research communications
H-benzimidazol-2-one
Hirshfeld surface analysis and interaction energy calculation of 1-decyl-2,3-dihydro-1aLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cFaculty of Medicine and Health Sciences, Sana'a University, San'a, Yemen, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: Bushraamer2014@gmail.com
The title molecule, C17H26N2O, adopts an L-shaped conformation, with the straight n-decyl chain positioned nearly perpendicular to the dihydrobenzimidazole moiety. The dihydrobenzimidazole portion is not quite planar as there is a dihedral angle of 1.20 (6)° between the constituent planes. In the crystal, N—H⋯O hydrogen bonds form inversion dimers, which are connected into the three-dimensional structure by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (75.9%), H⋯C/C⋯H (12.5%) and H⋯O/O⋯H (7.0%) interactions. Based on computational chemistry using the CE–B3LYP/6–31 G(d,p) energy model, C—H⋯O hydrogen bond energies are −74.9 (for N—H⋯O) and −42.7 (for C—H⋯O) kJ mol−1.
Keywords: crystal structure; C—H⋯π(ring) interaction; dihydroimidazole; Hirshfeld surface analysis.
CCDC reference: 2079158
1. Chemical context
Benzimidazol-2-one derivatives constitute an important class of heterocyclic systems. They are used as precursors for the preparation of novel N-substituted benzimidazol-2-one derivatives with potential biological and pharmacological properties (Lakhrissi et al., 2008; Saber et al., 2019; Mamedov et al., 2017), including antitumor (Khodarahmi et al., 2005), antibacterial (Saber et al., 2020a; Vira et al., 2010), anti-HIV (Barreca et al., 2007), and antitrichinellosis (Mavrova et al., 2005) activities.
In continuation of our investigations on the synthesis, physico-chemical characterization and biological properties of novel N-substituted benzimidazol-2-one derivatives, we have studied the reaction of 1-bromodecane with 1-isopropenyl-1H-1,3-benzimidazol-2(3H)-one under conditions (Saber et al., 2020b; Srhir et al., 2020), We report herein the synthesis, and the molecular and crystal structures along with the Hirshfeld surface analysis and the intermolecular interaction energies of the title compound, C17H26N2O, (I).
2. Structural commentary
The title molecule adopts an L-shaped conformation with the straight n-decyl chain arranged nearly perpendicular to the dihydrobenzimidazole portion, as indicated by the C1—N2—C8—C9 torsion angle of −75.91 (12)° (Fig. 1). The dihydrobenzimidazole portion is not planar, as indicated by the dihedral angle of 1.20 (6)° between the constituent planes.
3. Supramolecular features
In the crystal of (I), inversion dimers are formed by N1—H1⋯O1 hydrogen bonds (Table 1) that are linked into chains extending parallel to the b axis by C8—H8A⋯O1 hydrogen bonds (Table 1, Fig. 2). The extend from both sides of the chain and intercalate with of adjacent chains while linking them together through C17—H17C⋯Cg2 interactions (Table 2, Fig. 3).
|
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). A view of the three-dimensional Hirshfeld surface of (I), plotted over dnorm and the electrostatic potential map are shown in Fig. 4a and b, respectively. The shape-index of the HS reveals that there are no π–π interactions in (I), as shown in Fig. 4c. The overall two-dimensional fingerprint plot, Fig. 5a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯O/O⋯C, N⋯O/O⋯N, C⋯N/N⋯C and C⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 5b–i, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2) contributing 75.9% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.08 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings are seen in the fingerprint plot (Fig. 5c) delineated into H⋯C/C⋯H contacts (12.5% contribution; Table 2), with the tips at de + di = 2.66 Å. The pair of the scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts, Fig. 5d, with a 7.0% contribution to the HS, has a distribution of points with the tips at de + di = 1.83 Å. The H⋯N/N⋯H contacts, Fig. 5e, with a 2.3% contribution to the HS have the tips at de + di = 2.92 Å. The C⋯O/O⋯C contacts, Fig. 5f, with a 1.2% contribution to the HS appear as a pair of scattered points of spikes with the tips at de + di = 3.25 Å. Finally, the N⋯O/O⋯N (Fig. 5g), N⋯C/C⋯N (Fig. 5h) and C⋯C (Fig. 5i) contacts have 0.6%, 0.3% and 0.3% contributions, respectively, to the HS with low-density distributions of points.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 6a–c, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules is used by applying operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −91.9 (Eele), −21.4 (Epol), −14.5 (Edis), 82.1 (Erep) and −74.9 (Etot) for N1—H1⋯O1 and −9.2 (Eele), −0.6 (Epol), −65.8 (Edis), 39.9 (Erep) and −42.7 (Etot) for C8—H8A⋯O1.
6. Database survey
A search of the Cambridge Structural Database (CSD2021, updated to 2 February, 2021; Groom et al., 2016) using the fragment below, where X = Y = H, R = (CH2)4C, found nine similar structures. These are IJUGIE [X = Y = H, R = (CH2)8CH3; Ouzidan et al., 2011a], SECBUZ [X = Y = H, R = (CH2)11CH3; Belaziz et al., 2012b], ZANXET [X = Y = H, R = (CH2)7CH3; Belaziz et al., 2012a], OCAJIN [X = H, Y = Cl, R = (CH2)8CH3; Kandri Rodi et al., 2011], ULEDEV [X = H, Y = NO2, R = (CH2)7CH3; Ouzidan et al., 2011b], ULEPIL [X = H, Y = NO2, R = (CH2)9CH3; Ouzidan et al., 2011c], ULEZAN [X = H, Y = NO2, R = (CH2)8CH3; Ouzidan et al., 2011d], QUDJAC [X = NO2, Y = H, R = (CH2)8CH3; Venkatraman & Fronczek, 2015] and YAGQII [X = NO2, Y = H, R = (CH2)9CH3; Ouzidan et al., 2011e]. In all of these molecules, the long alkyl substituent has a straight shape rather than being folded back on itself. This is likely driven by packing considerations as straight alkyl chains can efficiently intercalate, thereby minimizing void space in the crystal.
7. Synthesis and crystallization
The title compound was prepared in two steps. In the first step, 1-bromodecane (11.4 mmol) was added to a mixture of 1-isopropenyl-1H-1,3-benzimidazol-2(3H)-one (5.7 mmol), potassium hydroxide (5.7 mmol) and tetra-n-butyl ammonium bromide (0.15 mmol) in CH2Cl2 (15 ml). Stirring was continued at room temperature for 48 h. The formed salts were removed by filtration, and the filtrate was concentrated under reduced pressure. The residue obtained was purified by recrystallization from ethanol to obtain 1-(prop-1-en-2-yl)-3-decyl-2,3dihydro-1H-benzimidazol-2(3H)-one in 82% yield. In the second step, 1-(prop-1-en-2-yl)-3-decyl-2,3-dihydro-1H-benzimidazol-2-one (7.0 mmol) was dissolved in a mixture of dimethylformamide (DMF; 10 ml) and cold sulfuric acid (15 ml, 50%wt). The reaction mixture was stirred at room temperature for 12 h. The precipitate obtained was filtered off and washed with water and subsequently dried. The resulting residue was purified by recrystallization from ethanol to obtain colourless crystals in 75% yield.
1H NMR (300 MHz, DMSO-d6): 0.87 (t, 3H, CH3); 1.25–1.67 (m, 16H, CH2); 2.80–3.04 (m, 2H, CH2); 6.99–7.12 (m, 4H, Harom); 10.58 (s,1H, NH). 13C NMR (75 MHz, DMSO-d6): 14.14 (CH3); 22.70, 26.90, 28.44, 29.31, 29.51, 29.56, 29.74, 31.90, 41.44 (CH2); 107.84, 108.45, 121.20, 121.65 (CHarom); 128.52, 129.64 (Cq), 153.43 (C=O).
8. Refinement
Crystal, data collection and . Hydrogen atoms were located in difference-Fourier maps and were freely refined.
details are presented in Table 3
|
Supporting information
CCDC reference: 2079158
https://doi.org/10.1107/S2056989021004291/wm5606sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021004291/wm5606Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021004291/wm5606Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989021004291/wm5606Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C17H26N2O | F(000) = 600 |
Mr = 274.40 | Dx = 1.140 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 17.3256 (5) Å | Cell parameters from 9927 reflections |
b = 5.5662 (2) Å | θ = 2.6–72.4° |
c = 16.7244 (5) Å | µ = 0.55 mm−1 |
β = 97.433 (1)° | T = 150 K |
V = 1599.31 (9) Å3 | Parallelepiped, colourless |
Z = 4 | 0.26 × 0.17 × 0.10 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3082 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2857 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.3°, θmin = 5.6° |
ω scans | h = −19→21 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −6→6 |
Tmin = 0.88, Tmax = 0.95 | l = −20→17 |
11457 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0505P)2 + 0.3296P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3082 reflections | Δρmax = 0.19 e Å−3 |
286 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Extinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0415 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.04776 (4) | 0.28130 (13) | 0.44474 (4) | 0.0303 (2) | |
N1 | 0.05137 (5) | 0.31336 (16) | 0.58449 (5) | 0.0277 (2) | |
H1 | 0.0208 (9) | 0.449 (3) | 0.5834 (8) | 0.049 (4)* | |
N2 | 0.11079 (5) | 0.00636 (15) | 0.53573 (5) | 0.0257 (2) | |
C1 | 0.11866 (6) | −0.02174 (17) | 0.61924 (6) | 0.0255 (2) | |
C2 | 0.15374 (6) | −0.20007 (19) | 0.66878 (7) | 0.0303 (3) | |
H2 | 0.1796 (8) | −0.337 (3) | 0.6474 (8) | 0.039 (3)* | |
C3 | 0.15165 (7) | −0.1745 (2) | 0.75149 (7) | 0.0337 (3) | |
H3 | 0.1783 (8) | −0.300 (2) | 0.7883 (8) | 0.042 (4)* | |
C4 | 0.11570 (7) | 0.0218 (2) | 0.78254 (7) | 0.0332 (3) | |
H4 | 0.1157 (8) | 0.039 (2) | 0.8423 (8) | 0.037 (3)* | |
C5 | 0.07947 (6) | 0.19953 (19) | 0.73228 (6) | 0.0302 (3) | |
H5 | 0.0528 (7) | 0.334 (2) | 0.7533 (7) | 0.033 (3)* | |
C6 | 0.08152 (6) | 0.17382 (17) | 0.65026 (6) | 0.0261 (2) | |
C7 | 0.06765 (6) | 0.20902 (17) | 0.51435 (6) | 0.0253 (2) | |
C8 | 0.13586 (6) | −0.16239 (18) | 0.47772 (6) | 0.0284 (3) | |
H8A | 0.1186 (7) | −0.327 (2) | 0.4909 (7) | 0.031 (3)* | |
H8B | 0.1074 (7) | −0.116 (2) | 0.4234 (8) | 0.030 (3)* | |
C9 | 0.22347 (6) | −0.16205 (19) | 0.47500 (7) | 0.0308 (3) | |
H9A | 0.2512 (8) | −0.205 (2) | 0.5293 (8) | 0.035 (3)* | |
H9B | 0.2344 (8) | −0.290 (2) | 0.4382 (8) | 0.035 (3)* | |
C10 | 0.25501 (6) | 0.0740 (2) | 0.44707 (7) | 0.0325 (3) | |
H10A | 0.2498 (8) | 0.199 (3) | 0.4881 (8) | 0.042 (4)* | |
H10B | 0.2229 (8) | 0.128 (2) | 0.3965 (8) | 0.038 (3)* | |
C11 | 0.33982 (7) | 0.0550 (2) | 0.43186 (7) | 0.0355 (3) | |
H11A | 0.3717 (8) | −0.020 (2) | 0.4812 (8) | 0.041 (3)* | |
H11B | 0.3434 (8) | −0.060 (3) | 0.3859 (8) | 0.042 (4)* | |
C12 | 0.37542 (7) | 0.2942 (2) | 0.41212 (8) | 0.0371 (3) | |
H12A | 0.3739 (8) | 0.409 (3) | 0.4593 (8) | 0.044 (4)* | |
H12B | 0.3426 (8) | 0.369 (3) | 0.3659 (8) | 0.040 (3)* | |
C13 | 0.45872 (7) | 0.2725 (2) | 0.39272 (8) | 0.0374 (3) | |
H13A | 0.4913 (9) | 0.197 (3) | 0.4389 (9) | 0.045 (4)* | |
H13B | 0.4594 (8) | 0.161 (3) | 0.3467 (9) | 0.044 (4)* | |
C14 | 0.49438 (7) | 0.5123 (2) | 0.37418 (8) | 0.0383 (3) | |
H14A | 0.4944 (9) | 0.622 (3) | 0.4218 (9) | 0.050 (4)* | |
H14B | 0.4604 (8) | 0.589 (3) | 0.3278 (8) | 0.042 (4)* | |
C15 | 0.57697 (7) | 0.4932 (2) | 0.35263 (8) | 0.0383 (3) | |
H15A | 0.6106 (9) | 0.409 (3) | 0.3983 (9) | 0.047 (4)* | |
H15B | 0.5772 (8) | 0.385 (3) | 0.3040 (8) | 0.044 (4)* | |
C16 | 0.61285 (7) | 0.7340 (2) | 0.33601 (8) | 0.0416 (3) | |
H16A | 0.6112 (9) | 0.842 (3) | 0.3852 (9) | 0.054 (4)* | |
H16B | 0.5799 (10) | 0.814 (3) | 0.2910 (9) | 0.053 (4)* | |
C17 | 0.69572 (9) | 0.7119 (3) | 0.31580 (10) | 0.0540 (4) | |
H17A | 0.7312 (11) | 0.646 (3) | 0.3640 (11) | 0.072 (5)* | |
H17B | 0.6977 (10) | 0.598 (3) | 0.2673 (10) | 0.066 (5)* | |
H17C | 0.7161 (11) | 0.872 (4) | 0.3005 (11) | 0.076 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0355 (4) | 0.0285 (4) | 0.0273 (4) | 0.0019 (3) | 0.0055 (3) | 0.0041 (3) |
N1 | 0.0307 (4) | 0.0240 (4) | 0.0289 (5) | 0.0026 (3) | 0.0066 (3) | 0.0010 (3) |
N2 | 0.0292 (4) | 0.0237 (4) | 0.0251 (4) | 0.0005 (3) | 0.0063 (3) | 0.0006 (3) |
C1 | 0.0261 (5) | 0.0245 (5) | 0.0264 (5) | −0.0041 (4) | 0.0051 (4) | −0.0002 (4) |
C2 | 0.0343 (5) | 0.0253 (5) | 0.0315 (6) | 0.0005 (4) | 0.0049 (4) | 0.0011 (4) |
C3 | 0.0391 (6) | 0.0307 (6) | 0.0307 (6) | −0.0021 (4) | 0.0022 (4) | 0.0053 (4) |
C4 | 0.0376 (6) | 0.0359 (6) | 0.0267 (6) | −0.0055 (4) | 0.0061 (4) | 0.0006 (4) |
C5 | 0.0329 (5) | 0.0288 (5) | 0.0301 (6) | −0.0031 (4) | 0.0087 (4) | −0.0032 (4) |
C6 | 0.0255 (5) | 0.0246 (5) | 0.0284 (5) | −0.0035 (4) | 0.0049 (4) | 0.0012 (4) |
C7 | 0.0255 (5) | 0.0231 (5) | 0.0279 (5) | −0.0033 (4) | 0.0061 (4) | 0.0011 (4) |
C8 | 0.0337 (5) | 0.0235 (5) | 0.0288 (5) | −0.0009 (4) | 0.0071 (4) | −0.0030 (4) |
C9 | 0.0340 (6) | 0.0294 (6) | 0.0299 (6) | 0.0050 (4) | 0.0072 (4) | 0.0000 (4) |
C10 | 0.0321 (5) | 0.0309 (6) | 0.0355 (6) | 0.0020 (4) | 0.0080 (5) | 0.0003 (4) |
C11 | 0.0336 (6) | 0.0365 (6) | 0.0376 (6) | 0.0025 (5) | 0.0090 (5) | 0.0021 (5) |
C12 | 0.0339 (6) | 0.0375 (6) | 0.0408 (7) | −0.0002 (5) | 0.0081 (5) | 0.0009 (5) |
C13 | 0.0347 (6) | 0.0385 (6) | 0.0399 (7) | 0.0005 (5) | 0.0086 (5) | 0.0020 (5) |
C14 | 0.0355 (6) | 0.0377 (7) | 0.0423 (7) | −0.0010 (5) | 0.0070 (5) | −0.0013 (5) |
C15 | 0.0366 (6) | 0.0370 (6) | 0.0423 (7) | −0.0022 (5) | 0.0081 (5) | −0.0007 (5) |
C16 | 0.0389 (6) | 0.0401 (7) | 0.0454 (7) | −0.0055 (5) | 0.0037 (5) | −0.0002 (5) |
C17 | 0.0432 (7) | 0.0588 (9) | 0.0612 (9) | −0.0130 (6) | 0.0111 (7) | 0.0003 (7) |
O1—C7 | 1.2378 (12) | C10—H10A | 0.988 (14) |
N1—C7 | 1.3706 (13) | C10—H10B | 0.996 (14) |
N1—C6 | 1.3920 (13) | C11—C12 | 1.5214 (16) |
N1—H1 | 0.923 (16) | C11—H11A | 1.021 (14) |
N2—C7 | 1.3747 (13) | C11—H11B | 1.009 (14) |
N2—C1 | 1.3944 (13) | C12—C13 | 1.5245 (16) |
N2—C8 | 1.4564 (12) | C12—H12A | 1.017 (14) |
C1—C2 | 1.3823 (14) | C12—H12B | 0.989 (14) |
C1—C6 | 1.3981 (14) | C13—C14 | 1.5197 (16) |
C2—C3 | 1.3958 (16) | C13—H13A | 0.990 (15) |
C2—H2 | 0.974 (14) | C13—H13B | 0.990 (15) |
C3—C4 | 1.3910 (16) | C14—C15 | 1.5239 (16) |
C3—H3 | 1.003 (14) | C14—H14A | 1.004 (16) |
C4—C5 | 1.3940 (16) | C14—H14B | 1.007 (14) |
C4—H4 | 1.004 (13) | C15—C16 | 1.5182 (17) |
C5—C6 | 1.3841 (15) | C15—H15A | 1.014 (15) |
C5—H5 | 0.970 (13) | C15—H15B | 1.013 (15) |
C8—C9 | 1.5246 (15) | C16—C17 | 1.5221 (19) |
C8—H8A | 0.995 (13) | C16—H16A | 1.020 (16) |
C8—H8B | 1.009 (13) | C16—H16B | 0.989 (16) |
C9—C10 | 1.5195 (15) | C17—H17A | 1.017 (19) |
C9—H9A | 1.000 (13) | C17—H17B | 1.033 (18) |
C9—H9B | 0.974 (13) | C17—H17C | 1.00 (2) |
C10—C11 | 1.5269 (15) | ||
O1···N2i | 3.2324 (11) | H8B···H10B | 2.507 (18) |
O1···C1i | 3.2784 (12) | H9A···H11A | 2.550 (19) |
O1···N1ii | 2.8394 (11) | H9B···H11B | 2.53 (2) |
C4···O1iii | 3.2820 (14) | H10A···H12A | 2.55 (2) |
O1···H8B | 2.486 (11) | H10B···H12B | 2.58 (2) |
O1···H1ii | 1.934 (16) | H11A···H13A | 2.58 (2) |
O1···H8Aiv | 2.571 (11) | H11A···H16Av | 2.43 (2) |
H4···O1iii | 2.417 (13) | H11B···H13B | 2.51 (2) |
N1···C2iv | 3.4382 (14) | H12A···H14A | 2.55 (2) |
N1···C8i | 3.3820 (14) | H12A···H15Av | 2.57 (2) |
N2···C7i | 3.3206 (14) | H12B···H14B | 2.53 (2) |
N1···H8Aiv | 2.878 (12) | H13A···H15A | 2.55 (2) |
N1···H8Bi | 2.949 (12) | H13A···H14Av | 2.52 (2) |
N2···H10A | 2.843 (14) | H13B···H15B | 2.57 (2) |
C7···C8i | 3.5550 (15) | H13B···H16Bvii | 2.47 (2) |
C7···C7i | 3.2937 (14) | H14A···H16A | 2.51 (2) |
C2···H17Cv | 2.90 (2) | H14B···H16B | 2.56 (2) |
C7···H1ii | 2.828 (16) | H14B···H16Bvii | 2.54 (2) |
C7···H8Aiv | 2.774 (11) | H15A···H17A | 2.60 (2) |
H2···H9A | 2.572 (19) | H15B···H17B | 2.54 (2) |
H2···H17Avi | 2.34 (2) | ||
C7—N1—C6 | 110.01 (9) | H10A—C10—H10B | 106.7 (11) |
C7—N1—H1 | 120.8 (9) | C12—C11—C10 | 113.68 (10) |
C6—N1—H1 | 129.0 (9) | C12—C11—H11A | 109.9 (8) |
C7—N2—C1 | 109.39 (8) | C10—C11—H11A | 109.0 (8) |
C7—N2—C8 | 123.71 (8) | C12—C11—H11B | 109.0 (8) |
C1—N2—C8 | 126.57 (8) | C10—C11—H11B | 109.0 (8) |
C2—C1—N2 | 131.25 (9) | H11A—C11—H11B | 106.0 (11) |
C2—C1—C6 | 121.63 (9) | C11—C12—C13 | 113.47 (10) |
N2—C1—C6 | 107.11 (8) | C11—C12—H12A | 109.2 (8) |
C1—C2—C3 | 117.07 (10) | C13—C12—H12A | 109.6 (8) |
C1—C2—H2 | 121.9 (8) | C11—C12—H12B | 109.1 (8) |
C3—C2—H2 | 121.0 (8) | C13—C12—H12B | 109.3 (8) |
C4—C3—C2 | 121.36 (10) | H12A—C12—H12B | 105.9 (11) |
C4—C3—H3 | 120.8 (8) | C14—C13—C12 | 113.26 (10) |
C2—C3—H3 | 117.9 (8) | C14—C13—H13A | 109.1 (8) |
C3—C4—C5 | 121.38 (10) | C12—C13—H13A | 109.1 (8) |
C3—C4—H4 | 120.4 (7) | C14—C13—H13B | 110.2 (8) |
C5—C4—H4 | 118.3 (7) | C12—C13—H13B | 108.7 (8) |
C6—C5—C4 | 117.19 (10) | H13A—C13—H13B | 106.1 (12) |
C6—C5—H5 | 120.9 (7) | C13—C14—C15 | 113.93 (10) |
C4—C5—H5 | 121.9 (7) | C13—C14—H14A | 109.3 (9) |
C5—C6—N1 | 132.10 (10) | C15—C14—H14A | 109.1 (9) |
C5—C6—C1 | 121.36 (9) | C13—C14—H14B | 108.6 (8) |
N1—C6—C1 | 106.55 (9) | C15—C14—H14B | 108.7 (8) |
O1—C7—N1 | 127.16 (10) | H14A—C14—H14B | 106.9 (12) |
O1—C7—N2 | 125.96 (9) | C16—C15—C14 | 113.62 (10) |
N1—C7—N2 | 106.88 (8) | C16—C15—H15A | 109.7 (9) |
N2—C8—C9 | 113.76 (9) | C14—C15—H15A | 108.7 (8) |
N2—C8—H8A | 108.7 (7) | C16—C15—H15B | 109.5 (8) |
C9—C8—H8A | 109.7 (7) | C14—C15—H15B | 109.4 (8) |
N2—C8—H8B | 106.3 (7) | H15A—C15—H15B | 105.7 (12) |
C9—C8—H8B | 110.2 (7) | C15—C16—C17 | 112.95 (11) |
H8A—C8—H8B | 108.0 (10) | C15—C16—H16A | 108.4 (9) |
C10—C9—C8 | 114.16 (9) | C17—C16—H16A | 110.6 (9) |
C10—C9—H9A | 109.6 (7) | C15—C16—H16B | 109.0 (9) |
C8—C9—H9A | 109.6 (8) | C17—C16—H16B | 109.6 (9) |
C10—C9—H9B | 109.2 (8) | H16A—C16—H16B | 106.0 (13) |
C8—C9—H9B | 107.1 (8) | C16—C17—H17A | 110.1 (11) |
H9A—C9—H9B | 106.9 (11) | C16—C17—H17B | 110.6 (10) |
C9—C10—C11 | 112.56 (9) | H17A—C17—H17B | 108.8 (14) |
C9—C10—H10A | 108.9 (8) | C16—C17—H17C | 111.0 (11) |
C11—C10—H10A | 109.9 (8) | H17A—C17—H17C | 109.1 (15) |
C9—C10—H10B | 109.7 (8) | H17B—C17—H17C | 107.1 (14) |
C11—C10—H10B | 108.8 (8) | ||
C7—N2—C1—C2 | 177.13 (10) | C6—N1—C7—O1 | 177.92 (9) |
C8—N2—C1—C2 | 3.56 (17) | C6—N1—C7—N2 | −2.09 (11) |
C7—N2—C1—C6 | −2.02 (11) | C1—N2—C7—O1 | −177.48 (9) |
C8—N2—C1—C6 | −175.60 (9) | C8—N2—C7—O1 | −3.68 (15) |
N2—C1—C2—C3 | 179.89 (10) | C1—N2—C7—N1 | 2.53 (11) |
C6—C1—C2—C3 | −1.06 (15) | C8—N2—C7—N1 | 176.33 (8) |
C1—C2—C3—C4 | 0.11 (16) | C7—N2—C8—C9 | 111.38 (11) |
C2—C3—C4—C5 | 0.78 (17) | C1—N2—C8—C9 | −75.91 (12) |
C3—C4—C5—C6 | −0.69 (16) | N2—C8—C9—C10 | −63.87 (12) |
C4—C5—C6—N1 | 179.37 (10) | C8—C9—C10—C11 | −170.56 (9) |
C4—C5—C6—C1 | −0.26 (15) | C9—C10—C11—C12 | −174.11 (10) |
C7—N1—C6—C5 | −178.81 (10) | C10—C11—C12—C13 | −177.01 (10) |
C7—N1—C6—C1 | 0.86 (11) | C11—C12—C13—C14 | −179.20 (10) |
C2—C1—C6—C5 | 1.17 (15) | C12—C13—C14—C15 | −178.58 (10) |
N2—C1—C6—C5 | −179.58 (9) | C13—C14—C15—C16 | −178.72 (11) |
C2—C1—C6—N1 | −178.55 (9) | C14—C15—C16—C17 | 179.15 (11) |
N2—C1—C6—N1 | 0.70 (10) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) x, y+1, z; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) −x+1, y−1/2, −z+1/2. |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1ii | 0.923 (16) | 1.932 (16) | 2.8393 (12) | 167.0 (13) |
C8—H8A···O1viii | 0.995 (13) | 2.573 (13) | 3.4648 (12) | 149.1 (9) |
C17—H17C···Cg2v | 1.00 (2) | 2.985 (19) | 3.6656 (17) | 126.0 (14) |
Symmetry codes: (ii) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (viii) x, y−1, z. |
Acknowledgements
Author contribution are as follows. Conceptualization, AS, MLT, NKS; methodology, BA and YAE; investigation, YAE, IE, JTM and TH; writing (original draft), JTM, TH and NKS; writing (review and editing of the manuscript), YAE and IE; visualization, MLT and EME; resources, EME and AS; supervision, BA and NKS.
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Barreca, M. L., Rao, A., De Luca, L., Iraci, N., Monforte, A. M., Maga, G., De Clercq, E., Pannecouque, C., Balzarini, J. & Chimirri, A. (2007). Bioorg. Med. Chem. Lett. 17, 1956–1960. CrossRef PubMed CAS Google Scholar
Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012a). Acta Cryst. E68, o1276. CSD CrossRef IUCr Journals Google Scholar
Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012b). Acta Cryst. E68, o3069. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340–o3341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khodarahmi, G. A., Chen, C. S., Hakimelahi, G. H., Tseng, C. T. & Chern, J. W. (2005). J. Iran. Chem. Soc. 2, 124–134. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. Web of Science CrossRef PubMed CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mamedov, V. A., Zhukova, N. A. & Sinyashin, O. G. (2017). Mendeleev Commun. 27, 1–11. CrossRef CAS Google Scholar
Mavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Kondeva, M. S. & Micheva, M. K. (2005). Bioorg. Med. Chem. 13, 5550–5559. CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Essassi, E. M., El Ammari, L., Fronczek, F. R. & Venkatraman, R. (2011d). Acta Cryst. E67, o669. CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011e). Acta Cryst. E67, o2937. CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Ladeira, S., Essassi, E. M. & Ng, S. W. (2011c). Acta Cryst. E67, o613. CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o558. CSD CrossRef IUCr Journals Google Scholar
Saber, A., Sebbar, N. K. & Essassi, E. M. (2019). J. Mar. Chem. Heterocycl. 18, 1–50. Google Scholar
Saber, A., Sebbar, N. K., Hökelek, T., Labd Taha, M., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020a). Acta Cryst. E76, 95–101. CSD CrossRef IUCr Journals Google Scholar
Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020b). J. Mol. Struct. 1200, 127174. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srhir, M., Sebbar, N. K., Hökelek, T., Moussaif, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 370–376. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatraman, R. & Fronczek, F. R. (2015). CSD Communication (refcode QUDJAC). CCDC, Cambridge, England. Google Scholar
Vira, J. J., Patel, D. R., Bhimani, N. V. & Ajudia, P. A. (2010). Pharma Chem. 2, 178–183. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.