research communications
H-4,6-epoxy-1H-cyclopenta[c]pyridin-1-one
and Hirshfeld surface analysis of 4,5-dibromo-2-(4-methoxyphenyl)-2,3,4,4a,5,6,7,7a-octahydro-1aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
The molecule of the title compound, C15H15Br2NO3, comprises a fused tricyclic system consisting of two five-membered rings (cyclopentane and tetrahydrofuran) and one six-membered ring (tetrahydropyridinone). Both five-membered rings of the tricyclic system have envelope conformations, and the conformation of the six-membered cycle is intermediate between chair and half-chair. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds and C—H⋯π, C—Br⋯π and C⋯O interactions into double layers. The layers are connected into a three-dimensional network by van der Waals interactions.
Keywords: crystal structure; epoxyisoindole group; hydrogen bond; halogen bond; non-covalent interactions; Hirshfeld surface analysis.
CCDC reference: 2053095
1. Chemical context
Isoindoles are important structural units of many natural products and are widely used as drugs and as building blocks for the construction of new N-containing or functional materials (Nadirova et al., 2019; Zubkov et al., 2011, 2014, 2018). The biological and physical properties of isoindoles depend on the attached functional groups (Krishna et al., 2021; Zaytsev et al., 2017, 2019, 2020). Thus, the functionalization of isoindole moieties at the donor/acceptor sites for non-covalent bonding can improve their biological and photophysical properties as well as their coordination ability (Wicholas et al., 2006).
On the other hand, non-covalent interactions, such as hydrogen, aerogen, halogen, chalcogen, pnictogen, tetrel and icosagen bonds, as well as n–π*, π–π stacking, π–cation, π–anion, hydrophobic interactions, among others, have recently also attracted much attention and have been demonstrated to play a prominent role in synthesis, catalysis, supramolecular chemistry, molecular recognition, biological systems, functional materials, etc. (Asadov et al., 2016; Gurbanov et al., 2017, 2018; Karmakar et al., 2017; Kopylovich et al., 2011; Ma et al., 2017a,b; 2020; Mahmudov et al., 2010, 2012, 2013, 2019, 2020; Mizar et al., 2012; Sutradhar et al., 2015, 2016). Halogen bonding is a rather spread phenomenon since halogen atoms or ions can form short non-bonding contacts with electron acceptors, electron donors or be interconnected due to anisotropic charge distribution in halogen atoms (Afkhami et al., 2017; Maharramov et al., 2018; Mahmoudi et al., 2017, 2019; Shixaliyev et al., 2014). In fact, functionalization of isoindoles with donor or acceptor sites for non-covalent bonding greatly affects their supramolecular arrangements (Gurbanov et al., 2021).
In a continuation of our work in this direction, we have functionalized a new isoindole (1) (Zaytsev et al., 2020) by reaction with bromine yielding 4,5-dibromo-2-(4-methoxyphenyl)-2,3,4,4a,5,6,7,7a-octahydro-1H-4,6-epoxy-1H-cyclopenta[c]pyridin-1-one (2; Fig. 1), which provides examples of C—Br⋯O halogen bonds as well as of C—H⋯O and C—H⋯π types of intermolecular hydrogen bonds.
2. Structural commentary
As shown in Fig. 2, the molecule of the title compound, 2, comprises a fused tricyclic system containing two five-membered rings (cyclopentane C4–C7/C7A and tetrahydrofuran C3A/C4–C6/O8) and one six-membered ring (tetrahydropyridinone C1/N2/C3/C3A/C4/C7A). Both five-membered rings of the tricyclic fragment have envelope conformations with the C5 atom as the flap, and the six-membered ring adopts a flattened chair conformation with the N2 and C4 atoms displaced by 0.276 (3) and −0.670 (4) Å, respectively, from the mean plane through the remaining four atoms. The environment of atom N2, being close to trigonal–planar, is slightly pyramidalized due to steric reasons [the sum of bond angles at N2 is 356.7 (5)°]. The dihedral angle between the mean planes of the tetrahydropyridinone and benzene rings is 82.82 (16)°.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by intermolecular C—H⋯O hydrogen bonds, C—H⋯π, C—Br⋯π and C⋯O interactions into double layers parallel to (001) (Tables 1 and 2; Figs. 3, 4 and 5). The layers are further connected into a three-dimensional network by van der Waals interactions.
|
|
The Hirshfeld surface for 2 mapped over dnorm and the associated two-dimensional fingerprint plots are shown in Fig. 6. All of them were generated using CrystalExplorer17 (Turner et al., 2017). Red spots on the Hirshfeld surface mapped over dnorm in the colour range −0.2469 to 1.1913 a.u. confirm the intermolecular contacts (Tables 1 and 2). The fingerprint plots are given for all contacts and those delineated into H⋯H (41.1%; Fig. 6b), Br⋯H/H⋯Br (24.5%; Fig. 6c), O⋯H/H⋯O (16.9%; Fig. 6d) and C⋯H/H⋯C (8.2%; Fig. 6e) contacts. All contributions to the Hirshfeld surface are given in Table 3. The large number of H⋯H, Br⋯H/H⋯Br and O⋯H/H⋯O interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
|
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) reveals two compounds containing the octahydro-1H-4,6-epoxycyclopenta[c]pyridin-1-one skeleton, viz. methyl rac-(1S*,3R*,7R*,8R*,9R*,10S*)-3,9-diacetoxy-6-oxo-5-phenyl-2-oxa-5-azatricyclo[5.2.1.03,8]decane-10-carboxylate ethanol solvate (refcode RUJJUC; Gurbanov et al., 2009) and methyl rac-(1S*,2R*,4R*,13S*,14R*,15R*,16S*,117S*)-1,16-diacetoxy-12-oxo-4-(2-oxopyrrolidin-1-yl)-18-oxa-11-azapentacyclo[13.2.1.02,11.05,10.013,17]octadeca-5,7,9-triene-14-carboxylate sesquihydrate (HUGJUP; Gurbanov et al., 2010).
The racemic crystal of RUJJUC consists of enantiomeric pairs with the configurations rac-4R*,4aR*,5R*,6S*,7S*,7aR*. The ethanol solvate molecule is bound to the molecule of RUJJUC by a strong O—H⋯O hydrogen bond. In the crystal of HUGJUP, there are three O—H⋯O hydrogen bonds, which link the organic molecules and water molecules into layers parallel to (001). The layers are further linked into a three-dimensional framework by attractive intermolecular carbonyl–carbonyl interactions.
5. Synthesis and crystallization
A solution of isoindolone 1 (1.2 mmol) and bromine (1.75 mmol) in dry chloroform (3 mL) was stirred for 5 h (TLC control, EtOAc–hexane, 1:1). The reaction mixture was poured into H2O (30 mL) and extracted with CHCl3 (3 × 20 mL). The combined extracts were dried over anhydrous Na2SO4 and concentrated in vacuo. The obtained solid was recrystallized by slow evaporation from EtOH to give single crystals of dibromide 2 suitable for X-ray analysis. Colourless needles, yield 0.42 g (86%). M.p. > 478 K (decomposition). IR (KBr), ν (cm−1): 1671 (N—C=O), 610 (C—Br). 1H NMR (DMSO-d6, 700.1 MHz, 298 K): δ = 7.19 (d, 2H, H2, H6 H-Ph, J = 8.8), 6.94 (d, 2H, H3, H5 H-Ph, J = 8.8), 4.92 (s, 1H, H-6), 4.62 (d, 1H, J = 13.1), 4.11 (d, 1H, H-3, J = 13.1), 4.61 (d, 1H, H-5), 3.57 (s, 3H, OCH3), 3.67 (d, 1H, H-4a, J = 3.9), 2.93 (dt, 1H, H-7a, J = 3.9, J = 11.9), 2.41 (t, 1H, H-7exo, J = 11.9), 1.53 (dd, 1H, H-7endo, J = 3.9, J = 11.9). 13C NMR (DMSO-d6, 176.0 MHz, 298 K): δ = 169.7, 157.8, 133.7, 127.4 (2C), 114.1 (2C), 99.3, 86.0, 61.0, 55.3, 51.7, 48.5, 39.0, 36.4. MS (APCI): m/z = 420 [M + H]+ (81Br), 418 [M + H]+ (81Br, 79Br), 416 [M + H]+ (79Br).
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically (C—H = 0.93 − 0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). Owing to poor agreement between observed and calculated intensities, four outliers (6 0 2, 1 2 0, 0 3 3 and 0 0 6) were omitted from the final cycles of refinement.
details are summarized in Table 4Supporting information
CCDC reference: 2053095
https://doi.org/10.1107/S2056989021003273/yk2149sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021003273/yk2149Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021003273/yk2149Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C15H15Br2NO3 | F(000) = 824 |
Mr = 417.10 | Dx = 1.853 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0238 (12) Å | Cell parameters from 2677 reflections |
b = 6.4316 (7) Å | θ = 2.9–24.4° |
c = 19.463 (2) Å | µ = 5.43 mm−1 |
β = 96.618 (4)° | T = 296 K |
V = 1495.1 (3) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.12 × 0.06 mm |
Bruker Kappa APEXII area-detector diffractometer | 2522 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 27.5°, θmin = 3.4° |
Tmin = 0.461, Tmax = 0.736 | h = −15→15 |
13519 measured reflections | k = −8→8 |
3429 independent reflections | l = −24→25 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.868P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3429 reflections | Δρmax = 1.30 e Å−3 |
190 parameters | Δρmin = −0.62 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.69848 (3) | −0.16042 (6) | 0.55820 (2) | 0.04500 (13) | |
Br2 | 0.94126 (3) | −0.12067 (7) | 0.67093 (2) | 0.04941 (14) | |
O1 | 0.51267 (19) | 0.4036 (4) | 0.75946 (12) | 0.0386 (6) | |
O2 | 0.0858 (2) | 0.5884 (5) | 0.57203 (14) | 0.0504 (7) | |
O8 | 0.75480 (19) | 0.2430 (4) | 0.60541 (12) | 0.0349 (5) | |
N2 | 0.5178 (2) | 0.2933 (4) | 0.64953 (13) | 0.0284 (6) | |
C1 | 0.5603 (3) | 0.3115 (5) | 0.71658 (17) | 0.0273 (7) | |
C3A | 0.6814 (3) | 0.0868 (5) | 0.62134 (16) | 0.0289 (7) | |
C3 | 0.5590 (3) | 0.1411 (5) | 0.60289 (17) | 0.0323 (8) | |
H3A | 0.548416 | 0.195612 | 0.556131 | 0.039* | |
H3B | 0.514694 | 0.015166 | 0.603693 | 0.039* | |
C4 | 0.7156 (2) | 0.0398 (5) | 0.69685 (16) | 0.0257 (6) | |
H4A | 0.691323 | −0.094568 | 0.713661 | 0.031* | |
C5 | 0.8414 (3) | 0.0806 (5) | 0.70565 (18) | 0.0336 (8) | |
H5A | 0.865966 | 0.106512 | 0.754666 | 0.040* | |
C6 | 0.8301 (3) | 0.2855 (6) | 0.66820 (19) | 0.0358 (8) | |
H6A | 0.901320 | 0.350442 | 0.660335 | 0.043* | |
C7A | 0.6785 (3) | 0.2352 (5) | 0.73476 (17) | 0.0279 (7) | |
H7AA | 0.691219 | 0.210486 | 0.784733 | 0.033* | |
C7 | 0.7624 (3) | 0.4062 (5) | 0.71548 (19) | 0.0355 (8) | |
H7A | 0.723577 | 0.522331 | 0.691645 | 0.043* | |
H7B | 0.808923 | 0.456851 | 0.756063 | 0.043* | |
C11 | 0.4066 (3) | 0.3716 (5) | 0.62824 (16) | 0.0280 (7) | |
C12 | 0.3137 (3) | 0.2636 (6) | 0.64507 (18) | 0.0342 (8) | |
H12A | 0.322793 | 0.139531 | 0.669624 | 0.041* | |
C13 | 0.2078 (3) | 0.3407 (6) | 0.62528 (19) | 0.0392 (8) | |
H13A | 0.145407 | 0.270187 | 0.637376 | 0.047* | |
C14 | 0.1944 (3) | 0.5227 (6) | 0.58748 (17) | 0.0351 (8) | |
C15 | 0.2861 (3) | 0.6274 (6) | 0.56874 (19) | 0.0401 (9) | |
H15A | 0.276873 | 0.747622 | 0.542168 | 0.048* | |
C16 | 0.3926 (3) | 0.5508 (6) | 0.59010 (18) | 0.0362 (8) | |
H16A | 0.455034 | 0.621952 | 0.578373 | 0.043* | |
C17 | 0.0658 (4) | 0.7577 (8) | 0.5251 (2) | 0.0597 (12) | |
H17A | −0.012785 | 0.788516 | 0.518630 | 0.090* | |
H17B | 0.106390 | 0.877628 | 0.543611 | 0.090* | |
H17C | 0.090453 | 0.721139 | 0.481502 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0406 (2) | 0.0497 (2) | 0.0443 (2) | 0.00670 (17) | 0.00301 (16) | −0.01833 (18) |
Br2 | 0.0286 (2) | 0.0543 (3) | 0.0653 (3) | 0.01404 (17) | 0.00518 (17) | −0.00677 (19) |
O1 | 0.0321 (13) | 0.0467 (14) | 0.0370 (14) | 0.0102 (11) | 0.0042 (11) | −0.0118 (11) |
O2 | 0.0300 (14) | 0.0703 (19) | 0.0501 (16) | 0.0171 (13) | 0.0013 (12) | 0.0129 (14) |
O8 | 0.0350 (13) | 0.0375 (13) | 0.0338 (13) | −0.0033 (11) | 0.0102 (10) | 0.0049 (10) |
N2 | 0.0242 (14) | 0.0339 (15) | 0.0275 (14) | 0.0068 (11) | 0.0046 (11) | −0.0004 (11) |
C1 | 0.0246 (16) | 0.0260 (16) | 0.0311 (17) | 0.0002 (12) | 0.0026 (13) | −0.0017 (13) |
C3A | 0.0286 (17) | 0.0312 (17) | 0.0276 (17) | 0.0029 (14) | 0.0058 (13) | −0.0043 (13) |
C3 | 0.0279 (17) | 0.042 (2) | 0.0268 (17) | 0.0045 (14) | 0.0016 (13) | −0.0055 (14) |
C4 | 0.0231 (16) | 0.0246 (15) | 0.0297 (16) | 0.0016 (12) | 0.0040 (12) | 0.0018 (13) |
C5 | 0.0240 (17) | 0.0400 (19) | 0.0364 (19) | 0.0043 (14) | 0.0017 (14) | −0.0062 (15) |
C6 | 0.0236 (17) | 0.0400 (19) | 0.045 (2) | −0.0066 (14) | 0.0069 (15) | −0.0020 (16) |
C7A | 0.0233 (16) | 0.0329 (17) | 0.0274 (16) | 0.0052 (13) | 0.0024 (13) | −0.0015 (13) |
C7 | 0.0302 (18) | 0.0354 (18) | 0.041 (2) | −0.0062 (15) | 0.0031 (15) | −0.0056 (15) |
C11 | 0.0240 (16) | 0.0323 (17) | 0.0271 (16) | 0.0041 (13) | 0.0008 (13) | 0.0003 (13) |
C12 | 0.0299 (18) | 0.0363 (19) | 0.0368 (19) | 0.0046 (15) | 0.0051 (14) | 0.0077 (15) |
C13 | 0.0274 (18) | 0.046 (2) | 0.044 (2) | −0.0011 (16) | 0.0053 (15) | 0.0030 (17) |
C14 | 0.0276 (18) | 0.048 (2) | 0.0287 (17) | 0.0113 (15) | 0.0003 (14) | −0.0031 (15) |
C15 | 0.038 (2) | 0.045 (2) | 0.038 (2) | 0.0084 (16) | 0.0045 (16) | 0.0124 (16) |
C16 | 0.0285 (18) | 0.039 (2) | 0.041 (2) | −0.0003 (15) | 0.0060 (15) | 0.0107 (16) |
C17 | 0.048 (2) | 0.081 (3) | 0.050 (3) | 0.035 (2) | 0.004 (2) | 0.018 (2) |
Br1—C3A | 2.034 (3) | C6—C7 | 1.512 (5) |
Br2—C5 | 1.940 (3) | C6—H6A | 0.9800 |
O1—C1 | 1.219 (4) | C7A—C7 | 1.567 (5) |
O2—C14 | 1.372 (4) | C7A—H7AA | 0.9800 |
O2—C17 | 1.424 (5) | C7—H7A | 0.9700 |
O8—C3A | 1.395 (4) | C7—H7B | 0.9700 |
O8—C6 | 1.461 (4) | C11—C16 | 1.371 (4) |
N2—C1 | 1.351 (4) | C11—C12 | 1.386 (5) |
N2—C11 | 1.443 (4) | C12—C13 | 1.380 (5) |
N2—C3 | 1.460 (4) | C12—H12A | 0.9300 |
C1—C7A | 1.507 (4) | C13—C14 | 1.382 (5) |
C3A—C4 | 1.510 (4) | C13—H13A | 0.9300 |
C3A—C3 | 1.516 (4) | C14—C15 | 1.376 (5) |
C3—H3A | 0.9700 | C15—C16 | 1.391 (5) |
C3—H3B | 0.9700 | C15—H15A | 0.9300 |
C4—C5 | 1.525 (4) | C16—H16A | 0.9300 |
C4—C7A | 1.549 (4) | C17—H17A | 0.9600 |
C4—H4A | 0.9800 | C17—H17B | 0.9600 |
C5—C6 | 1.505 (5) | C17—H17C | 0.9600 |
C5—H5A | 0.9800 | ||
C14—O2—C17 | 117.5 (3) | C7—C6—H6A | 114.7 |
C3A—O8—C6 | 107.2 (2) | C1—C7A—C4 | 117.9 (3) |
C1—N2—C11 | 118.8 (3) | C1—C7A—C7 | 109.3 (3) |
C1—N2—C3 | 122.8 (3) | C4—C7A—C7 | 103.1 (3) |
C11—N2—C3 | 115.1 (3) | C1—C7A—H7AA | 108.7 |
O1—C1—N2 | 123.3 (3) | C4—C7A—H7AA | 108.7 |
O1—C1—C7A | 120.1 (3) | C7—C7A—H7AA | 108.7 |
N2—C1—C7A | 116.1 (3) | C6—C7—C7A | 101.1 (3) |
O8—C3A—C4 | 104.6 (3) | C6—C7—H7A | 111.6 |
O8—C3A—C3 | 113.8 (3) | C7A—C7—H7A | 111.6 |
C4—C3A—C3 | 115.1 (3) | C6—C7—H7B | 111.6 |
O8—C3A—Br1 | 108.6 (2) | C7A—C7—H7B | 111.6 |
C4—C3A—Br1 | 113.4 (2) | H7A—C7—H7B | 109.4 |
C3—C3A—Br1 | 101.5 (2) | C16—C11—C12 | 119.8 (3) |
N2—C3—C3A | 113.4 (3) | C16—C11—N2 | 120.1 (3) |
N2—C3—H3A | 108.9 | C12—C11—N2 | 120.1 (3) |
C3A—C3—H3A | 108.9 | C13—C12—C11 | 119.8 (3) |
N2—C3—H3B | 108.9 | C13—C12—H12A | 120.1 |
C3A—C3—H3B | 108.9 | C11—C12—H12A | 120.1 |
H3A—C3—H3B | 107.7 | C12—C13—C14 | 120.0 (3) |
C3A—C4—C5 | 103.3 (3) | C12—C13—H13A | 120.0 |
C3A—C4—C7A | 103.9 (2) | C14—C13—H13A | 120.0 |
C5—C4—C7A | 98.2 (2) | O2—C14—C15 | 124.2 (3) |
C3A—C4—H4A | 116.3 | O2—C14—C13 | 115.3 (3) |
C5—C4—H4A | 116.3 | C15—C14—C13 | 120.5 (3) |
C7A—C4—H4A | 116.3 | C14—C15—C16 | 119.1 (3) |
C6—C5—C4 | 93.7 (2) | C14—C15—H15A | 120.5 |
C6—C5—Br2 | 116.1 (2) | C16—C15—H15A | 120.5 |
C4—C5—Br2 | 119.5 (2) | C11—C16—C15 | 120.8 (3) |
C6—C5—H5A | 108.8 | C11—C16—H16A | 119.6 |
C4—C5—H5A | 108.8 | C15—C16—H16A | 119.6 |
Br2—C5—H5A | 108.8 | O2—C17—H17A | 109.5 |
O8—C6—C5 | 104.7 (3) | O2—C17—H17B | 109.5 |
O8—C6—C7 | 106.2 (3) | H17A—C17—H17B | 109.5 |
C5—C6—C7 | 100.3 (3) | O2—C17—H17C | 109.5 |
O8—C6—H6A | 114.7 | H17A—C17—H17C | 109.5 |
C5—C6—H6A | 114.7 | H17B—C17—H17C | 109.5 |
C11—N2—C1—O1 | −5.2 (5) | O1—C1—C7A—C4 | 151.2 (3) |
C3—N2—C1—O1 | −163.7 (3) | N2—C1—C7A—C4 | −36.4 (4) |
C11—N2—C1—C7A | −177.4 (3) | O1—C1—C7A—C7 | −91.6 (4) |
C3—N2—C1—C7A | 24.1 (4) | N2—C1—C7A—C7 | 80.9 (3) |
C6—O8—C3A—C4 | 0.7 (3) | C3A—C4—C7A—C1 | 50.2 (3) |
C6—O8—C3A—C3 | 127.1 (3) | C5—C4—C7A—C1 | 156.1 (3) |
C6—O8—C3A—Br1 | −120.6 (2) | C3A—C4—C7A—C7 | −70.3 (3) |
C1—N2—C3—C3A | −29.3 (4) | C5—C4—C7A—C7 | 35.6 (3) |
C11—N2—C3—C3A | 171.5 (3) | O8—C6—C7—C7A | 68.9 (3) |
O8—C3A—C3—N2 | −73.6 (4) | C5—C6—C7—C7A | −39.9 (3) |
C4—C3A—C3—N2 | 47.1 (4) | C1—C7A—C7—C6 | −124.2 (3) |
Br1—C3A—C3—N2 | 169.9 (2) | C4—C7A—C7—C6 | 2.0 (3) |
O8—C3A—C4—C5 | −31.7 (3) | C1—N2—C11—C16 | 106.7 (4) |
C3—C3A—C4—C5 | −157.3 (3) | C3—N2—C11—C16 | −93.2 (4) |
Br1—C3A—C4—C5 | 86.4 (3) | C1—N2—C11—C12 | −74.6 (4) |
O8—C3A—C4—C7A | 70.4 (3) | C3—N2—C11—C12 | 85.5 (4) |
C3—C3A—C4—C7A | −55.3 (3) | C16—C11—C12—C13 | −2.1 (5) |
Br1—C3A—C4—C7A | −171.5 (2) | N2—C11—C12—C13 | 179.2 (3) |
C3A—C4—C5—C6 | 47.1 (3) | C11—C12—C13—C14 | 1.4 (5) |
C7A—C4—C5—C6 | −59.3 (3) | C17—O2—C14—C15 | 9.8 (5) |
C3A—C4—C5—Br2 | −75.8 (3) | C17—O2—C14—C13 | −171.3 (4) |
C7A—C4—C5—Br2 | 177.8 (2) | C12—C13—C14—O2 | −178.4 (3) |
C3A—O8—C6—C5 | 31.2 (3) | C12—C13—C14—C15 | 0.6 (5) |
C3A—O8—C6—C7 | −74.4 (3) | O2—C14—C15—C16 | 177.0 (3) |
C4—C5—C6—O8 | −47.4 (3) | C13—C14—C15—C16 | −1.9 (6) |
Br2—C5—C6—O8 | 78.1 (3) | C12—C11—C16—C15 | 0.8 (5) |
C4—C5—C6—C7 | 62.6 (3) | N2—C11—C16—C15 | 179.5 (3) |
Br2—C5—C6—C7 | −171.9 (2) | C14—C15—C16—C11 | 1.2 (6) |
Cg is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1i | 0.98 | 2.57 | 3.092 (3) | 114 |
C7A—H7AA···Cg5i | 0.98 | 2.69 | 3.573 (4) | 150 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
Contact | Distance | Symmetry operation |
Br1···Cg5 | 3.7132 (15) | 1 - x, -y, 1 - z |
Br2···O2 | 3.316 (3) | 1 + x, -1 + y, z |
Br2···H17A | 3.13 | 1 + x, -1 + y, z |
Br2···H5A | 3.13 | 2 - x, -1/2 + y, 3/2 - z |
O1···C1 | 2.822 (4) | 1 - x, 1/2 + y, 3/2 - z |
O8···H17C | 2.66 | 1 - x, 1 - y, 1 - z |
H4A···H7A | 2.54 | x, -1 + y, z |
H7B···H12A | 2.55 | 1 - x, 1/2 + y, 3/2 - z |
Contact | Percentage contribution |
H···H | 41.1 |
Br···H/H···Br | 24.5 |
O···H/H···O | 16.9 |
C···H/H···C | 8.2 |
Br···C/C···Br | 4.3 |
Br···O/O···Br | 2.6 |
O···C/C···O | 1.5 |
O···O | 0.8 |
O···N/N···O | 0.1 |
Acknowledgements
Authors contributions are as follows. Conceptualization, MA and SM; methodology, STÇ and MA; investigation, DFM and NSS; writing (original draft), MA, STÇ and SM; writing (review and editing of the manuscript), MA, STÇ and SM; visualization, MA and SM; funding acquisition, DFM, NSS and EAS; resources, EAS; supervision, MA and SM.
Funding information
Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].
References
Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399. Web of Science CSD CrossRef CAS Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CrossRef Google Scholar
Gurbanov, A. V., Nikitina, E. V., Airiyan, I. K., Zaytsev, V. P. & Khrustalev, V. N. (2009). Acta Cryst. E65, o2981. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Nikitina, E. V., Zaytsev, V. P., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o206–o207. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53 accepted for publication. https://doi.org/10.1055/s-0040-1705983. Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Nadirova, M. A., Pokazeev, K. M., Kolesnik, I. A., Dorovatovskii, P. V., Bumagin, N. A. & Potkin, V. I. (2019). Chem. Heterocycl. Compd, 55, 729–738. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088. Web of Science CSD CrossRef CAS Google Scholar
Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969. Web of Science CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia. Google Scholar
Wicholas, M., Garrett, A. D., Gleaves, M., Morris, A. M., Rehm, M., Anderson, O. P. & la Cour, A. (2006). Inorg. Chem. 45, 5804–5811. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204. Web of Science CSD CrossRef Google Scholar
Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930–935. Web of Science CSD CrossRef CAS Google Scholar
Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, E. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148–9163. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.