research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aS,4R,5R,6S,7aR)-4,5-Di­bromo-2-[4-(tri­fluoro­meth­yl)phen­yl]-2,3,3a,4,5,6,7,7a-octa­hydro-3a,6-ep­­oxy-1H-isoindol-1-one: crystal structure and Hirshfeld surface analysis

crossmark logo

aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 12 March 2021; accepted 26 March 2021; online 9 April 2021)

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent mol­ecules. In both mol­ecules, the pyrrolidine and tetra­hydro­furan rings adopt an envelope conformation. In the crystal, mol­ecule pairs generate centrosymmetric rings with R22(8) motifs linked by C—H⋯O hydrogen bonds. These pairs of mol­ecules form a tetra­meric supra­molecular motif, leading to mol­ecular layers parallel to the (100) plane by C—H⋯π and C—Br⋯π inter­actions. Inter­layer van der Waals and inter­halogen inter­actions stabilize mol­ecular packing. The F atoms of the CF3 groups of both mol­ecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both mol­ecules are from H⋯H (23.8 and 22.4%), Br⋯H/H⋯Br (18.3 and 12.3%), O⋯H/H⋯O (14.3 and 9.7%) and F⋯H/H⋯F (10.4 and 19.1%) inter­actions, as concluded from a Hirshfeld surface analysis.

1. Chemical context

Iso­indoles are important structural units in many natural products and are widely used as drugs and as building-blocks for the construction of new N-containing heterocyclic compounds and functional materials (Nadirova et al., 2019[Nadirova, M. A., Pokazeev, K. M., Kolesnik, I. A., Dorovatovskii, P. V., Bumagin, N. A. & Potkin, V. I. (2019). Chem. Heterocycl. Compd, 55, 729-738.]; Zubkov et al., 2011[Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148-9163.], 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.], 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). The biological and physical properties of N-heterocycles are dependent on the attached functional groups (Grudova et al., 2020[Grudova, M. V., Gil, D. M., Khrustalev, V. N., Nikitina, E. V., Sinelshchikova, A. A., Grigoriev, M. S., Kletskov, A. V., Frontera, A. & Zubkov, F. I. (2020). New J. Chem. 44, 20167-20180.]; Zaytsev et al., 2017[Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749-3767.], 2019[Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.], 2020[Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930-935.]; Asgarova et al., 2019[Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342-347.]; Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 1, 60-63.]). Thus, the functionalization of iso­indole moieties with non-covalent bond donor/acceptor sites can improve their biological and photophysical properties as well as coordination ability (Wicholas et al., 2006[Wicholas, M., Garrett, A. D., Gleaves, M., Morris, A. M., Rehm, M., Anderson, O. P. & la Cour, A. (2006). Inorg. Chem. 45, 5804-5811.]).

On the other hand, non-covalent inter­actions, such as hydrogen, aerogen, halogen, chalcogen, pnictogen, tetrel and icosa­gen bonds, as well as nπ*, ππ stacking, π–cation, π–anion and hydro­phobic inter­actions have also attracted much attention recently and have been demonstrated to play a prominent role in synthesis, catalysis, supra­molecular chemistry, mol­ecular recognition, biological systems and functional materials (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Detergent, 19, 145-153.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.], 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833-14837.]; Karmakar et al., 2017[Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649-8657.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Sutradhar et al., 2015[Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959-3969.], 2016[Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079-8088.]). Halogen bonding is a rather spread phenomenon since halogen atoms or ions can form short non-bonded contacts with electron acceptors, electron donors or be inter­connected due to anisotropic charge distribution in halogen atoms (Afkhami et al., 2017[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389-1399.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.], 2019[Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441-4447.]; Mahmoudi et al., 2017[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192-205.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). In fact, attachment of iso­indoles with non-covalent bond donor or acceptor sites can affect their supra­molecular arrangements significantly (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]).

[Scheme 1]

In a continuation of our work in this direction, we have functionalized a new iso­indole, (3aS,4R,5R,6S,7aR)-4,5-di­bromo-2-[4-(tri­fluoro­meth­yl)phen­yl]-2,3,3a,4,5,6,7,7a-octa­hydro-3a,6-ep­oxy-1H-isoindol-1-one (1; Fig. 1[link]), which provides C—Br⋯π halogen bonds as well as C—H⋯O and C—H⋯π types of inter­molecular hydrogen bonds.

[Figure 1]
Figure 1
Synthesis of (3aS,4R,5R,6S,7aR)-4,5-di­bromo-2-[4-(tri­fluoro­meth­yl)phen­yl]-2,3,3a,4,5,6,7,7a-octa­hydro-3a,6-ep­oxy-1H-isoindol-1-one (1).

2. Structural commentary

The asymmetric unit of the title compound (Fig. 2[link]) contains two crystallographically mol­ecules of similar shape, hereafter referred to as mol­ecules A (including atom C1) and B (including atom C21). The conformational differences between mol­ecules A and B are highlighted in an overlay diagram shown in Fig. 3[link]. The r.m.s. deviation of the overlay between the mol­ecules A and B is 0.278 Å.

[Figure 2]
Figure 2
The two mol­ecules (A and B) in the asymmetric unit of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The minor components of the disordered CF3 groups were omitted for clarity.
[Figure 3]
Figure 3
Overlay image (OLEX2; Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) of the two mol­ecules (A and B) in the asymmetric unit of the title compound.

In both mol­ecules A and B, the pyrrolidine rings (N2/C1/C3/C3A/C7A and N22/C21/C23/C23A/C27A), tetra­hydro­furan rings (O8/C3A/C4–C6, O8/C3A/C6/C7/C7A and O28/C23A/C24–C26, O28/C23A/C26/C27/C27A) and six-membered rings (C3A/C4–C7/C7A and C23A/C24–C27/C27A), which generate ep­oxy­iso­indole moieties (O8/ N2/C1/C3/C3A/C4–C7/C7A and O28/ N22/C21/C23/C23A/C24–C27/C27A), are puckered. In mol­ecules A and B, both tetra­hydro­furan rings adopt an envelope conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q(2) = 0.580 (3) Å, φ(2) = 176.3 (4)° for A (O8/C3A/C4–C6), Q(2) = 0.547 (3) Å, φ(2) = 357.4 (4)° for A (O8/C3A/C6/C7/C7A), and Q(2) = 0.580 (3) Å, φ(2) = 180.3 (4)° for B (O28/C23A/C24–C26) and Q(2) = 0.554 (3) Å, φ(2) = 354.2 (4)° for B (O28/C23A/C26/C27/C27A). The five-membered pyrrolidine rings also exhibit an envelope conformation, with a maximum deviation from the mean plane of 0.165 (3) Å at C3A [puckering parameters Q(2) = 0.262 (4) Å, φ(2) = 281.8 (8)°] for mol­ecule A and 0.156 (3) Å at C23A [puckering parameters Q(2) = 0.248 (4) Å, φ(2) = 291.3 (8)°] for mol­ecule B. In both mol­ecules, the six-membered ring has a boat conformation [QT = 0.925 (4) Å, θ = 92.2 (2)°, φ = 180.5 (2)° for mol­ecule A; QT = 0.924 (4) Å, θ = 91.7 (2)°, φ = 177.1 (2)° for mol­ecule B].

3. Supra­molecular features

In the crystal, mol­ecules generate centrosymmetric dimers described by [R_{2}^{2}](8) motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) by C—H⋯O hydrogen bonds (Table 1[link]). These pairs of mol­ecules form a tetra­meric supra­molecular motif, by self-complementary C—H⋯π connections (Fig. 4[link]). Additionally, these building units are self-assembled via C—Br⋯π inter­actions, generating a two-dimensional supra­molecular network parallel to the (100) plane (Fig. 5[link]). Inter­layer van der Waals and inter­halogen inter­actions stabilize mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg10 are the centroids of the C11–C16 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O8i 0.98 2.57 3.342 (4) 135
C7—H7A⋯Br2 0.97 2.82 3.300 (4) 112
C16—H16A⋯O1 0.93 2.26 2.853 (4) 121
C27—H27A⋯Br22 0.97 2.78 3.259 (4) 111
C36—H36A⋯O21 0.93 2.28 2.856 (5) 120
C7A—H7AACg10i 0.98 2.94 3.741 (4) 139
C27A—H27CCg5i 0.98 2.97 3.924 (4) 166
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 4]
Figure 4
A view of the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π and C—Br⋯π inter­actions in the unit cell of the title compound. Only the major components of the disordered CF3 groups are shown. [Symmetry codes: (a) 1 − x, 1 − y, 1 − z; (b) − 1 + x, [{3\over 2}] − y, [{1\over 2}] + z].
[Figure 5]
Figure 5
A view of the mol­ecular packing of the title compound along the a axis. Only the major components of the disordered CF3 groups are shown.

4. Hirshfeld surface analysis

For both mol­ecules A and B, the inter­molecular inter­actions (Table 2[link]) were qu­anti­fied using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated. The calculations and visualization were performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Fig. 6[link] shows the Hirshfeld surface of the title compound mapped over dnorm in a fixed color scale of −0.2089 (red) to +1.1825 (blue) arbitrary units for mol­ecule A and −0.2105 (red) to +1.2372 (blue) arbitrary units for mol­ecule B, where the red spots indicate the inter­molecular contacts shorter than the van der Waals separations. Fig. 7[link] shows the full two-dimensional fingerprint plot (Fig. 7[link]a) and those delineated into the major contacts: H⋯H (23.8% for mol­ecule A and 22.4% for mol­ecule B, Fig. 7[link]b) inter­actions are the major factor in the crystal packing with Br⋯H/H⋯Br (18.3% for mol­ecule A and 12.3% for mol­ecule B, Fig.7c), O⋯H/H⋯O (14.3% for mol­ecule A and 9.7% for mol­ecule B, Fig. 7[link]d) and F⋯H/H⋯F (10.4% for mol­ecule A and 19.1% for mol­ecule B, Fig. 7[link]e) inter­actions representing the next highest contributions. The percentage contributions of other weak inter­actions are listed in Table 3[link]. The fact that the same inter­actions make different contributions to the HS mol­ecules A and B can be attributed to the different mol­ecular environments of the A and B mol­ecules in the crystalline structure.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Asterisks indicate symmetry-generated atoms

Contact Distance Symmetry operation
H5A⋯O8 2.57 1 − x, 1 − y, 1 − z
H3B⋯O28 2.82 x, [{3\over 2}] − y, − [{1\over 2}] + z
H4A⋯O1 2.74 −1 + x, y, z
Br2⋯Br22 3.74 x, −[{1\over 2}] + y, [{3\over 2}] − z
Br2⋯H26A 2.95 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H7AA⋯C36 2.59 1 − x, 1 − y, 1 − z
*F3A⋯*F23 2.90 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z
H15A⋯O21 2.62 2 − x, 1 − y, 1 − z
*F2A⋯H23B 2.60 1 + x, [{3\over 2}] − y, −[{1\over 2}] + z
H23A⋯H36A 2.49 −1 + x, y, z
H23B⋯*F2A 2.60 −1 + x, [{3\over 2}] − y, [{1\over 2}] + z
Br22⋯*F23 3.48 −1 + x, [{3\over 2}] − y, [{1\over 2}] + z
*F22A⋯*F1 2.94 2 − x, [{1\over 2}] + y, [{1\over 2}] − z
H33A⋯*F21A 2.84 1 − x, 2 − y, 1 − z
*F22A⋯*F22 3.09 2 − x, 2 − y, 1 − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the mol­ecules A and B of the title compound

Contact Mol­ecule A Mol­ecule B
H⋯H 23.8 22.4
Br⋯H/H⋯Br 18.3 12.3
O⋯H/H⋯O 14.3 9.7
F⋯H/H⋯F 10.4 19.1
C⋯H/H⋯C 9.9 7.8
F⋯F 6.9 8.6
Br⋯F/F⋯Br 3.9 8.0
Br⋯C/C⋯Br 3.7 3.5
Br⋯Br 2.4 1.6
F⋯C/C⋯F 2.3 2.4
Br⋯O/O⋯Br 1.4 2.1
Br⋯N/N⋯Br 1.1 0.9
O⋯N/N⋯O 0.5 0.5
O⋯C/C⋯O 0.5 0.4
C⋯C 0.3 0.3
N⋯H/H⋯N 0.2 0.3
N⋯C/C⋯N 0.1 0.1
[Figure 6]
Figure 6
Hirshfeld surfaces of mol­ecules A and B of the title compound mapped with dnorm.
[Figure 7]
Figure 7
The two-dimensional fingerprint plots for mol­ecules A and B of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) Br⋯H/H⋯Br and (e) O⋯H/H⋯O inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having the ep­oxy­iso­indole moiety gave eight hits that closely resemble the title compound, viz. 4,5-di­bromo-6-methyl-2-phenyl­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (IMUBIE; Mertsalov et al., 2021a[Mertsalov, D. F., Nadirova, M. A., Chervyakova, L. V., Grigoriev, M. S., Shelukho, E. R., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021a). Acta Cryst. E77, 237-241.]), 2-benzyl-4,5-di­bromo­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (OMEMAX; Mertsalov et al., 2021b[Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021b). Acta Cryst. E77, 255-259.]), (3aR,6S,7aR)-7a-chloro-2-[(4-nitrophen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (AGONUH; Temel et al., 2013[Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551-o1552.]), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (TIJMIK; Demircan et al., 2013[Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628-o1629.]), 5-chloro-7-methyl-3-[(4-methyl-phen­yl)sulfon­yl]-10-oxa-3-aza­tri­cyclo­[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012[Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102-o1103.]), (3aR,6S,7aR)-7a-bromo-2-[(4-methyl­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso-indole (UPAQEI; Koşar et al., 2011[Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994-o995.]), (3aR,6S,7aR)-7a-bromo-2-methyl­sulfonyl-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (ERIVIL; Temel et al., 2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.]) and tert-butyl 3a-chloro­per-hydro-2,6a-ep­oxy­oxireno(e)isoindole-5-carboxyl­ate (MIGTIG; Koşar et al., 2007[Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.]).

In the crystal of IMUBIE, the mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating [R_{2}^{2}](18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π inter­actions. In the crystal structures of OMEMAX, AGONUH, TIJMIK, YAXCIL, UPAQEI and ERIVIL, the mol­ecules are linked by predominantly C—H⋯O hydrogen bonds describing different hydrogen-bonding pattern connectivities. In OMEMAX, mol­ecules form sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals inter­actions. In the crystal of AGONUH, the mol­ecules are connected in zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds are found, viz. R22(20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Additionally, C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules in the b-axis direction. In the crystal of ERIVIL, the mol­ecules are connected into [R_{2}^{2}](8) and [R_{2}^{2}](14) rings along the b-axis direction. In MIGTIG, the mol­ecules are linked only by weak van der Waals inter­actions.

6. Synthesis and crystallization

(3aS,6S,7aR)-2-(4-(Tri­fluoro­meth­yl)phen­yl)-2,3,7,7a-tetra­hydro-3a,6-ep­oxy­isoindol-1(6H)-one (1.2 mmol) and the brominating agent [(Me2NCOMe)2H]Br3 (1.32 mmol) in 3 mL of dry chloro­form were heated under reflux for 3–5 h (TLC control, EtOAc–hexane, 1:1). The reaction mixture was poured into H2O (50 mL), extracted with CHCl3 (3 × 20 mL) and combined organic parts were dried over anhydrous Na2SO4 and the solvent was evaporated under reduced pressure. Recrystallization of the obtained residue from a hexa­ne–AcOEt mixture gave single crystals suitable for X-ray analysis.

Yield 15%, m.p. > 438 K (decomp.), pale-beige plates. 1H NMR (600.2 MHz, CDCl3) δ 7.79 (d, J = 8.1 Hz, 2H, H-3, H-5 Harom.), 7.64 (d, J = 8.1 Hz, 2H, H-2, H-6 Harom.), 4.78 (t, J = 5.0 Hz, 1H, H-6), 4.53 (ddd, J = 4.0 Hz, J = 1.3 Hz, J = 2.3 Hz, 1H, H-5), 4.26 (t, J = 2.3 Hz, 1H, H-4), 4.13 (dd, J = 11.6 Hz, J = 1.7 Hz, 1H), 4.09 (dd, J = 11.6 Hz, J = 1.7 Hz, 1H, H-3), 2.99 (dd, J = 4.5 Hz, J = 9.1 Hz, 1H, H-7a), 2.83 (ddd, J = 1.7 Hz, J = 9.1 Hz, J = 13.1 Hz, 1H, H-7B), 2.35–2.31 (m, 1H, H-7A). 13C NMR (150.9 MHz, CDCl3) δ 172.7, 141.6, 126.7 (q, J = 33.2 Hz, 1C), 126.2 (q, J = 2.9 Hz, 2C), 123.8 (J = 271.6 Hz, 1C), 119.4 (2C), 88.7, 80.1, 55.5, 53.8, 50.5, 49.7, 30.9. 19F NMR (564.7 MHz, CDCl3) δ −62.1. IR (KBr): 1703 (NC=O). MS (ESI): m/z = 456 [M + H+]. Analysis calculated for C15H12Br2F3NO2: C 39.59%, H 2.66%, N 3.08%. Found: C 39.55%, H 2.61%, N 3.20%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were placed at calculated positions using a riding model, with aromatic C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). The F atoms of the tri­fluoro­methyl groups (CF3) of both mol­ecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) for mol­ecule A and 0.640 (15)/0.360 (15) for mol­ecule B. The major and minor components of the disordered CF3 groups of mol­ecules A and B were restrained to have approximately equal C—F distances by use of the SHELXL SADI instruction. The anisotropies of the F1, F2, F3, F1A, F2A, F3A, F21, F22, F23, F21A, F22A and F23A atoms were restrained with ISOR 0.01 0.02 in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Six outliers ([\overline{3}] 1 4, [\overline{1}] 2 11, [\overline{3}] 2 5, [\overline{2}] 7 7, [\overline{1}] 4 7 and [\overline{1}] 10 25) were omitted in the final refinement.

Table 4
Experimental details

Crystal data
Chemical formula C15H12Br2F3NO2
Mr 455.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.6543 (2), 18.9031 (5), 25.1995 (7)
β (°) 97.132 (2)
V3) 3145.24 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.19
Crystal size (mm) 0.44 × 0.12 × 0.04
 
Data collection
Diffractometer Bruker KAPPA APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.704, 0.819
No. of measured, independent and observed [I > 2σ(I)] reflections 44884, 7199, 4255
Rint 0.057
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.077, 1.00
No. of reflections 7199
No. of parameters 471
No. of restraints 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(3aS,4R,5R,6S,7aR)-4,5-Dibromo-2-[4-(trifluoromethyl)phenyl]-2,3,3a,4,5,6,7,7a-octahydro-3a,6-epoxy-1H-isoindol-1-one top
Crystal data top
C15H12Br2F3NO2F(000) = 1776
Mr = 455.08Dx = 1.922 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6543 (2) ÅCell parameters from 6983 reflections
b = 18.9031 (5) Åθ = 3.1–22.1°
c = 25.1995 (7) ŵ = 5.19 mm1
β = 97.132 (2)°T = 296 K
V = 3145.24 (15) Å3Plate, light beige
Z = 80.44 × 0.12 × 0.04 mm
Data collection top
Bruker KAPPA APEXII area-detector
diffractometer
4255 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 4.2°
Tmin = 0.704, Tmax = 0.819h = 88
44884 measured reflectionsk = 2424
7199 independent reflectionsl = 3232
Refinement top
Refinement on F2204 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.067P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7199 reflectionsΔρmax = 0.52 e Å3
471 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.04969 (6)0.49524 (2)0.40882 (2)0.05936 (12)
Br20.16433 (6)0.33168 (2)0.52432 (2)0.05972 (13)
F10.8250 (14)0.4392 (8)0.1004 (3)0.100 (3)0.60 (3)
F20.984 (3)0.5243 (3)0.1380 (4)0.097 (3)0.60 (3)
F31.1221 (17)0.4233 (8)0.1395 (5)0.105 (4)0.60 (3)
F1A0.8229 (18)0.4756 (13)0.1027 (6)0.099 (5)0.40 (3)
F2A1.084 (3)0.5104 (9)0.1523 (7)0.100 (5)0.40 (3)
F3A1.056 (3)0.4043 (6)0.1284 (6)0.082 (4)0.40 (3)
O10.7970 (4)0.29869 (13)0.36728 (11)0.0602 (7)
O80.5397 (3)0.44953 (12)0.44391 (9)0.0477 (6)
N20.6066 (4)0.39552 (14)0.33412 (11)0.0394 (7)
C10.6561 (5)0.33992 (18)0.36860 (14)0.0423 (8)
C30.4324 (5)0.43625 (18)0.34806 (13)0.0417 (8)
H3A0.3115840.4261350.3235700.050*
H3B0.4593150.4866700.3476990.050*
C3A0.4104 (5)0.41102 (17)0.40351 (13)0.0368 (8)
C40.2098 (5)0.41007 (17)0.42722 (13)0.0394 (8)
H4A0.1317850.3674870.4160590.047*
C50.2862 (5)0.40741 (18)0.48724 (13)0.0436 (8)
H5A0.2543870.4525720.5033800.052*
C60.5167 (5)0.4022 (2)0.48785 (14)0.0489 (9)
H6A0.5929910.4170810.5218020.059*
C70.5857 (5)0.3323 (2)0.46770 (15)0.0548 (10)
H7A0.5263030.2928120.4847710.066*
H7B0.7320820.3280720.4730850.066*
C7A0.5045 (5)0.33729 (17)0.40819 (13)0.0387 (8)
H7AA0.4020460.3008290.3982580.046*
C110.6955 (5)0.41029 (17)0.28750 (14)0.0399 (8)
C120.5936 (6)0.4528 (2)0.24827 (16)0.0553 (10)
H12A0.4688380.4720550.2533870.066*
C130.6754 (6)0.4671 (2)0.20159 (16)0.0613 (11)
H13A0.6049940.4957030.1755970.074*
C140.8598 (6)0.43931 (19)0.19327 (15)0.0498 (9)
C150.9620 (5)0.39722 (19)0.23196 (15)0.0486 (9)
H15A1.0870120.3783000.2266600.058*
C160.8817 (5)0.38265 (18)0.27862 (14)0.0468 (9)
H16A0.9529610.3539970.3044330.056*
C170.9517 (7)0.4566 (2)0.14398 (18)0.0672 (12)
Br210.02652 (5)0.90131 (2)0.77414 (2)0.05796 (12)
Br220.19224 (7)0.74494 (2)0.89213 (2)0.07068 (14)
F210.6437 (15)0.8625 (7)0.4491 (3)0.138 (4)0.640 (15)
F220.7980 (19)0.9531 (3)0.4818 (4)0.113 (3)0.640 (15)
F230.9516 (12)0.8560 (6)0.4812 (3)0.116 (3)0.640 (15)
F21A0.674 (3)0.9420 (7)0.4653 (6)0.111 (5)0.360 (15)
F22A0.9709 (17)0.9064 (12)0.4937 (5)0.137 (6)0.360 (15)
F23A0.751 (3)0.8377 (5)0.4539 (4)0.094 (4)0.360 (15)
O210.7477 (4)0.73028 (14)0.72019 (11)0.0656 (8)
O280.4682 (3)0.87970 (12)0.79846 (9)0.0481 (6)
N220.5250 (4)0.81952 (15)0.69035 (11)0.0414 (7)
C210.6025 (5)0.76761 (19)0.72515 (15)0.0451 (9)
C230.3412 (5)0.85182 (19)0.70647 (13)0.0422 (8)
H23A0.2206560.8335400.6853160.051*
H23B0.3440860.9028740.7027870.051*
C23A0.3480 (4)0.83071 (17)0.76374 (13)0.0372 (8)
C240.1603 (5)0.82315 (18)0.79201 (14)0.0425 (8)
H24A0.0937270.7775090.7838390.051*
C250.2563 (5)0.82648 (19)0.85095 (14)0.0481 (9)
H25A0.2076800.8691360.8674140.058*
C260.4823 (5)0.8359 (2)0.84539 (15)0.0538 (10)
H26A0.5585980.8581680.8767560.065*
C270.5823 (5)0.7695 (2)0.82783 (15)0.0578 (11)
H27A0.5557750.7290420.8495610.069*
H27B0.7273650.7755390.8284100.069*
C27A0.4739 (5)0.76308 (18)0.77028 (14)0.0431 (8)
H27C0.3867910.7211310.7665100.052*
C310.5911 (5)0.83652 (18)0.64070 (14)0.0418 (8)
C320.4639 (6)0.8728 (2)0.60261 (15)0.0556 (10)
H32A0.3363480.8864970.6102020.067*
C330.5228 (7)0.8889 (2)0.55368 (17)0.0674 (12)
H33A0.4351430.9133220.5284680.081*
C340.7117 (7)0.8691 (2)0.54186 (17)0.0624 (11)
C350.8395 (6)0.8327 (2)0.57932 (17)0.0597 (11)
H35A0.9661930.8186080.5712720.072*
C360.7822 (5)0.81668 (19)0.62877 (16)0.0508 (9)
H36A0.8708530.7927530.6540430.061*
C370.7765 (9)0.8866 (3)0.4889 (2)0.0852 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0517 (2)0.0598 (3)0.0702 (3)0.01235 (19)0.0221 (2)0.0094 (2)
Br20.0562 (2)0.0703 (3)0.0529 (3)0.0180 (2)0.00743 (19)0.0129 (2)
F10.139 (5)0.110 (7)0.053 (4)0.014 (4)0.028 (3)0.003 (4)
F20.146 (7)0.066 (4)0.090 (5)0.004 (4)0.059 (5)0.013 (3)
F30.098 (5)0.135 (7)0.095 (6)0.033 (5)0.060 (4)0.032 (5)
F1A0.106 (6)0.124 (9)0.073 (6)0.007 (6)0.033 (5)0.039 (6)
F2A0.111 (8)0.104 (8)0.093 (7)0.056 (6)0.048 (6)0.011 (5)
F3A0.123 (8)0.063 (5)0.075 (6)0.000 (5)0.065 (6)0.016 (4)
O10.0612 (16)0.0520 (16)0.0717 (19)0.0192 (13)0.0251 (14)0.0135 (14)
O80.0473 (14)0.0514 (15)0.0459 (15)0.0230 (11)0.0111 (11)0.0137 (12)
N20.0396 (15)0.0386 (16)0.0414 (17)0.0037 (13)0.0107 (13)0.0023 (14)
C10.0430 (19)0.038 (2)0.046 (2)0.0013 (16)0.0085 (17)0.0035 (17)
C30.0440 (19)0.038 (2)0.045 (2)0.0012 (15)0.0123 (16)0.0014 (16)
C3A0.0372 (17)0.038 (2)0.0360 (19)0.0049 (15)0.0076 (15)0.0069 (15)
C40.0397 (18)0.0359 (19)0.043 (2)0.0047 (15)0.0074 (16)0.0032 (16)
C50.047 (2)0.044 (2)0.041 (2)0.0137 (16)0.0122 (16)0.0071 (17)
C60.043 (2)0.069 (3)0.034 (2)0.0185 (19)0.0001 (16)0.0061 (19)
C70.042 (2)0.071 (3)0.051 (2)0.0065 (19)0.0047 (18)0.010 (2)
C7A0.0369 (18)0.0373 (19)0.042 (2)0.0022 (15)0.0069 (15)0.0033 (16)
C110.0433 (19)0.0356 (19)0.042 (2)0.0004 (16)0.0106 (16)0.0053 (16)
C120.056 (2)0.054 (2)0.060 (3)0.0161 (19)0.023 (2)0.010 (2)
C130.073 (3)0.058 (3)0.056 (3)0.022 (2)0.021 (2)0.014 (2)
C140.062 (2)0.042 (2)0.049 (2)0.0024 (18)0.022 (2)0.0051 (18)
C150.046 (2)0.054 (2)0.049 (2)0.0034 (18)0.0199 (18)0.0035 (19)
C160.048 (2)0.046 (2)0.046 (2)0.0053 (17)0.0057 (17)0.0022 (18)
C170.085 (3)0.061 (3)0.060 (3)0.011 (3)0.029 (3)0.001 (3)
Br210.0449 (2)0.0658 (3)0.0640 (3)0.01529 (19)0.01001 (18)0.0037 (2)
Br220.0775 (3)0.0783 (3)0.0609 (3)0.0063 (2)0.0271 (2)0.0142 (2)
F210.152 (6)0.201 (8)0.066 (4)0.033 (5)0.033 (4)0.014 (5)
F220.168 (7)0.079 (4)0.105 (5)0.015 (4)0.070 (5)0.016 (3)
F230.133 (5)0.135 (6)0.098 (4)0.027 (4)0.084 (4)0.020 (4)
F21A0.140 (9)0.106 (8)0.096 (7)0.033 (6)0.058 (6)0.041 (6)
F22A0.127 (8)0.169 (11)0.126 (8)0.033 (7)0.058 (6)0.029 (7)
F23A0.155 (9)0.073 (6)0.060 (5)0.006 (6)0.044 (6)0.004 (4)
O210.0596 (16)0.0704 (19)0.071 (2)0.0285 (14)0.0227 (14)0.0036 (15)
O280.0453 (13)0.0506 (15)0.0469 (15)0.0105 (11)0.0005 (11)0.0058 (12)
N220.0339 (14)0.0492 (18)0.0421 (17)0.0020 (13)0.0088 (13)0.0051 (14)
C210.0384 (19)0.047 (2)0.050 (2)0.0017 (17)0.0064 (17)0.0056 (18)
C230.0351 (17)0.049 (2)0.043 (2)0.0041 (15)0.0061 (15)0.0030 (17)
C23A0.0323 (16)0.0379 (19)0.041 (2)0.0039 (15)0.0022 (15)0.0074 (16)
C240.0396 (18)0.042 (2)0.047 (2)0.0026 (15)0.0097 (16)0.0066 (17)
C250.054 (2)0.050 (2)0.043 (2)0.0045 (18)0.0140 (17)0.0065 (18)
C260.051 (2)0.068 (3)0.040 (2)0.005 (2)0.0041 (18)0.006 (2)
C270.042 (2)0.079 (3)0.052 (3)0.013 (2)0.0056 (18)0.009 (2)
C27A0.0360 (18)0.042 (2)0.052 (2)0.0030 (15)0.0069 (16)0.0021 (17)
C310.0422 (19)0.044 (2)0.040 (2)0.0074 (16)0.0101 (16)0.0095 (17)
C320.053 (2)0.066 (3)0.050 (3)0.009 (2)0.015 (2)0.001 (2)
C330.076 (3)0.069 (3)0.059 (3)0.005 (2)0.019 (2)0.007 (2)
C340.081 (3)0.055 (3)0.056 (3)0.015 (2)0.028 (2)0.010 (2)
C350.057 (2)0.059 (3)0.068 (3)0.012 (2)0.028 (2)0.017 (2)
C360.042 (2)0.057 (2)0.055 (2)0.0074 (17)0.0092 (18)0.0097 (19)
C370.113 (5)0.080 (4)0.069 (4)0.019 (4)0.038 (3)0.003 (3)
Geometric parameters (Å, º) top
Br1—C41.954 (3)Br21—C241.947 (3)
Br2—C51.941 (3)Br22—C251.935 (4)
F1—F1A0.691 (15)F21—F23A0.852 (11)
F1—C171.341 (7)F21—C371.332 (7)
F1—F3A1.738 (15)F21—F21A1.564 (13)
F2—F2A0.764 (14)F22—F21A0.899 (13)
F2—C171.308 (7)F22—C371.280 (7)
F2—F1A1.596 (14)F22—F22A1.452 (14)
F3—F3A0.610 (16)F23—F22A1.007 (15)
F3—C171.314 (7)F23—C371.337 (7)
F3—F2A1.703 (13)F23—F23A1.463 (13)
F1A—C171.313 (9)F21A—C371.347 (9)
F2A—C171.345 (9)F22A—C371.338 (9)
F3A—C171.295 (9)F23A—C371.275 (9)
O1—C11.223 (4)O21—C211.215 (4)
O8—C3A1.446 (4)O28—C261.437 (4)
O8—C61.446 (4)O28—C23A1.445 (4)
N2—C11.377 (4)N22—C211.373 (4)
N2—C111.407 (4)N22—C311.414 (4)
N2—C31.470 (4)N22—C231.469 (4)
C1—C7A1.505 (4)C21—C27A1.508 (5)
C3—C3A1.501 (4)C23—C23A1.492 (5)
C3—H3A0.9700C23—H23A0.9700
C3—H3B0.9700C23—H23B0.9700
C3A—C7A1.527 (4)C23A—C241.520 (4)
C3A—C41.529 (4)C23A—C27A1.526 (4)
C4—C51.535 (5)C24—C251.543 (5)
C4—H4A0.9800C24—H24A0.9800
C5—C61.536 (5)C25—C261.538 (5)
C5—H5A0.9800C25—H25A0.9800
C6—C71.508 (5)C26—C271.511 (5)
C6—H6A0.9800C26—H26A0.9800
C7—C7A1.532 (5)C27—C27A1.542 (5)
C7—H7A0.9700C27—H27A0.9700
C7—H7B0.9700C27—H27B0.9700
C7A—H7AA0.9800C27A—H27C0.9800
C11—C121.385 (5)C31—C321.380 (5)
C11—C161.388 (4)C31—C361.394 (5)
C12—C131.382 (5)C32—C331.374 (5)
C12—H12A0.9300C32—H32A0.9300
C13—C141.375 (5)C33—C341.379 (6)
C13—H13A0.9300C33—H33A0.9300
C14—C151.372 (5)C34—C351.374 (6)
C14—C171.488 (5)C34—C371.489 (6)
C15—C161.379 (5)C35—C361.381 (5)
C15—H15A0.9300C35—H35A0.9300
C16—H16A0.9300C36—H36A0.9300
F1A—F1—C1772.7 (11)F23A—F21—C3767.4 (8)
F1A—F1—F3A111.7 (13)F23A—F21—F21A114.4 (10)
C17—F1—F3A47.6 (5)C37—F21—F21A54.7 (5)
F2A—F2—C1776.0 (9)F21A—F22—C3774.0 (8)
F2A—F2—F1A123.5 (11)F21A—F22—F22A127.7 (11)
C17—F2—F1A52.6 (4)C37—F22—F22A58.3 (5)
F3A—F3—C1774.8 (13)F22A—F23—C3768.0 (7)
F3A—F3—F2A122.7 (14)F22A—F23—F23A116.4 (9)
C17—F3—F2A51.0 (4)C37—F23—F23A54.0 (4)
F1—F1A—C1777.2 (11)F22—F21A—C3766.0 (7)
F1—F1A—F2127.1 (13)F22—F21A—F21115.1 (10)
C17—F1A—F252.4 (5)C37—F21A—F2153.8 (5)
F2—F2A—C1770.6 (9)F23—F22A—C3767.8 (7)
F2—F2A—F3112.5 (12)F23—F22A—F22116.3 (9)
C17—F2A—F349.4 (4)C37—F22A—F2254.5 (5)
F3—F3A—C1778.2 (12)F21—F23A—C3774.6 (8)
F3—F3A—F1121.1 (15)F21—F23A—F23129.5 (10)
C17—F3A—F149.9 (5)C37—F23A—F2358.0 (5)
C3A—O8—C696.7 (2)C26—O28—C23A96.0 (2)
C1—N2—C11125.8 (3)C21—N22—C31126.4 (3)
C1—N2—C3112.5 (3)C21—N22—C23112.3 (3)
C11—N2—C3121.4 (3)C31—N22—C23120.8 (3)
O1—C1—N2126.4 (3)O21—C21—N22126.1 (3)
O1—C1—C7A125.2 (3)O21—C21—C27A125.3 (3)
N2—C1—C7A108.4 (3)N22—C21—C27A108.6 (3)
N2—C3—C3A103.1 (3)N22—C23—C23A103.3 (3)
N2—C3—H3A111.1N22—C23—H23A111.1
C3A—C3—H3A111.1C23A—C23—H23A111.1
N2—C3—H3B111.1N22—C23—H23B111.1
C3A—C3—H3B111.1C23A—C23—H23B111.1
H3A—C3—H3B109.1H23A—C23—H23B109.1
O8—C3A—C3112.2 (3)O28—C23A—C23111.2 (3)
O8—C3A—C7A101.7 (2)O28—C23A—C24101.6 (3)
C3—C3A—C7A106.0 (3)C23—C23A—C24123.4 (3)
O8—C3A—C4101.7 (2)O28—C23A—C27A102.5 (2)
C3—C3A—C4124.0 (3)C23—C23A—C27A106.2 (3)
C7A—C3A—C4109.2 (3)C24—C23A—C27A110.0 (3)
C3A—C4—C5100.8 (2)C23A—C24—C25100.4 (3)
C3A—C4—Br1112.0 (2)C23A—C24—Br21111.0 (2)
C5—C4—Br1111.4 (2)C25—C24—Br21111.6 (2)
C3A—C4—H4A110.8C23A—C24—H24A111.1
C5—C4—H4A110.8C25—C24—H24A111.1
Br1—C4—H4A110.8Br21—C24—H24A111.1
C4—C5—C6102.7 (3)C26—C25—C24102.1 (3)
C4—C5—Br2113.0 (2)C26—C25—Br22115.1 (3)
C6—C5—Br2115.1 (2)C24—C25—Br22113.0 (2)
C4—C5—H5A108.6C26—C25—H25A108.8
C6—C5—H5A108.6C24—C25—H25A108.8
Br2—C5—H5A108.6Br22—C25—H25A108.8
O8—C6—C7102.6 (3)O28—C26—C27102.9 (3)
O8—C6—C598.8 (3)O28—C26—C25100.2 (3)
C7—C6—C5113.5 (3)C27—C26—C25113.7 (3)
O8—C6—H6A113.5O28—C26—H26A113.0
C7—C6—H6A113.5C27—C26—H26A113.0
C5—C6—H6A113.5C25—C26—H26A113.0
C6—C7—C7A101.0 (3)C26—C27—C27A99.7 (3)
C6—C7—H7A111.6C26—C27—H27A111.8
C7A—C7—H7A111.6C27A—C27—H27A111.8
C6—C7—H7B111.6C26—C27—H27B111.8
C7A—C7—H7B111.6C27A—C27—H27B111.8
H7A—C7—H7B109.4H27A—C27—H27B109.5
C1—C7A—C3A102.8 (3)C21—C27A—C23A103.1 (3)
C1—C7A—C7117.8 (3)C21—C27A—C27117.5 (3)
C3A—C7A—C7102.9 (3)C23A—C27A—C27102.8 (3)
C1—C7A—H7AA110.9C21—C27A—H27C110.9
C3A—C7A—H7AA110.9C23A—C27A—H27C110.9
C7—C7A—H7AA110.9C27—C27A—H27C110.9
C12—C11—C16118.1 (3)C32—C31—C36118.7 (3)
C12—C11—N2119.5 (3)C32—C31—N22119.8 (3)
C16—C11—N2122.4 (3)C36—C31—N22121.5 (3)
C13—C12—C11120.8 (3)C33—C32—C31121.0 (4)
C13—C12—H12A119.6C33—C32—H32A119.5
C11—C12—H12A119.6C31—C32—H32A119.5
C14—C13—C12120.6 (4)C32—C33—C34120.2 (4)
C14—C13—H13A119.7C32—C33—H33A119.9
C12—C13—H13A119.7C34—C33—H33A119.9
C15—C14—C13119.1 (3)C35—C34—C33119.4 (4)
C15—C14—C17120.2 (3)C35—C34—C37120.2 (4)
C13—C14—C17120.7 (4)C33—C34—C37120.4 (5)
C14—C15—C16120.8 (3)C34—C35—C36120.8 (4)
C14—C15—H15A119.6C34—C35—H35A119.6
C16—C15—H15A119.6C36—C35—H35A119.6
C15—C16—C11120.7 (3)C35—C36—C31119.8 (4)
C15—C16—H16A119.6C35—C36—H36A120.1
C11—C16—H16A119.6C31—C36—H36A120.1
F3A—C17—F2127.6 (8)F23A—C37—F22128.3 (7)
F3A—C17—F1A106.8 (9)F22—C37—F21107.7 (7)
F2—C17—F1A75.0 (7)F23A—C37—F2368.1 (6)
F2—C17—F3107.6 (6)F22—C37—F23106.8 (6)
F1A—C17—F3123.2 (9)F21—C37—F23104.5 (6)
F3A—C17—F182.5 (8)F23A—C37—F22A107.8 (8)
F2—C17—F1103.9 (6)F22—C37—F22A67.3 (7)
F3—C17—F1105.9 (6)F21—C37—F22A134.9 (8)
F3A—C17—F2A105.1 (7)F23A—C37—F21A104.0 (8)
F1A—C17—F2A105.5 (7)F21—C37—F21A71.4 (7)
F3—C17—F2A79.7 (7)F23—C37—F21A132.3 (7)
F1—C17—F2A130.3 (8)F22A—C37—F21A104.6 (8)
F3A—C17—C14112.0 (7)F23A—C37—C34115.6 (6)
F2—C17—C14113.7 (5)F22—C37—C34113.3 (5)
F1A—C17—C14115.2 (7)F21—C37—C34111.1 (5)
F3—C17—C14114.5 (6)F23—C37—C34112.9 (5)
F1—C17—C14110.4 (5)F22A—C37—C34111.6 (7)
F2A—C17—C14111.5 (7)F21A—C37—C34112.5 (7)
F3A—F1—F1A—C1727.9 (13)F22A—F22—F21A—C3724.2 (13)
C17—F1—F1A—F216.9 (19)C37—F22—F21A—F2122.7 (10)
F3A—F1—F1A—F211 (3)F22A—F22—F21A—F211 (2)
F2A—F2—F1A—F18 (4)F23A—F21—F21A—F227 (2)
C17—F2—F1A—F121 (2)C37—F21—F21A—F2225.9 (12)
F2A—F2—F1A—C1729.2 (19)F23A—F21—F21A—C3733.1 (13)
F1A—F2—F2A—C1723.6 (14)F23A—F23—F22A—C3724.6 (9)
C17—F2—F2A—F326.8 (11)C37—F23—F22A—F2225.6 (9)
F1A—F2—F2A—F33 (2)F23A—F23—F22A—F221.0 (16)
F3A—F3—F2A—F211 (4)F21A—F22—F22A—F232 (2)
C17—F3—F2A—F234.1 (15)C37—F22—F22A—F2329.5 (10)
F3A—F3—F2A—C1723 (3)F21A—F22—F22A—C3727.6 (16)
F2A—F3—F3A—C1718 (2)F21A—F21—F23A—C3728.9 (11)
C17—F3—F3A—F126.6 (18)C37—F21—F23A—F2319.7 (14)
F2A—F3—F3A—F18 (4)F21A—F21—F23A—F239 (2)
F1A—F1—F3A—F32 (4)F22A—F23—F23A—F216 (2)
C17—F1—F3A—F335 (3)C37—F23—F23A—F2122.6 (16)
F1A—F1—F3A—C1737 (2)F22A—F23—F23A—C3728.5 (11)
C11—N2—C1—O17.5 (6)C31—N22—C21—O214.1 (6)
C3—N2—C1—O1178.0 (3)C23—N22—C21—O21176.5 (3)
C11—N2—C1—C7A171.5 (3)C31—N22—C21—C27A174.4 (3)
C3—N2—C1—C7A3.0 (4)C23—N22—C21—C27A2.1 (4)
C1—N2—C3—C3A13.8 (4)C21—N22—C23—C23A17.2 (4)
C11—N2—C3—C3A171.4 (3)C31—N22—C23—C23A169.9 (3)
C6—O8—C3A—C3167.2 (3)C26—O28—C23A—C23166.9 (3)
C6—O8—C3A—C7A54.4 (3)C26—O28—C23A—C2460.0 (3)
C6—O8—C3A—C458.3 (3)C26—O28—C23A—C27A53.8 (3)
N2—C3—C3A—O885.4 (3)N22—C23—C23A—O2885.8 (3)
N2—C3—C3A—C7A24.7 (3)N22—C23—C23A—C24153.2 (3)
N2—C3—C3A—C4152.0 (3)N22—C23—C23A—C27A25.0 (3)
O8—C3A—C4—C532.6 (3)O28—C23A—C24—C2536.2 (3)
C3—C3A—C4—C5159.7 (3)C23—C23A—C24—C25161.6 (3)
C7A—C3A—C4—C574.4 (3)C27A—C23A—C24—C2571.8 (3)
O8—C3A—C4—Br185.9 (3)O28—C23A—C24—Br2181.9 (3)
C3—C3A—C4—Br141.2 (4)C23—C23A—C24—Br2143.5 (4)
C7A—C3A—C4—Br1167.1 (2)C27A—C23A—C24—Br21170.0 (2)
C3A—C4—C5—C63.6 (3)C23A—C24—C25—C260.4 (3)
Br1—C4—C5—C6122.6 (2)Br21—C24—C25—C26117.3 (3)
C3A—C4—C5—Br2128.3 (2)C23A—C24—C25—Br22123.9 (2)
Br1—C4—C5—Br2112.7 (2)Br21—C24—C25—Br22118.5 (2)
C3A—O8—C6—C757.2 (3)C23A—O28—C26—C2758.8 (3)
C3A—O8—C6—C559.4 (3)C23A—O28—C26—C2558.6 (3)
C4—C5—C6—O838.5 (3)C24—C25—C26—O2835.6 (3)
Br2—C5—C6—O8161.8 (2)Br22—C25—C26—O28158.5 (2)
C4—C5—C6—C769.5 (4)C24—C25—C26—C2773.4 (4)
Br2—C5—C6—C753.8 (4)Br22—C25—C26—C2749.4 (4)
O8—C6—C7—C7A36.4 (3)O28—C26—C27—C27A39.5 (3)
C5—C6—C7—C7A69.2 (3)C25—C26—C27—C27A67.9 (4)
O1—C1—C7A—C3A162.7 (3)O21—C21—C27A—C23A167.8 (3)
N2—C1—C7A—C3A18.2 (3)N22—C21—C27A—C23A13.6 (4)
O1—C1—C7A—C750.5 (5)O21—C21—C27A—C2755.6 (5)
N2—C1—C7A—C7130.5 (3)N22—C21—C27A—C27125.8 (3)
O8—C3A—C7A—C191.0 (3)O28—C23A—C27A—C2192.9 (3)
C3—C3A—C7A—C126.4 (3)C23—C23A—C27A—C2123.9 (3)
C4—C3A—C7A—C1162.1 (3)C24—C23A—C27A—C21159.6 (3)
O8—C3A—C7A—C731.9 (3)O28—C23A—C27A—C2729.7 (3)
C3—C3A—C7A—C7149.3 (3)C23—C23A—C27A—C27146.5 (3)
C4—C3A—C7A—C775.0 (3)C24—C23A—C27A—C2777.8 (3)
C6—C7—C7A—C1114.7 (3)C26—C27—C27A—C21117.8 (3)
C6—C7—C7A—C3A2.5 (3)C26—C27—C27A—C23A5.4 (3)
C1—N2—C11—C12160.0 (3)C21—N22—C31—C32159.3 (3)
C3—N2—C11—C1214.1 (5)C23—N22—C31—C3212.5 (5)
C1—N2—C11—C1618.8 (5)C21—N22—C31—C3619.9 (5)
C3—N2—C11—C16167.1 (3)C23—N22—C31—C36168.3 (3)
C16—C11—C12—C130.2 (6)C36—C31—C32—C330.3 (6)
N2—C11—C12—C13178.7 (3)N22—C31—C32—C33178.9 (4)
C11—C12—C13—C140.1 (6)C31—C32—C33—C340.1 (6)
C12—C13—C14—C150.0 (6)C32—C33—C34—C350.4 (6)
C12—C13—C14—C17177.8 (4)C32—C33—C34—C37179.8 (4)
C13—C14—C15—C160.1 (6)C33—C34—C35—C360.9 (6)
C17—C14—C15—C16177.8 (4)C37—C34—C35—C36179.3 (4)
C14—C15—C16—C110.0 (5)C34—C35—C36—C311.1 (6)
C12—C11—C16—C150.1 (5)C32—C31—C36—C350.8 (5)
N2—C11—C16—C15178.7 (3)N22—C31—C36—C35178.3 (3)
F3—F3A—C17—F248 (3)F21—F23A—C37—F2267.6 (15)
F1—F3A—C17—F2101.8 (9)F23—F23A—C37—F2294.5 (9)
F3—F3A—C17—F1A132 (2)F23—F23A—C37—F21162.1 (13)
F1—F3A—C17—F1A18.0 (9)F21—F23A—C37—F23162.1 (13)
F1—F3A—C17—F3150 (2)F21—F23A—C37—F22A142.4 (11)
F3—F3A—C17—F1150 (2)F23—F23A—C37—F22A19.7 (8)
F3—F3A—C17—F2A20 (2)F21—F23A—C37—F21A31.8 (13)
F1—F3A—C17—F2A129.8 (8)F23—F23A—C37—F21A130.3 (7)
F3—F3A—C17—C14101 (2)F21—F23A—C37—C3492.0 (12)
F1—F3A—C17—C14109.0 (6)F23—F23A—C37—C34105.8 (6)
F2A—F2—C17—F3A55.3 (17)F21A—F22—C37—F23A62.3 (14)
F1A—F2—C17—F3A99.9 (10)F22A—F22—C37—F23A95.3 (10)
F2A—F2—C17—F1A155.2 (17)F21A—F22—C37—F2125.5 (12)
F2A—F2—C17—F334.5 (16)F22A—F22—C37—F21132.0 (8)
F1A—F2—C17—F3120.7 (9)F21A—F22—C37—F23137.3 (11)
F2A—F2—C17—F1146.5 (14)F22A—F22—C37—F2320.3 (8)
F1A—F2—C17—F18.7 (10)F21A—F22—C37—F22A157.6 (13)
F1A—F2—C17—F2A155.2 (17)F22A—F22—C37—F21A157.6 (13)
F2A—F2—C17—C1493.5 (15)F21A—F22—C37—C3497.7 (12)
F1A—F2—C17—C14111.3 (8)F22A—F22—C37—C34104.7 (8)
F1—F1A—C17—F3A38 (2)F21A—F21—C37—F23A147.4 (13)
F2—F1A—C17—F3A125.4 (8)F23A—F21—C37—F22130.4 (12)
F1—F1A—C17—F2163 (2)F21A—F21—C37—F2217.0 (8)
F1—F1A—C17—F361 (2)F23A—F21—C37—F2317.1 (12)
F2—F1A—C17—F3101.5 (8)F21A—F21—C37—F23130.3 (7)
F2—F1A—C17—F1163 (2)F23A—F21—C37—F22A55.1 (16)
F1—F1A—C17—F2A149.1 (17)F21A—F21—C37—F22A92.3 (11)
F2—F1A—C17—F2A13.9 (9)F23A—F21—C37—F21A147.4 (13)
F1—F1A—C17—C1487.5 (19)F23A—F21—C37—C34105.0 (12)
F2—F1A—C17—C14109.5 (6)F21A—F21—C37—C34107.6 (7)
F2A—F3—C17—F3A160 (2)F22A—F23—C37—F23A152.5 (11)
F3A—F3—C17—F2142 (2)F22A—F23—C37—F2227.3 (10)
F2A—F3—C17—F218.5 (9)F23A—F23—C37—F22125.3 (8)
F3A—F3—C17—F1A58 (2)F22A—F23—C37—F21141.3 (10)
F2A—F3—C17—F1A101.8 (9)F23A—F23—C37—F2111.3 (8)
F3A—F3—C17—F131 (2)F23A—F23—C37—F22A152.5 (11)
F2A—F3—C17—F1129.1 (8)F22A—F23—C37—F21A63.3 (13)
F3A—F3—C17—F2A160 (2)F23A—F23—C37—F21A89.2 (12)
F3A—F3—C17—C1491 (2)F22A—F23—C37—C3497.9 (10)
F2A—F3—C17—C14109.0 (7)F23A—F23—C37—C34109.6 (7)
F1A—F1—C17—F3A144 (2)F23—F22A—C37—F23A26.7 (11)
F1A—F1—C17—F217 (2)F22—F22A—C37—F23A124.9 (8)
F3A—F1—C17—F2127.0 (8)F23—F22A—C37—F22151.6 (10)
F3A—F1—C17—F1A144 (2)F23—F22A—C37—F2158.8 (13)
F1A—F1—C17—F3130.2 (19)F22—F22A—C37—F2192.8 (11)
F3A—F1—C17—F313.7 (10)F22—F22A—C37—F23151.6 (10)
F1A—F1—C17—F2A40 (2)F23—F22A—C37—F21A136.9 (9)
F3A—F1—C17—F2A103.5 (10)F22—F22A—C37—F21A14.6 (9)
F1A—F1—C17—C14105.3 (18)F23—F22A—C37—C34101.2 (9)
F3A—F1—C17—C14110.7 (7)F22—F22A—C37—C34107.2 (6)
F2—F2A—C17—F3A137.6 (14)F22—F21A—C37—F23A134.3 (11)
F3—F2A—C17—F3A9.1 (11)F21—F21A—C37—F23A20.0 (8)
F3—F2A—C17—F2146.7 (15)F21—F21A—C37—F22154.3 (12)
F2—F2A—C17—F1A24.9 (17)F22—F21A—C37—F21154.3 (12)
F3—F2A—C17—F1A121.8 (9)F22—F21A—C37—F2361.4 (14)
F2—F2A—C17—F3146.7 (15)F21—F21A—C37—F2392.9 (10)
F2—F2A—C17—F144.6 (17)F22—F21A—C37—F22A21.3 (13)
F3—F2A—C17—F1102.1 (9)F21—F21A—C37—F22A133.0 (8)
F2—F2A—C17—C14100.8 (14)F22—F21A—C37—C3499.9 (10)
F3—F2A—C17—C14112.4 (7)F21—F21A—C37—C34105.8 (6)
C15—C14—C17—F3A35.6 (11)C35—C34—C37—F23A83.5 (11)
C13—C14—C17—F3A146.7 (10)C33—C34—C37—F23A96.2 (11)
C15—C14—C17—F2118.1 (9)C35—C34—C37—F22113.7 (8)
C13—C14—C17—F259.6 (10)C33—C34—C37—F2266.5 (9)
C15—C14—C17—F1A157.9 (13)C35—C34—C37—F21124.9 (8)
C13—C14—C17—F1A24.4 (14)C33—C34—C37—F2154.9 (9)
C15—C14—C17—F36.2 (11)C35—C34—C37—F237.9 (8)
C13—C14—C17—F3176.1 (10)C33—C34—C37—F23171.9 (7)
C15—C14—C17—F1125.6 (8)C35—C34—C37—F22A40.1 (13)
C13—C14—C17—F156.8 (9)C33—C34—C37—F22A140.1 (12)
C15—C14—C17—F2A81.9 (13)C35—C34—C37—F21A157.2 (11)
C13—C14—C17—F2A95.8 (13)C33—C34—C37—F21A23.0 (12)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg10 are the centroids of the C11–C16 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O8i0.982.573.342 (4)135
C7—H7A···Br20.972.823.300 (4)112
C16—H16A···O10.932.262.853 (4)121
C27—H27A···Br220.972.783.259 (4)111
C36—H36A···O210.932.282.856 (5)120
C7A—H7AA···Cg10i0.982.943.741 (4)139
C27A—H27C···Cg5i0.982.973.924 (4)166
Symmetry code: (i) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
Asterisks indicate please define.
ContactDistanceSymmetry operation
H5A···O82.571 - x, 1 - y, 1 - z
H3B···O282.82x, 3/2 - y, - 1/2 + z
H4A···O12.74-1 + x, y, z
Br2···Br223.74-x, -1/2 + y, 3/2 - z
Br2···H26A2.951 - x, -1/2 + y, 3/2 - z
H7AA···C362.591 - x, 1 - y, 1 - z
*F3A···*F232.902 - x, -1/2 + y, 1/2 - z
H15A···O212.622 - x, 1 - y, 1 - z
*F2A···H23B2.601 + x, 3/2 - y, -1/2 + z
H23A···H36A2.49-1 + x, y, z
H23B···*F2A2.60-1 + x, 3/2 - y, 1/2 + z
Br22···*F233.48-1 + x, 3/2 - y, 1/2 + z
*F22A···*F12.942 - x, 1/2 + y, 1/2 - z
H33A···*F21A2.841 - x, 2 - y, 1 - z
*F22A···*F223.092 - x, 2 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the molecules A and B of the title compound top
ContactMolecule AMolecule B
H···H23.822.4
Br···H/H···Br18.312.3
O···H/H···O14.39.7
F···H/H···F10.419.1
C···H/H···C9.97.8
F···F6.98.6
Br···F/F···Br3.98.0
Br···C/C···Br3.73.5
Br···Br2.41.6
F···C/C···F2.32.4
Br···O/O···Br1.42.1
Br···N/N···Br1.10.9
O···N/N···O0.50.5
O···C/C···O0.50.4
C···C0.30.3
N···H/H···N0.20.3
N···C/C···N0.10.1
 

Funding information

Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [Award No. 075–03-2020–223 (FSSF-2020–0017)].

References

First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Detergent, 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationAsgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrudova, M. V., Gil, D. M., Khrustalev, V. N., Nikitina, E. V., Sinelshchikova, A. A., Grigoriev, M. S., Kletskov, A. V., Frontera, A. & Zubkov, F. I. (2020). New J. Chem. 44, 20167–20180.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CrossRef Google Scholar
First citationKarmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKoşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMertsalov, D. F., Nadirova, M. A., Chervyakova, L. V., Grigoriev, M. S., Shelukho, E. R., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021a). Acta Cryst. E77, 237–241.  CSD CrossRef IUCr Journals Google Scholar
First citationMertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021b). Acta Cryst. E77, 255–259.  CSD CrossRef IUCr Journals Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationNadirova, M. A., Pokazeev, K. M., Kolesnik, I. A., Dorovatovskii, P. V., Bumagin, N. A. & Potkin, V. I. (2019). Chem. Heterocycl. Compd, 55, 729–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.  Web of Science CSD CrossRef CAS Google Scholar
First citationSutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.  Web of Science CSD CrossRef Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWicholas, M., Garrett, A. D., Gleaves, M., Morris, A. M., Rehm, M., Anderson, O. P. & la Cour, A. (2006). Inorg. Chem. 45, 5804–5811.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 1, 60–63.  Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.  Web of Science CSD CrossRef Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930–935.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148–9163.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds