—C13—C12113.26 (10)
C2—C3—H3117.9 (8)C14—C13—H13A109.1 (8)
C3—C4—C5121.38 (10)C12—C13—H13A109.1 (8)
C3—C4—H4120.4 (7)C14—C13—H13B110.2 (8)
C5—C4—H4118.3 (7)C12—C13—H13B108.7 (8)
C6—C5—C4117.19 (10)H13A—C13—H13B106.1 (12)
C6—C5—H5120.9 (7)C13—C14—C15113.93 (10)
C4—C5—H5121.9 (7)C13—C14—H14A109.3 (9)
C5—C6—N1132.10 (10)C15—C14—H14A109.1 (9)
C5—C6—C1121.36 (9)C13—C14—H14B108.6 (8)
N1—C6—C1106.55 (9)C15—C14—H14B108.7 (8)
O1—C7—N1127.16 (10)H14A—C14—H14B106.9 (12)
O1—C7—N2125.96 (9)C16—C15—C14113.62 (10)
N1—C7—N2106.88 (8)C16—C15—H15A109.7 (9)
N2—C8—C9113.76 (9)C14—C15—H15A108.7 (8)
N2—C8—H8A108.7 (7)C16—C15—H15B109.5 (8)
C9—C8—H8A109.7 (7)C14—C15—H15B109.4 (8)
N2—C8—H8B106.3 (7)H15A—C15—H15B105.7 (12)
C9—C8—H8B110.2 (7)C15—C16—C17112.95 (11)
H8A—C8—H8B108.0 (10)C15—C16—H16A108.4 (9)
C10—C9—C8114.16 (9)C17—C16—H16A110.6 (9)
C10—C9—H9A109.6 (7)C15—C16—H16B109.0 (9)
C8—C9—H9A109.6 (8)C17—C16—H16B109.6 (9)
C10—C9—H9B109.2 (8)H16A—C16—H16B106.0 (13)
C8—C9—H9B107.1 (8)C16—C17—H17A110.1 (11)
H9A—C9—H9B106.9 (11)C16—C17—H17B110.6 (10)
C9—C10—C11112.56 (9)H17A—C17—H17B108.8 (14)
C9—C10—H10A108.9 (8)C16—C17—H17C111.0 (11)
C11—C10—H10A109.9 (8)H17A—C17—H17C109.1 (15)
C9—C10—H10B109.7 (8)H17B—C17—H17C107.1 (14)
C11—C10—H10B108.8 (8)
C7—N2—C1—C2177.13 (10)C6—N1—C7—O1177.92 (9)
C8—N2—C1—C23.56 (17)C6—N1—C7—N22.09 (11)
C7—N2—C1—C62.02 (11)C1—N2—C7—O1177.48 (9)
C8—N2—C1—C6175.60 (9)C8—N2—C7—O13.68 (15)
N2—C1—C2—C3179.89 (10)C1—N2—C7—N12.53 (11)
C6—C1—C2—C31.06 (15)C8—N2—C7—N1176.33 (8)
C1—C2—C3—C40.11 (16)C7—N2—C8—C9111.38 (11)
C2—C3—C4—C50.78 (17)C1—N2—C8—C975.91 (12)
C3—C4—C5—C60.69 (16)N2—C8—C9—C1063.87 (12)
C4—C5—C6—N1179.37 (10)C8—C9—C10—C11170.56 (9)
C4—C5—C6—C10.26 (15)C9—C10—C11—C12174.11 (10)
C7—N1—C6—C5178.81 (10)C10—C11—C12—C13177.01 (10)
C7—N1—C6—C10.86 (11)C11—C12—C13—C14179.20 (10)
C2—C1—C6—C51.17 (15)C12—C13—C14—C15178.58 (10)
N2—C1—C6—C5179.58 (9)C13—C14—C15—C16178.72 (11)
C2—C1—C6—N1178.55 (9)C14—C15—C16—C17179.15 (11)
N2—C1—C6—N10.70 (10)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1; (vii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.923 (16)1.932 (16)2.8393 (12)167.0 (13)
C8—H8A···O1viii0.995 (13)2.573 (13)3.4648 (12)149.1 (9)
C17—H17C···Cg2v1.00 (2)2.985 (19)3.6656 (17)126.0 (14)
Symmetry codes: (ii) x, y+1, z+1; (v) x+1, y+1, z+1; (viii) x, y1, z.
 

Acknowledgements

Author contribution are as follows. Conceptualization, AS, MLT, NKS; methodology, BA and YAE; investigation, YAE, IE, JTM and TH; writing (original draft), JTM, TH and NKS; writing (review and editing of the manuscript), YAE and IE; visualization, MLT and EME; resources, EME and AS; supervision, BA and NKS.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBarreca, M. L., Rao, A., De Luca, L., Iraci, N., Monforte, A. M., Maga, G., De Clercq, E., Pannecouque, C., Balzarini, J. & Chimirri, A. (2007). Bioorg. Med. Chem. Lett. 17, 1956–1960.  CrossRef PubMed CAS Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012a). Acta Cryst. E68, o1276.  CSD CrossRef IUCr Journals Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012b). Acta Cryst. E68, o3069.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340–o3341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhodarahmi, G. A., Chen, C. S., Hakimelahi, G. H., Tseng, C. T. & Chern, J. W. (2005). J. Iran. Chem. Soc. 2, 124–134.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMamedov, V. A., Zhukova, N. A. & Sinyashin, O. G. (2017). Mendeleev Commun. 27, 1–11.  CrossRef CAS Google Scholar
First citationMavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Kondeva, M. S. & Micheva, M. K. (2005). Bioorg. Med. Chem. 13, 5550–5559.  CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Essassi, E. M., El Ammari, L., Fronczek, F. R. & Venkatraman, R. (2011d). Acta Cryst. E67, o669.  CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011e). Acta Cryst. E67, o2937.  CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Ladeira, S., Essassi, E. M. & Ng, S. W. (2011c). Acta Cryst. E67, o613.  CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o558.  CSD CrossRef IUCr Journals Google Scholar
First citationSaber, A., Sebbar, N. K. & Essassi, E. M. (2019). J. Mar. Chem. Heterocycl. 18, 1–50.  Google Scholar
First citationSaber, A., Sebbar, N. K., Hökelek, T., Labd Taha, M., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020a). Acta Cryst. E76, 95–101.  CSD CrossRef IUCr Journals Google Scholar
First citationSaber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020b). J. Mol. Struct. 1200, 127174.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrhir, M., Sebbar, N. K., Hökelek, T., Moussaif, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 370–376.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatraman, R. & Fronczek, F. R. (2015). CSD Communication (refcode QUDJAC). CCDC, Cambridge, England.  Google Scholar
First citationVira, J. J., Patel, D. R., Bhimani, N. V. & Ajudia, P. A. (2010). Pharma Chem. 2, 178–183.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds