research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4,5-di­bromo-2-(4-meth­­oxy­phen­yl)-2,3,4,4a,5,6,7,7a-octa­hydro-1H-4,6-ep­­oxy-1H-cyclo­penta­[c]pyridin-1-one

crossmark logo

aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 12 March 2021; accepted 26 March 2021; online 16 April 2021)

The mol­ecule of the title compound, C15H15Br2NO3, comprises a fused tricyclic system consisting of two five-membered rings (cyclo­pentane and tetra­hydro­furan) and one six-membered ring (tetra­hydro­pyridinone). Both five-membered rings of the tricyclic system have envelope conformations, and the conformation of the six-membered cycle is inter­mediate between chair and half-chair. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π, C—Br⋯π and C⋯O inter­actions into double layers. The layers are connected into a three-dimensional network by van der Waals inter­actions.

1. Chemical context

Iso­indoles are important structural units of many natural products and are widely used as drugs and as building blocks for the construction of new N-containing heterocyclic compounds or functional materials (Nadirova et al., 2019[Nadirova, M. A., Pokazeev, K. M., Kolesnik, I. A., Dorovatovskii, P. V., Bumagin, N. A. & Potkin, V. I. (2019). Chem. Heterocycl. Compd, 55, 729-738.]; Zubkov et al., 2011[Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, E. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148-9163.], 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.], 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). The biological and physical properties of iso­indoles depend on the attached functional groups (Krishna et al., 2021[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53 accepted for publication. https://doi.org/10.1055/s-0040-1705983.]; Zaytsev et al., 2017[Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749-3767.], 2019[Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.], 2020[Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930-935.]). Thus, the functionalization of iso­indole moieties at the donor/acceptor sites for non-covalent bonding can improve their biological and photophysical properties as well as their coordination ability (Wicholas et al., 2006[Wicholas, M., Garrett, A. D., Gleaves, M., Morris, A. M., Rehm, M., Anderson, O. P. & la Cour, A. (2006). Inorg. Chem. 45, 5804-5811.]).

On the other hand, non-covalent inter­actions, such as hydrogen, aerogen, halogen, chalcogen, pnictogen, tetrel and icosa­gen bonds, as well as nπ*, ππ stacking, π–cation, π–anion, hydro­phobic inter­actions, among others, have recently also attracted much attention and have been demonstrated to play a prominent role in synthesis, catalysis, supra­molecular chemistry, mol­ecular recognition, biological systems, functional materials, etc. (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145-153.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Karmakar et al., 2017[Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649-8657.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Sutradhar et al., 2015[Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959-3969.], 2016[Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079-8088.]). Halogen bonding is a rather spread phenomenon since halogen atoms or ions can form short non-bonding contacts with electron acceptors, electron donors or be inter­connected due to anisotropic charge distribution in halogen atoms (Afkhami et al., 2017[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389-1399.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmoudi et al., 2017[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192-205.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). In fact, functionalization of iso­indoles with donor or acceptor sites for non-covalent bonding greatly affects their supra­molecular arrangements (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]).

[Scheme 1]

In a continuation of our work in this direction, we have functionalized a new iso­indole (1) (Zaytsev et al., 2020[Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930-935.]) by reaction with bromine yielding 4,5-di­bromo-2-(4-meth­oxy­phen­yl)-2,3,4,4a,5,6,7,7a-octa­hydro-1H-4,6-ep­oxy-1H-cyclo­penta­[c]pyridin-1-one (2; Fig. 1[link]), which provides examples of C—Br⋯O halogen bonds as well as of C—H⋯O and C—H⋯π types of inter­molecular hydrogen bonds.

[Figure 1]
Figure 1
Synthesis of the title compound (2).

2. Structural commentary

As shown in Fig. 2[link], the mol­ecule of the title compound, 2, comprises a fused tricyclic system containing two five-membered rings (cyclo­pentane C4–C7/C7A and tetra­hydro­furan C3A/C4–C6/O8) and one six-membered ring (tetra­hydro­pyridinone C1/N2/C3/C3A/C4/C7A). Both five-membered rings of the tricyclic fragment have envelope conformations with the C5 atom as the flap, and the six-membered ring adopts a flattened chair conformation with the N2 and C4 atoms displaced by 0.276 (3) and −0.670 (4) Å, respectively, from the mean plane through the remaining four atoms. The environment of atom N2, being close to trigonal–planar, is slightly pyramidalized due to steric reasons [the sum of bond angles at N2 is 356.7 (5)°]. The dihedral angle between the mean planes of the tetra­hydro­pyridinone and benzene rings is 82.82 (16)°.

[Figure 2]
Figure 2
The mol­ecular structure of 2, with displacement ellipsoids for non-hydrogen atoms drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, C—H⋯π, C—Br⋯π and C⋯O inter­actions into double layers parallel to (001) (Tables 1[link] and 2[link]; Figs. 3[link], 4[link] and 5[link]). The layers are further connected into a three-dimensional network by van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.98 2.57 3.092 (3) 114
C7A—H7AACg5i 0.98 2.69 3.573 (4) 150
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Summary of shortest van der Waals contacts (Å) in the title compound

Contact Distance Symmetry operation
Br1⋯Cg5 3.7132 (15) 1 − x, −y, 1 − z
Br2⋯O2 3.316 (3) 1 + x, −1 + y, z
Br2⋯H17A 3.13 1 + x, −1 + y, z
Br2⋯H5A 3.13 2 − x, −[{1\over 2}] + y, [{3\over 2}] − z
O1⋯C1 2.822 (4) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
O8⋯H17C 2.66 1 − x, 1 − y, 1 − z
H4A⋯H7A 2.54 x, −1 + y, z
H7B⋯H12A 2.55 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
[Figure 3]
Figure 3
Inter­molecular C—H⋯O, C—H⋯π and C—Br⋯π inter­actions [symmetry codes: (a) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (b) 1 − x, −y, 1 − z].
[Figure 4]
Figure 4
A fragment of the double layer in 2 formed by inter­molecular C—H⋯O, C⋯O and C—H⋯π contacts [symmetry codes: (a) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (b) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z].
[Figure 5]
Figure 5
Packing diagram of 2 viewed along the b-axis direction showing the inter­molecular C—H⋯O and C—H⋯π contacts [symmetry code: (b) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z].

The Hirshfeld surface for 2 mapped over dnorm and the associated two-dimensional fingerprint plots are shown in Fig. 6[link]. All of them were generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]). Red spots on the Hirshfeld surface mapped over dnorm in the colour range −0.2469 to 1.1913 a.u. confirm the inter­molecular contacts (Tables 1[link] and 2[link]). The fingerprint plots are given for all contacts and those delineated into H⋯H (41.1%; Fig. 6[link]b), Br⋯H/H⋯Br (24.5%; Fig. 6[link]c), O⋯H/H⋯O (16.9%; Fig. 6[link]d) and C⋯H/H⋯C (8.2%; Fig. 6[link]e) contacts. All contributions to the Hirshfeld surface are given in Table 3[link]. The large number of H⋯H, Br⋯H/H⋯Br and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 41.1
Br⋯H/H⋯Br 24.5
O⋯H/H⋯O 16.9
C⋯H/H⋯C 8.2
Br⋯C/C⋯Br 4.3
Br⋯O/O⋯Br 2.6
O⋯C/C⋯O 1.5
O⋯O 0.8
O⋯N/N⋯O 0.1
[Figure 6]
Figure 6
A view of the three-dimensional Hirshfeld surfaces and the two-dimensional fingerprint plots for 2, showing (a) all inter­actions and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) O⋯H/H⋯O and (e) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (Å) from given points on the Hirshfeld surface.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals two compounds containing the octa­hydro-1H-4,6-ep­oxy­cyclo­penta­[c]pyridin-1-one skeleton, viz. methyl rac-(1S*,3R*,7R*,8R*,9R*,10S*)-3,9-diacet­oxy-6-oxo-5-phenyl-2-oxa-5-aza­tri­cyclo­[5.2.1.03,8]decane-10-carboxyl­ate ethanol solvate (refcode RUJJUC; Gurbanov et al., 2009[Gurbanov, A. V., Nikitina, E. V., Airiyan, I. K., Zaytsev, V. P. & Khrustalev, V. N. (2009). Acta Cryst. E65, o2981.]) and methyl rac-(1S*,2R*,4R*,13S*,14R*,15R*,16S*,117S*)-1,16-diacet­oxy-12-oxo-4-(2-oxopyrrolidin-1-yl)-18-oxa-11-aza­penta­cyclo­[13.2.1.02,11.05,10.013,17]octa­deca-5,7,9-triene-14-carboxyl­ate sesquihydrate (HUGJUP; Gurbanov et al., 2010[Gurbanov, A. V., Nikitina, E. V., Zaytsev, V. P., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o206-o207.]).

The racemic crystal of RUJJUC consists of enanti­omeric pairs with the configurations rac-4R*,4aR*,5R*,6S*,7S*,7aR*. The ethanol solvate mol­ecule is bound to the mol­ecule of RUJJUC by a strong O—H⋯O hydrogen bond. In the crystal of HUGJUP, there are three O—H⋯O hydrogen bonds, which link the organic mol­ecules and water mol­ecules into layers parallel to (001). The layers are further linked into a three-dimensional framework by attractive inter­molecular carbon­yl–carbonyl inter­actions.

5. Synthesis and crystallization

A solution of isoindolone 1 (1.2 mmol) and bromine (1.75 mmol) in dry chloro­form (3 mL) was stirred for 5 h (TLC control, EtOAc–hexane, 1:1). The reaction mixture was poured into H2O (30 mL) and extracted with CHCl3 (3 × 20 mL). The combined extracts were dried over anhydrous Na2SO4 and concentrated in vacuo. The obtained solid was recrystallized by slow evaporation from EtOH to give single crystals of dibromide 2 suitable for X-ray analysis. Colourless needles, yield 0.42 g (86%). M.p. > 478 K (decomposition). IR (KBr), ν (cm−1): 1671 (N—C=O), 610 (C—Br). 1H NMR (DMSO-d6, 700.1 MHz, 298 K): δ = 7.19 (d, 2H, H2, H6 H-Ph, J = 8.8), 6.94 (d, 2H, H3, H5 H-Ph, J = 8.8), 4.92 (s, 1H, H-6), 4.62 (d, 1H, J = 13.1), 4.11 (d, 1H, H-3, J = 13.1), 4.61 (d, 1H, H-5), 3.57 (s, 3H, OCH3), 3.67 (d, 1H, H-4a, J = 3.9), 2.93 (dt, 1H, H-7a, J = 3.9, J = 11.9), 2.41 (t, 1H, H-7exo, J = 11.9), 1.53 (dd, 1H, H-7endo, J = 3.9, J = 11.9). 13C NMR (DMSO-d6, 176.0 MHz, 298 K): δ = 169.7, 157.8, 133.7, 127.4 (2C), 114.1 (2C), 99.3, 86.0, 61.0, 55.3, 51.7, 48.5, 39.0, 36.4. MS (APCI): m/z = 420 [M + H]+ (81Br), 418 [M + H]+ (81Br, 79Br), 416 [M + H]+ (79Br).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically (C—H = 0.93 − 0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Owing to poor agreement between observed and calculated intensities, four outliers (6 0 2, 1 2 0, 0 3 3 and 0 0 6) were omitted from the final cycles of refinement.

Table 4
Experimental details

Crystal data
Chemical formula C15H15Br2NO3
Mr 417.10
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.0238 (12), 6.4316 (7), 19.463 (2)
β (°) 96.618 (4)
V3) 1495.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.43
Crystal size (mm) 0.40 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.461, 0.736
No. of measured, independent and observed [I > 2σ(I)] reflections 13519, 3429, 2522
Rint 0.043
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.01
No. of reflections 3429
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.30, −0.62
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

4,5-Dibromo-2-(4-methoxyphenyl)-2,3,4,4a,5,6,7,7a-octahydro-1H-4,6-epoxy-1H-cyclopenta[c]pyridin-1-one top
Crystal data top
C15H15Br2NO3F(000) = 824
Mr = 417.10Dx = 1.853 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.0238 (12) ÅCell parameters from 2677 reflections
b = 6.4316 (7) Åθ = 2.9–24.4°
c = 19.463 (2) ŵ = 5.43 mm1
β = 96.618 (4)°T = 296 K
V = 1495.1 (3) Å3Needle, colourless
Z = 40.40 × 0.12 × 0.06 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
2522 reflections with I > 2σ(I)
φ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 3.4°
Tmin = 0.461, Tmax = 0.736h = 1515
13519 measured reflectionsk = 88
3429 independent reflectionsl = 2425
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.868P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3429 reflectionsΔρmax = 1.30 e Å3
190 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69848 (3)0.16042 (6)0.55820 (2)0.04500 (13)
Br20.94126 (3)0.12067 (7)0.67093 (2)0.04941 (14)
O10.51267 (19)0.4036 (4)0.75946 (12)0.0386 (6)
O20.0858 (2)0.5884 (5)0.57203 (14)0.0504 (7)
O80.75480 (19)0.2430 (4)0.60541 (12)0.0349 (5)
N20.5178 (2)0.2933 (4)0.64953 (13)0.0284 (6)
C10.5603 (3)0.3115 (5)0.71658 (17)0.0273 (7)
C3A0.6814 (3)0.0868 (5)0.62134 (16)0.0289 (7)
C30.5590 (3)0.1411 (5)0.60289 (17)0.0323 (8)
H3A0.5484160.1956120.5561310.039*
H3B0.5146940.0151660.6036930.039*
C40.7156 (2)0.0398 (5)0.69685 (16)0.0257 (6)
H4A0.6913230.0945680.7136610.031*
C50.8414 (3)0.0806 (5)0.70565 (18)0.0336 (8)
H5A0.8659660.1065120.7546660.040*
C60.8301 (3)0.2855 (6)0.66820 (19)0.0358 (8)
H6A0.9013200.3504420.6603350.043*
C7A0.6785 (3)0.2352 (5)0.73476 (17)0.0279 (7)
H7AA0.6912190.2104860.7847330.033*
C70.7624 (3)0.4062 (5)0.71548 (19)0.0355 (8)
H7A0.7235770.5223310.6916450.043*
H7B0.8089230.4568510.7560630.043*
C110.4066 (3)0.3716 (5)0.62824 (16)0.0280 (7)
C120.3137 (3)0.2636 (6)0.64507 (18)0.0342 (8)
H12A0.3227930.1395310.6696240.041*
C130.2078 (3)0.3407 (6)0.62528 (19)0.0392 (8)
H13A0.1454070.2701870.6373760.047*
C140.1944 (3)0.5227 (6)0.58748 (17)0.0351 (8)
C150.2861 (3)0.6274 (6)0.56874 (19)0.0401 (9)
H15A0.2768730.7476220.5421680.048*
C160.3926 (3)0.5508 (6)0.59010 (18)0.0362 (8)
H16A0.4550340.6219520.5783730.043*
C170.0658 (4)0.7577 (8)0.5251 (2)0.0597 (12)
H17A0.0127850.7885160.5186300.090*
H17B0.1063900.8776280.5436110.090*
H17C0.0904530.7211390.4815020.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0406 (2)0.0497 (2)0.0443 (2)0.00670 (17)0.00301 (16)0.01833 (18)
Br20.0286 (2)0.0543 (3)0.0653 (3)0.01404 (17)0.00518 (17)0.00677 (19)
O10.0321 (13)0.0467 (14)0.0370 (14)0.0102 (11)0.0042 (11)0.0118 (11)
O20.0300 (14)0.0703 (19)0.0501 (16)0.0171 (13)0.0013 (12)0.0129 (14)
O80.0350 (13)0.0375 (13)0.0338 (13)0.0033 (11)0.0102 (10)0.0049 (10)
N20.0242 (14)0.0339 (15)0.0275 (14)0.0068 (11)0.0046 (11)0.0004 (11)
C10.0246 (16)0.0260 (16)0.0311 (17)0.0002 (12)0.0026 (13)0.0017 (13)
C3A0.0286 (17)0.0312 (17)0.0276 (17)0.0029 (14)0.0058 (13)0.0043 (13)
C30.0279 (17)0.042 (2)0.0268 (17)0.0045 (14)0.0016 (13)0.0055 (14)
C40.0231 (16)0.0246 (15)0.0297 (16)0.0016 (12)0.0040 (12)0.0018 (13)
C50.0240 (17)0.0400 (19)0.0364 (19)0.0043 (14)0.0017 (14)0.0062 (15)
C60.0236 (17)0.0400 (19)0.045 (2)0.0066 (14)0.0069 (15)0.0020 (16)
C7A0.0233 (16)0.0329 (17)0.0274 (16)0.0052 (13)0.0024 (13)0.0015 (13)
C70.0302 (18)0.0354 (18)0.041 (2)0.0062 (15)0.0031 (15)0.0056 (15)
C110.0240 (16)0.0323 (17)0.0271 (16)0.0041 (13)0.0008 (13)0.0003 (13)
C120.0299 (18)0.0363 (19)0.0368 (19)0.0046 (15)0.0051 (14)0.0077 (15)
C130.0274 (18)0.046 (2)0.044 (2)0.0011 (16)0.0053 (15)0.0030 (17)
C140.0276 (18)0.048 (2)0.0287 (17)0.0113 (15)0.0003 (14)0.0031 (15)
C150.038 (2)0.045 (2)0.038 (2)0.0084 (16)0.0045 (16)0.0124 (16)
C160.0285 (18)0.039 (2)0.041 (2)0.0003 (15)0.0060 (15)0.0107 (16)
C170.048 (2)0.081 (3)0.050 (3)0.035 (2)0.004 (2)0.018 (2)
Geometric parameters (Å, º) top
Br1—C3A2.034 (3)C6—C71.512 (5)
Br2—C51.940 (3)C6—H6A0.9800
O1—C11.219 (4)C7A—C71.567 (5)
O2—C141.372 (4)C7A—H7AA0.9800
O2—C171.424 (5)C7—H7A0.9700
O8—C3A1.395 (4)C7—H7B0.9700
O8—C61.461 (4)C11—C161.371 (4)
N2—C11.351 (4)C11—C121.386 (5)
N2—C111.443 (4)C12—C131.380 (5)
N2—C31.460 (4)C12—H12A0.9300
C1—C7A1.507 (4)C13—C141.382 (5)
C3A—C41.510 (4)C13—H13A0.9300
C3A—C31.516 (4)C14—C151.376 (5)
C3—H3A0.9700C15—C161.391 (5)
C3—H3B0.9700C15—H15A0.9300
C4—C51.525 (4)C16—H16A0.9300
C4—C7A1.549 (4)C17—H17A0.9600
C4—H4A0.9800C17—H17B0.9600
C5—C61.505 (5)C17—H17C0.9600
C5—H5A0.9800
C14—O2—C17117.5 (3)C7—C6—H6A114.7
C3A—O8—C6107.2 (2)C1—C7A—C4117.9 (3)
C1—N2—C11118.8 (3)C1—C7A—C7109.3 (3)
C1—N2—C3122.8 (3)C4—C7A—C7103.1 (3)
C11—N2—C3115.1 (3)C1—C7A—H7AA108.7
O1—C1—N2123.3 (3)C4—C7A—H7AA108.7
O1—C1—C7A120.1 (3)C7—C7A—H7AA108.7
N2—C1—C7A116.1 (3)C6—C7—C7A101.1 (3)
O8—C3A—C4104.6 (3)C6—C7—H7A111.6
O8—C3A—C3113.8 (3)C7A—C7—H7A111.6
C4—C3A—C3115.1 (3)C6—C7—H7B111.6
O8—C3A—Br1108.6 (2)C7A—C7—H7B111.6
C4—C3A—Br1113.4 (2)H7A—C7—H7B109.4
C3—C3A—Br1101.5 (2)C16—C11—C12119.8 (3)
N2—C3—C3A113.4 (3)C16—C11—N2120.1 (3)
N2—C3—H3A108.9C12—C11—N2120.1 (3)
C3A—C3—H3A108.9C13—C12—C11119.8 (3)
N2—C3—H3B108.9C13—C12—H12A120.1
C3A—C3—H3B108.9C11—C12—H12A120.1
H3A—C3—H3B107.7C12—C13—C14120.0 (3)
C3A—C4—C5103.3 (3)C12—C13—H13A120.0
C3A—C4—C7A103.9 (2)C14—C13—H13A120.0
C5—C4—C7A98.2 (2)O2—C14—C15124.2 (3)
C3A—C4—H4A116.3O2—C14—C13115.3 (3)
C5—C4—H4A116.3C15—C14—C13120.5 (3)
C7A—C4—H4A116.3C14—C15—C16119.1 (3)
C6—C5—C493.7 (2)C14—C15—H15A120.5
C6—C5—Br2116.1 (2)C16—C15—H15A120.5
C4—C5—Br2119.5 (2)C11—C16—C15120.8 (3)
C6—C5—H5A108.8C11—C16—H16A119.6
C4—C5—H5A108.8C15—C16—H16A119.6
Br2—C5—H5A108.8O2—C17—H17A109.5
O8—C6—C5104.7 (3)O2—C17—H17B109.5
O8—C6—C7106.2 (3)H17A—C17—H17B109.5
C5—C6—C7100.3 (3)O2—C17—H17C109.5
O8—C6—H6A114.7H17A—C17—H17C109.5
C5—C6—H6A114.7H17B—C17—H17C109.5
C11—N2—C1—O15.2 (5)O1—C1—C7A—C4151.2 (3)
C3—N2—C1—O1163.7 (3)N2—C1—C7A—C436.4 (4)
C11—N2—C1—C7A177.4 (3)O1—C1—C7A—C791.6 (4)
C3—N2—C1—C7A24.1 (4)N2—C1—C7A—C780.9 (3)
C6—O8—C3A—C40.7 (3)C3A—C4—C7A—C150.2 (3)
C6—O8—C3A—C3127.1 (3)C5—C4—C7A—C1156.1 (3)
C6—O8—C3A—Br1120.6 (2)C3A—C4—C7A—C770.3 (3)
C1—N2—C3—C3A29.3 (4)C5—C4—C7A—C735.6 (3)
C11—N2—C3—C3A171.5 (3)O8—C6—C7—C7A68.9 (3)
O8—C3A—C3—N273.6 (4)C5—C6—C7—C7A39.9 (3)
C4—C3A—C3—N247.1 (4)C1—C7A—C7—C6124.2 (3)
Br1—C3A—C3—N2169.9 (2)C4—C7A—C7—C62.0 (3)
O8—C3A—C4—C531.7 (3)C1—N2—C11—C16106.7 (4)
C3—C3A—C4—C5157.3 (3)C3—N2—C11—C1693.2 (4)
Br1—C3A—C4—C586.4 (3)C1—N2—C11—C1274.6 (4)
O8—C3A—C4—C7A70.4 (3)C3—N2—C11—C1285.5 (4)
C3—C3A—C4—C7A55.3 (3)C16—C11—C12—C132.1 (5)
Br1—C3A—C4—C7A171.5 (2)N2—C11—C12—C13179.2 (3)
C3A—C4—C5—C647.1 (3)C11—C12—C13—C141.4 (5)
C7A—C4—C5—C659.3 (3)C17—O2—C14—C159.8 (5)
C3A—C4—C5—Br275.8 (3)C17—O2—C14—C13171.3 (4)
C7A—C4—C5—Br2177.8 (2)C12—C13—C14—O2178.4 (3)
C3A—O8—C6—C531.2 (3)C12—C13—C14—C150.6 (5)
C3A—O8—C6—C774.4 (3)O2—C14—C15—C16177.0 (3)
C4—C5—C6—O847.4 (3)C13—C14—C15—C161.9 (6)
Br2—C5—C6—O878.1 (3)C12—C11—C16—C150.8 (5)
C4—C5—C6—C762.6 (3)N2—C11—C16—C15179.5 (3)
Br2—C5—C6—C7171.9 (2)C14—C15—C16—C111.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.982.573.092 (3)114
C7A—H7AA···Cg5i0.982.693.573 (4)150
Symmetry code: (i) x+1, y1/2, z+3/2.
Summary of shortest van der Waals contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Br1···Cg53.7132 (15)1 - x, -y, 1 - z
Br2···O23.316 (3)1 + x, -1 + y, z
Br2···H17A3.131 + x, -1 + y, z
Br2···H5A3.132 - x, -1/2 + y, 3/2 - z
O1···C12.822 (4)1 - x, 1/2 + y, 3/2 - z
O8···H17C2.661 - x, 1 - y, 1 - z
H4A···H7A2.54x, -1 + y, z
H7B···H12A2.551 - x, 1/2 + y, 3/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H41.1
Br···H/H···Br24.5
O···H/H···O16.9
C···H/H···C8.2
Br···C/C···Br4.3
Br···O/O···Br2.6
O···C/C···O1.5
O···O0.8
O···N/N···O0.1
 

Acknowledgements

Authors contributions are as follows. Conceptualization, MA and SM; methodology, STÇ and MA; investigation, DFM and NSS; writing (original draft), MA, STÇ and SM; writing (review and editing of the manuscript), MA, STÇ and SM; visualization, MA and SM; funding acquisition, DFM, NSS and EAS; resources, EAS; supervision, MA and SM.

Funding information

Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].

References

First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CrossRef Google Scholar
First citationGurbanov, A. V., Nikitina, E. V., Airiyan, I. K., Zaytsev, V. P. & Khrustalev, V. N. (2009). Acta Cryst. E65, o2981.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Nikitina, E. V., Zaytsev, V. P., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o206–o207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKarmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53 accepted for publication. https://doi.org/10.1055/s-0040-1705983.  Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationNadirova, M. A., Pokazeev, K. M., Kolesnik, I. A., Dorovatovskii, P. V., Bumagin, N. A. & Potkin, V. I. (2019). Chem. Heterocycl. Compd, 55, 729–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.  Web of Science CSD CrossRef CAS Google Scholar
First citationSutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWicholas, M., Garrett, A. D., Gleaves, M., Morris, A. M., Rehm, M., Anderson, O. P. & la Cour, A. (2006). Inorg. Chem. 45, 5804–5811.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.  Web of Science CSD CrossRef Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930–935.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, E. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148–9163.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds