research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­(3,14-di­ethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosa­ne)copper(II) dichloride tetra­hydrate

crossmark logo

aBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 April 2021; accepted 24 April 2021; online 30 April 2021)

The crystal structure of the novel hydrated CuII salt, [Cu(L)(H2O)2]Cl2·4H2O (L = 3,14-diethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosane, C22H44N4) has been determined using synchrotron radiation. The asymmetric unit contains one half of the [Cu(L)(H2O)2]2+ cation (completed by crystallographic inversion symmetry), one chloride anion and two lattice water mol­ecules. The copper(II) atom exists in a tetra­gonally distorted octa­hedral environment with the four N atoms of the macrocyclic ligand in equatorial and two O atoms from water mol­ecules in axial positions. The latter exhibit a long axial Cu—O bond length of 2.7866 (16) Å due to the Jahn–Teller distortion. The macrocyclic ring adopts a stable trans-III conformation with typical Cu—N bond lengths of 2.0240 (11) and 2.0441 (3) Å. The complex is stabilized by hydrogen bonds formed between the O atoms of coordinated water mol­ecules and the NH groups as donors, and chloride anions as acceptors. The chloride anions are further connected to the lattice water solvent molecules through O—H⋯Cl hydrogen bonds, giving rise to a three-dimensional network structure.

1. Chemical context

The macrocycle 3,14-diethyl-2,6,13,17-tetra­aza­tri­cyclo(16.4.0.07,12)docosane (C22H44N4, L) contains a cyclam backbone with two cyclo­hexane subunits and two ethyl groups attached to carbon atoms of the propyl chains that bridge opposite pairs of N atoms. The syntheses, crystal structures and spectroscopic properties of numerous metal complexes with this ligand have previously been reported, viz. [Ni(L)(NO3)2] (Subhan & Choi, 2014[Subhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410-415.]), [Ni(L)(N3)2] (Lim et al., 2015[Lim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43-48.]), [Ni(L)(NCS)2] (Lim & Choi, 2017[Lim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361-368.]), [Cu(L)(ClO4)2] (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]), [Cu(L)(NO3)2] and [Cu(L)(H2O)2](SCN)2 (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]). In these complexes, CuII or NiII cations have a tetra­gonally distorted octa­hedral coordination environment with the four N atoms of the macrocyclic ligand in the equatorial position and O/N atoms of anions or water mol­ecules in the axial position. In contrast, [Ni(L)](ClO4)2·2H2O (Subhan & Choi, 2014[Subhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410-415.]) and [Nix(H2(1–x)L)]Cl2·2H2O (x = 0.34) (Moon et al., 2020[Moon, D., Jeon, J. & Choi, J.-H. (2020). J. Coord. Chem. 73, 2029-2041.]) have a square-planar coordination environment around each NiII ion that binds to the four nitro­gen atoms of the macrocyclic ligand. The macrocyclic ligands in these CuII and NiII complexes adopt the most stable trans-III conformation. The crystal structures of (L)·NaClO4 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [H2L](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [H2L]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]), [H2L](NO3)2·2H2O (Moon et al., 2019[Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921-924.]) and [H4L]Cl4·4H2O (Moon & Choi, 2021[Moon, D. & Choi, J.-H. (2021). Acta Cryst. E77, 213-216.]) have also been determined.

[Scheme 1]

We report here synthesis and structural characterization of the novel complex [Cu(L)(H2O)2]Cl2·4H2O, (I)[link], in order to obtain detailed information on the conformation of the macrocyclic ligand, and the bonding mode of water mol­ecules and chloride anions in the crystal.

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The CuII complex cation lies across a crystallographic inversion center, and hence the asymmetric unit consists of one half of the [Cu(L)(H2O)2]2+ cation, one chloride anion and two lattice water solvents. The macrocyclic skeleton adopts the most stable trans-III conformation. The Cu—N bond lengths [2.0240 (11)–2.0441 (3) Å] are within the typical range, and are comparable to those observed in related complexes, e.g. in [Cu(L)(ClO4)2] [2.01064 (18)–2.0403 (18) Å] (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]), [Cu(L)(NO3)2] [2.021 (2)–2.046 (2) Å] and [Cu(L)(H2O)2](SCN)2 [2.014 (2)–2.047 (2) Å] (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]). The coordination environment of the copper(II) atom may be considered as square-planar or octa­hedral with a tetra­gonal distortion, depending upon whether or not the remote oxygen atoms of the water mol­ecules are considered to be bonded to the copper(II) atom. The concept of a semi-coordinating atom was introduced to describe a situation where a polyatomic anion or ligand occupies the long axial position in an otherwise square-planar copper(II) complex with an atom in the distance range of 2.5–3.0 Å (Murphy & Hathaway, 2003[Murphy, B. & Hathaway, B. J. (2003). Coord. Chem. Rev. 243, 237-262.]). The axial Cu1—O1 distance of 2.7866 (16) Å is longer than corresponding distances in [Cu(L)(ClO4)2] [2.762 (2) Å] (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]), [Cu(L)(NO3)2] [2.506 (2) Å] and [Cu(L)(H2O)2](SCN)2 [2.569 (2) Å] (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]). The tetra­gonally elongated octa­hedron is a common polyhedron around six-coordinate CuII atoms in complexes (involving also non-equivalent ligands), and the distortion arises from the Jahn–Teller effect operative on the metal cation with its d9 electronic configuration (Murphy & Hathaway, 2003[Murphy, B. & Hathaway, B. J. (2003). Coord. Chem. Rev. 243, 237-262.]).

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions; primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z + 1).

The two ethyl groups on the six-membered chelate rings and the two –(CH2)4– parts of the cyclo­hexane backbones are anti with respect to the macrocyclic plane. As usually observed, the five-membered chelate rings adopt a gauche conformation whereas the six-membered rings are in chair conformations. The ethyl groups are attached axially as substituents to the six-membered rings, while the methyl­ene C substituents at the five-membered rings are equatorial. The cyclo­hexane rings are also in a chair conformation, with the N substituents in equatorial positions.

3. Supra­molecular features

Numerical details of the hydrogen bonding are given in Table 1[link]. The supra­molecular structure involves inter­actions between the NH groups of the macrocycle and OH groups of the semi-coordinated water mol­ecules as donors, and the chloride anions and the O atoms of the lattice water mol­ecules as acceptors, resulting in a three-dimensional network structure. The chloride anions remain outside the coordination sphere [Cu⋯Cl (4.523 Å)] and are connected both to the semi-coordinated and to the lattice water solvents through O—H⋯Cl hydrogen bonds. The lattice water solvents are additionally linked to the semi-coordinated water mol­ecules and other lattice water solvents via O—H⋯O hydrogen bonds. The crystal packing of (I)[link] in a view perpendicular to the bc plane is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.99 2.45 3.4383 (14) 173
N2—H2⋯Cl1i 0.99 2.54 3.4962 (14) 163
O1—H1O1⋯Cl1ii 0.92 (1) 2.26 (1) 3.1799 (19) 173 (2)
O1—H2O1⋯Cl1 0.93 (1) 2.21 (1) 3.1153 (15) 166 (2)
O2—H1O2⋯O1 0.93 (1) 1.98 (1) 2.902 (2) 172 (3)
O2—H2O2⋯O3 0.93 (1) 1.94 (2) 2.794 (3) 152 (3)
O3—H1O3⋯Cl1iii 0.93 (1) 2.39 (2) 3.266 (2) 157 (3)
O3—H2O3⋯O2iv 0.93 (1) 1.87 (1) 2.796 (4) 170 (3)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+2, -y+1, -z+1]; (iii) [x, y, z-1]; (iv) [-x+2, -y+1, -z].
[Figure 2]
Figure 2
Crystal packing of (I)[link], viewed perpendicular to the bc plane. Dashed lines represent O—H⋯Cl (purple), O—H⋯O (cyan), and N—H⋯Cl (green) hydrogen-bonding inter­actions, respectively. H atoms bound to C atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural (Version 5.42, update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 21 hits for organic and transition-metal compounds containing the macrocycle (L, C22H44N4). The hits include (L)·NaClO4 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [H2L](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [H2L]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]), [H2L](NO3)2·2H2O (Moon et al., 2019[Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921-924.]), [H4L]Cl4·4H2O (Moon & Choi, 2021[Moon, D. & Choi, J.-H. (2021). Acta Cryst. E77, 213-216.]), [Cu(L)(ClO4)2] (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]), [Cu(L)(NO3)2] and [Cu(L)(H2O)2](SCN)2 (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]). Until now, no crystal structure of the [Cu(L)(H2O)2]2+ cation with chloride counter-anions and four lattice water mol­ecules has been deposited.

5. Synthesis and crystallization

Ethyl vinyl ketone (97%), trans-1,2-cyclo­hexa­nedi­amine (99%) and copper(II) chloride dihydrate (99%) were purchased from Sigma-Aldrich and were used as received. All other chemicals were analytical reagent grade. 3,14-Diethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane (L) was prepared according to a published procedure (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]). A solution of the macrocycle L (0.091 g, 0.25 mmol) in water (10 mL) was added dropwise to a stirred solution of CuCl2·2H2O (0.085 g, 0.5 mmol) in water (20 mL). After cooling to 298 K, the pH was adjusted to 3.0 by the addition of 1.0 M HCl. A mixture of colorless and violet crystals had formed from the solution over the next few days. To the mixture were added 30 mL of MeOH under stirring, and the stirring was continued for 30 min. The colourless crystals of [H4L]Cl4·4H2O (Moon & Choi, 2021[Moon, D. & Choi, J.-H. (2021). Acta Cryst. E77, 213-216.]) were removed by filtration. The filtrate was left at 298 K. After few days, plate-like violet single crystals of (I)[link] suitable for X-ray analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C- and N-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.99 Å, and with an N—H distance of 0.99 Å with Uiso(H) values of 1.2 and 1.5 Ueq of the parent atoms, respectively. The hydrogen atoms of the water mol­ecules were found in difference-Fourier maps, and were restrained using DFIX and DANG commands during the least-squares refinement with Uiso(H) values of 1.2Ueq of the oxygen atom.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C22H44N4)(H2O)2]Cl2·4H2O
Mr 607.14
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 220
a, b, c (Å) 8.0220 (16), 10.020 (2), 10.354 (2)
α, β, γ (°) 81.36 (3), 72.84 (3), 69.71 (3)
V3) 744.8 (3)
Z 1
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.63
Crystal size (mm) 0.12 × 0.12 × 0.04
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.597, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8262, 4141, 4013
Rint 0.019
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.10
No. of reflections 4141
No. of parameters 179
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.88
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski et al., 2003); data reduction: HKL3000sm (Otwinowski et al., 2003); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaqua(3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane)copper(II) dichloride tetrahydrate top
Crystal data top
[Cu(C22H44N4)(H2O)2]Cl2·4H2OZ = 1
Mr = 607.14F(000) = 327
Triclinic, P1Dx = 1.354 Mg m3
a = 8.0220 (16) ÅSynchrotron radiation, λ = 0.610 Å
b = 10.020 (2) ÅCell parameters from 49370 reflections
c = 10.354 (2) Åθ = 0.4–33.7°
α = 81.36 (3)°µ = 0.63 mm1
β = 72.84 (3)°T = 220 K
γ = 69.71 (3)°Plate, violet
V = 744.8 (3) Å30.12 × 0.12 × 0.04 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
4013 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.019
ω scanθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski et al., 2003)
h = 1111
Tmin = 0.597, Tmax = 1.000k = 1313
8262 measured reflectionsl = 1414
4141 independent reflections
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.074P)2 + 0.2905P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4141 reflectionsΔρmax = 0.86 e Å3
179 parametersΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.5000000.5000000.01142 (9)
N10.51043 (14)0.55835 (11)0.67558 (11)0.01005 (19)
H10.6155850.5955920.6521990.012*
N20.31184 (14)0.69854 (11)0.49340 (11)0.00997 (19)
H20.1919040.6815990.5319170.012*
C10.71839 (18)0.32162 (13)0.73164 (14)0.0148 (2)
H1A0.7554230.2646110.8101370.018*
H1B0.8164290.3617340.6825450.018*
C20.5438 (2)0.44417 (14)0.78296 (13)0.0167 (2)
H2A0.4385760.4083460.8144500.020*
H2B0.5548000.4835750.8600140.020*
C30.34162 (16)0.68194 (12)0.72187 (12)0.0110 (2)
H30.2339450.6473360.7531810.013*
C40.3491 (2)0.75727 (15)0.83728 (14)0.0188 (3)
H4A0.3523310.6921320.9178710.023*
H4B0.4617600.7836610.8109830.023*
C50.1815 (2)0.89088 (16)0.87053 (16)0.0224 (3)
H5A0.0696280.8635170.9049810.027*
H5B0.1918750.9398170.9415310.027*
C60.1665 (2)0.99167 (15)0.74592 (16)0.0209 (3)
H6A0.2739381.0249740.7157220.025*
H6B0.0561731.0749220.7692560.025*
C70.15596 (18)0.91777 (14)0.63083 (15)0.0166 (3)
H7A0.0420530.8930140.6575770.020*
H7B0.1533370.9830520.5503020.020*
C80.32144 (16)0.78275 (12)0.59713 (12)0.0103 (2)
H80.4340510.8108980.5618570.012*
C90.29426 (17)0.77801 (12)0.36087 (13)0.0123 (2)
H90.1757860.8567330.3790430.015*
C100.4461 (2)0.84486 (16)0.29985 (15)0.0206 (3)
H10A0.5658650.7703390.2909270.025*
H10B0.4369770.9136870.3616420.025*
C110.4366 (3)0.9202 (2)0.16157 (18)0.0339 (4)
H11A0.4711720.8498920.0953030.051*
H11B0.5205610.9755250.1350680.051*
H11C0.3120580.9829780.1663520.051*
Cl10.85009 (5)0.71364 (5)0.60787 (4)0.02792 (11)
O10.81875 (19)0.57072 (14)0.37263 (14)0.0307 (3)
H1O10.919 (2)0.4892 (16)0.370 (3)0.037*
H2O10.823 (3)0.628 (2)0.433 (2)0.037*
O20.9753 (3)0.6599 (2)0.09693 (19)0.0573 (5)
H1O20.919 (4)0.641 (4)0.1865 (13)0.069*
H2O20.897 (4)0.678 (4)0.041 (2)0.069*
O30.7816 (3)0.6189 (3)0.06985 (19)0.0642 (6)
H1O30.813 (5)0.665 (3)0.154 (2)0.077*
H2O30.855 (4)0.5235 (15)0.068 (3)0.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01753 (13)0.00598 (12)0.00936 (12)0.00037 (8)0.00540 (8)0.00249 (7)
N10.0121 (4)0.0065 (4)0.0101 (4)0.0000 (3)0.0032 (3)0.0025 (3)
N20.0125 (4)0.0069 (4)0.0112 (5)0.0020 (3)0.0045 (4)0.0025 (3)
C10.0184 (6)0.0116 (5)0.0161 (6)0.0007 (4)0.0110 (5)0.0022 (4)
C20.0239 (6)0.0112 (5)0.0110 (5)0.0002 (5)0.0055 (5)0.0009 (4)
C30.0113 (5)0.0086 (5)0.0113 (5)0.0002 (4)0.0021 (4)0.0038 (4)
C40.0223 (6)0.0163 (6)0.0152 (6)0.0024 (5)0.0066 (5)0.0101 (5)
C50.0214 (6)0.0199 (6)0.0207 (7)0.0029 (5)0.0029 (5)0.0139 (5)
C60.0216 (6)0.0119 (6)0.0291 (7)0.0025 (5)0.0105 (5)0.0120 (5)
C70.0156 (6)0.0098 (5)0.0232 (6)0.0033 (4)0.0087 (5)0.0079 (5)
C80.0114 (5)0.0068 (5)0.0128 (5)0.0005 (4)0.0043 (4)0.0038 (4)
C90.0155 (5)0.0078 (5)0.0135 (5)0.0003 (4)0.0077 (4)0.0004 (4)
C100.0295 (7)0.0207 (6)0.0173 (6)0.0149 (6)0.0095 (5)0.0054 (5)
C110.0573 (11)0.0326 (9)0.0209 (7)0.0262 (8)0.0163 (7)0.0126 (6)
Cl10.02403 (19)0.0315 (2)0.0321 (2)0.01328 (15)0.00442 (15)0.00825 (16)
O10.0371 (7)0.0302 (6)0.0299 (6)0.0124 (5)0.0141 (5)0.0017 (5)
O20.0797 (13)0.0716 (12)0.0341 (8)0.0444 (11)0.0144 (8)0.0048 (8)
O30.0475 (10)0.1017 (17)0.0319 (8)0.0083 (10)0.0118 (7)0.0040 (9)
Geometric parameters (Å, º) top
Cu1—N1i2.0240 (11)C5—C61.521 (2)
Cu1—N12.0240 (11)C5—H5A0.9800
Cu1—N22.0441 (13)C5—H5B0.9800
Cu1—N2i2.0441 (13)C6—C71.5310 (19)
Cu1—O1i2.7866 (16)C6—H6A0.9800
Cu1—O12.7866 (16)C6—H6B0.9800
N1—C21.4826 (17)C7—C81.5288 (18)
N1—C31.4932 (16)C7—H7A0.9800
N1—H10.9900C7—H7B0.9800
N2—C81.4958 (15)C8—H80.9900
N2—C91.4983 (16)C9—C101.5216 (19)
N2—H20.9900C9—H90.9900
C1—C21.5217 (19)C10—C111.525 (2)
C1—C9i1.5295 (17)C10—H10A0.9800
C1—H1A0.9800C10—H10B0.9800
C1—H1B0.9800C11—H11A0.9700
C2—H2A0.9800C11—H11B0.9700
C2—H2B0.9800C11—H11C0.9700
C3—C81.5272 (18)O1—H1O10.924 (9)
C3—C41.5315 (18)O1—H2O10.928 (9)
C3—H30.9900O2—H1O20.927 (10)
C4—C51.528 (2)O2—H2O20.931 (10)
C4—H4A0.9800O3—H1O30.931 (10)
C4—H4B0.9800O3—H2O30.934 (10)
N1i—Cu1—N1180.0C3—C4—H4B109.5
N1i—Cu1—N295.42 (5)H4A—C4—H4B108.1
N1—Cu1—N284.58 (5)C6—C5—C4111.05 (12)
N1i—Cu1—N2i84.58 (5)C6—C5—H5A109.4
N1—Cu1—N2i95.42 (5)C4—C5—H5A109.4
N2—Cu1—N2i180.0C6—C5—H5B109.4
N1i—Cu1—O1i88.11 (5)C4—C5—H5B109.4
N1—Cu1—O1i91.89 (5)H5A—C5—H5B108.0
N2—Cu1—O1i81.60 (5)C5—C6—C7111.09 (12)
N2i—Cu1—O1i98.40 (5)C5—C6—H6A109.4
N1i—Cu1—O191.89 (5)C7—C6—H6A109.4
N1—Cu1—O188.11 (5)C5—C6—H6B109.4
N2—Cu1—O198.40 (5)C7—C6—H6B109.4
N2i—Cu1—O181.60 (5)H6A—C6—H6B108.0
O1i—Cu1—O1180.00 (5)C8—C7—C6110.69 (11)
C2—N1—C3113.32 (10)C8—C7—H7A109.5
C2—N1—Cu1116.78 (8)C6—C7—H7A109.5
C3—N1—Cu1107.51 (8)C8—C7—H7B109.5
C2—N1—H1106.2C6—C7—H7B109.5
C3—N1—H1106.2H7A—C7—H7B108.1
Cu1—N1—H1106.2N2—C8—C3106.51 (9)
C8—N2—C9115.20 (9)N2—C8—C7113.49 (10)
C8—N2—Cu1107.77 (8)C3—C8—C7111.87 (11)
C9—N2—Cu1120.89 (8)N2—C8—H8108.3
C8—N2—H2103.6C3—C8—H8108.3
C9—N2—H2103.6C7—C8—H8108.3
Cu1—N2—H2103.6N2—C9—C10111.93 (10)
C2—C1—C9i116.20 (11)N2—C9—C1i108.49 (10)
C2—C1—H1A108.2C10—C9—C1i114.34 (11)
C9i—C1—H1A108.2N2—C9—H9107.2
C2—C1—H1B108.2C10—C9—H9107.2
C9i—C1—H1B108.2C1i—C9—H9107.2
H1A—C1—H1B107.4C9—C10—C11112.89 (13)
N1—C2—C1111.40 (11)C9—C10—H10A109.0
N1—C2—H2A109.3C11—C10—H10A109.0
C1—C2—H2A109.3C9—C10—H10B109.0
N1—C2—H2B109.3C11—C10—H10B109.0
C1—C2—H2B109.3H10A—C10—H10B107.8
H2A—C2—H2B108.0C10—C11—H11A109.5
N1—C3—C8106.11 (10)C10—C11—H11B109.5
N1—C3—C4113.33 (10)H11A—C11—H11B109.5
C8—C3—C4111.49 (10)C10—C11—H11C109.5
N1—C3—H3108.6H11A—C11—H11C109.5
C8—C3—H3108.6H11B—C11—H11C109.5
C4—C3—H3108.6Cu1—O1—H1O1108.4 (16)
C5—C4—C3110.76 (12)Cu1—O1—H2O1103.4 (16)
C5—C4—H4A109.5H1O1—O1—H2O1106.2 (16)
C3—C4—H4A109.5H1O2—O2—H2O2113 (2)
C5—C4—H4B109.5H1O3—O3—H2O3111 (2)
C3—N1—C2—C1179.24 (10)C9—N2—C8—C757.28 (14)
Cu1—N1—C2—C154.98 (13)Cu1—N2—C8—C7164.43 (9)
C9i—C1—C2—N175.35 (15)N1—C3—C8—N257.32 (12)
C2—N1—C3—C8175.98 (10)C4—C3—C8—N2178.85 (10)
Cu1—N1—C3—C845.40 (10)N1—C3—C8—C7178.14 (10)
C2—N1—C3—C461.34 (14)C4—C3—C8—C754.31 (14)
Cu1—N1—C3—C4168.07 (9)C6—C7—C8—N2175.13 (11)
N1—C3—C4—C5174.44 (11)C6—C7—C8—C354.58 (15)
C8—C3—C4—C554.79 (16)C8—N2—C9—C1054.25 (14)
C3—C4—C5—C656.45 (16)Cu1—N2—C9—C1078.16 (12)
C4—C5—C6—C757.37 (16)C8—N2—C9—C1i178.65 (10)
C5—C6—C7—C856.05 (16)Cu1—N2—C9—C1i48.93 (12)
C9—N2—C8—C3179.19 (9)N2—C9—C10—C11177.17 (13)
Cu1—N2—C8—C340.90 (10)C1i—C9—C10—C1153.30 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.992.453.4383 (14)173
N2—H2···Cl1ii0.992.543.4962 (14)163
O1—H1O1···Cl1iii0.92 (1)2.26 (1)3.1799 (19)173 (2)
O1—H2O1···Cl10.93 (1)2.21 (1)3.1153 (15)166 (2)
O2—H1O2···O10.93 (1)1.98 (1)2.902 (2)172 (3)
O2—H2O2···O30.93 (1)1.94 (2)2.794 (3)152 (3)
O3—H1O3···Cl1iv0.93 (1)2.39 (2)3.266 (2)157 (3)
O3—H2O3···O2v0.93 (1)1.87 (1)2.796 (4)170 (3)
Symmetry codes: (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x, y, z1; (v) x+2, y+1, z.
 

Acknowledgements

The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

Funding information

This work was supported by a Research Grant from Andong National University.

References

First citationAree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481–3491.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2021). Acta Cryst. E77, 213–216.  CrossRef IUCr Journals Google Scholar
First citationMoon, D., Jeon, J. & Choi, J.-H. (2020). J. Coord. Chem. 73, 2029–2041.  CrossRef CAS Google Scholar
First citationMoon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921–924.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.  CSD CrossRef IUCr Journals Google Scholar
First citationMurphy, B. & Hathaway, B. J. (2003). Coord. Chem. Rev. 243, 237–262.  CrossRef CAS Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds