research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Meth­­oxy-N,N-di-n-propyl­tryptamine (5-MeO-DPT): freebase and fumarate

crossmark logo

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by O. Blacque, University of Zürich, Switzerland (Received 25 March 2021; accepted 7 April 2021; online 13 April 2021)

The solid-state structures of the synthetic psychedelic 5-meth­oxy-N,N-di-n-propyl­tryptamine (5-MeO-DPT) {systematic name: N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]-N-propyl­propan-1-amine}, C17H25N2O, and its fumarate salt, bis­(5-meth­oxy-N,N-di-n-propyl­tryptammonium) fumarate (systematic name: bis­{N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]-N-propyl­propan-1-aminium} but-2-ene­dio­ate), 2C17H25N2O+·C4H2O42−, are reported. The freebase has a single tryptamine mol­ecule in the asymmetric unit. The mol­ecules are linked together by N—H⋯N hydrogen bonds in zigzag chains along the [010] direction. The fumarate salt has a single tryptammonium cation and half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by a series of N—H⋯O hydrogen bonds. These chains are combinations of R44(22) rings, and C22(14) and C44(28) parallel chains along [001].

1. Chemical context

5-Meth­oxy-N,N-di­methyl­tryptamine (5-MeO-DMT) is a psychoactive indole­alkyl­amine that is found in a number of plants and animals, but is best known to be present in the parotid glands of the Colorado River toad, Bufo alvarius (Shen et al., 2010[Shen, H.-W., Jiang, X.-L., Winter, J. C. & Yu, A.-M. (2010). Curr. Drug Metab. 11, 659-666.]). 5-MeO-DMT demonstrates high activity at the serotonin (5-hy­droxy­tryptamine, 5-HT) 2A receptor, which leads to its psychotropic activity. Recent research has pointed to 5-MeO-DMT as a promising pharmaceutical in the treatment of mental health disorders (Uthaug et al., 2019[Uthaug, M. V., Lancelotta, R., van Oorsouw, K., Kuypers, K. P. C., Mason, N., Rak, J., Šuláková, A., Jurok, R., Maryška, M., Kuchař, M., Páleníček, T., Riba, J. & Ramaekers, J. G. (2019). Psychopharmacology, 236, 2653-2666.]). There are a number of synthetic N,N-dialkyl derivatives including 5-meth­oxy-N-methyl-N-iso­propyl­tryptamin (5-MeO-MiPT), 5-meth­oxy-N,N-di­ethyl­tryptamine (5-MeO-DET), 5-meth­oxy-N,N-di-n-propyl­tryptamine (5-MeO-DPT) and 5-meth­oxy-N,N-diiso­propyl­tryptamine (5-MeO-DiPT). Alexander Shulgin described the experience associated with inhalation of these derivatives in humans, with 5-MeO-DMT described as `positive and out-of-body' while 5-MeO-DPT was described as `good and bad' (Shulgin & Shulgin, 1997[Shulgin, A. & Shulgin, A. (1997). TIKHAL: The Continuation. Berkeley, CA: Transform Press.]). 5-MeO-DPT has not been described much in the scientific literature, though a recent report described its activity at the 5-HT1A and 5-HT2A receptors showing 75–100% of full agonism at both receptors (Åstrand et al., 2020[Åstrand, A., Guerrieri, D., Vikingsson, S., Kronstrand, R. & Green, H. (2020). Forensic Sci. Int. 317, 110553.]). As this class of compounds becomes more important for the treatment of mental health in humans, an in depth understanding of these compounds and how the structural changes impact the clinical experience in humans is going to be significant. To do so, it is important to have analytically pure, well-characterized compounds, ideally as crystalline materials. Herein we report the first structures of 5-MeO-DPT, both as its freebase and as its fumarate salt.

[Scheme 1]

2. Structural commentary

The asymmetric unit of 5-meth­oxy-N,N-di-n-propyl­tryptamine (5-MeO-DPT) freebase contains a single tryptamine mol­ecule (Fig. 1[link], left). It possesses a near planar indole unit with an r.m.s. deviation from planarity of 0.012 Å. The meth­oxy group is in the same plane as the indole ring with a C6—C5—O1—C17 torsion angle of −1.2 (2)°. The ethyl­amino arm is turned away from the indole plane with a C1—C8—C9—C10 torsion angle of 110.4 (2)°.

[Figure 1]
Figure 1
The mol­ecular structures of 5-MeO-DPT freebase (left) and 5-MeO-DPT fumarate (right), showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) 1 − x, 2 − y, 2 − z.

The asymmetric unit of bis­(5-meth­oxy-N,N-di-n-propyl­tryptammonium) fumarate contains one tryptammonium cation and half of a fumarate dianion (Fig. 1[link], right). The tryptammonium cation possesses a near planar indole unit with a deviation from planarity of 0.015 Å. The meth­oxy group is turned slightly from the plane of the indole ring with a C6—C5—O1—C17 torsion angle of −13.5 (4)°. The ethyl­amino arm is turned away from the indole plane with a C1—C8—C9—C10 torsion angle of −104.8 (3)°. The second half of the fumarate dianion is generated by inversion, and is near planar with an r.m.s. deviation from planarity of 0.022 Å.

3. Supra­molecular features

In the solid-state structure of 5-MeO-DPT freebase, the mol­ecules are held together by an N1—H1⋯N2 hydrogen bond between the indole N—H and the amino nitro­gen atom. These hydrogen bonds join the mol­ecules together in infinite chains along the [010] direction (Table 1[link]). The crystal packing of 5-MeO-DPT freebase is shown on the left in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °) for 5-MeO-DPT freebase[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.878 (18) 2.167 (19) 3.0070 (17) 160.0 (16)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of 5-MeO-DPT freebase (left), viewed along the a axis, and the crystal packing of 5-MeO-DPT fumarate (right), viewed along the a axis. The hydrogen bonds (Tables 1[link] and 2[link]) are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

In the structure of 5-MeO-DPT fumarate, the tryptammonium cation is linked to the fumarate dianion in the asymmetric unit through an N2—H2⋯O3 hydrogen bond between the ammonium nitro­gen and a carboxyl­ate oxygen of the fumarate. There is also an N1—H1⋯O4 hydrogen bond between the indole nitro­gen and the other oxygen of the carboxyl­ate group on a symmetry-generated fumarate dianion (Table 2[link]). The crystal packing of 5-MeO-DPT fumarate is shown on the right in Fig. 2[link]. Two tryptammonium cations and two fumarate dianions are joined together through these hydrogen bonds to form rings with graph-set notation R44(22) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The rings are joined together by two parallel chains along [001]. These chains have graph-set notation C22(14) and C44(28). The chains and rings are shown in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °) for 5-MeO-DPT fumarate[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.98 (2) 1.68 (2) 2.6588 (17) 175 (2)
N1—H1⋯O4i 0.86 (2) 1.91 (3) 2.757 (2) 171 (2)
Symmetry code: (i) [-x+1, -y+2, -z+1].
[Figure 3]
Figure 3
The hydrogen-bonding network along [001], which consists of R44(22) rings that are joined together by two parallel C22(14) and C44(28) chains. The three components described in graph-set notation and the combined chain is shown. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Hydrogen bonds are shown as dashed lines.

4. Database survey

The two structures reported are most closely related to the freebase of 5-meth­oxy-N,N-di­allyl­tryptamine, or 5-MeO-DALT (CCDC 1995802; Chadeayne et al., 2020c[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). IUCrData, 5, x200498.]), and the fumarate of 5-MeO-DALT (Pham, Sammeta et al., 2021[Pham, D. N. K., Sammeta, V. R., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 416-419.]), which exhibit solid-state structures that are very similar to those reported here. The freebase of 5-MeO-DPT and 5-MeO-DALT have nearly identical unit cells. The fumarates of the two 5-MeO-DPT analogs exhibit the same chains, showing R44(22) rings and C22(14) and C44(28) chains in both cases. The other N,N-di-n-propyl­tryptamine structures known are 4-hy­droxy-N,N-di-n-propyl­tryptammonium chloride (Sammeta et al., 2020[Sammeta, V. R., Rasapalli, S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2020). IUCrData, 5, x201546.]) and bis­(4-hy­droxy-N,N-di-n-propyl­tryptammonium) fumarate (CCDC 1962339; Chadeayne, Pham et al., 2019[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x191469.]). The other tryptamine freebase structures known are the natural products N,N-di­methyl­tryptamine, or DMT (DMTRYP; Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3219-3228.]), 5-MeO-DMT (QQQAGY; Bergin et al., 1968[Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.]), psilocybin (PSILOC; Weber & Petcher, 1974[Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942-946.]), psilocin (PSILIN; Petcher & Weber, 1974[Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946-948.]) and norpsilocin (CCDC 1992279; Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]), and the synthetic psychedelic N-methyl-N-n-propyl­tryptamine (WOHYAW; Chad­eayne et al., 2019b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.]). The other fumarate salts of tryptamines known are norpsilocin (CCDC 1992278; Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]), 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine (CCDC 1962339; Chadeayne et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]), 5-meth­oxy-2,N,N-tri­methyl­tryptamine (Pham, Chadeayne et al., 2021[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 190-194.]) and psilacetin (HOCJUH; Chadeayne et al., 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900-902.]).

5. Synthesis and crystallization

Slow evaporation of an acetone solution of a commercial sample (Chem Logix) of 5-MeO-DPT freebase resulted in the formation of crystals of 5-meth­oxy-N,N-di-n-propyl­tryptamine suitable for X-ray analysis. Crystals of bis­(5-meth­oxy-N,N-di-n-propyl­tryptammonium) fumarate were grown from the slow evaporation of an aceto­nitrile solution of a commercial sample (Chem Logix) of 5-MeO-DPT fumarate.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  5-MeO-DPT freebase 5-MeO-DPT fumarate
Crystal data
Chemical formula C17H26N2O C17H27N2O+·0.5C4H2O42−
Mr 274.40 332.43
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 297 297
a, b, c (Å) 6.2223 (3), 13.0931 (6), 19.7791 (10) 9.2956 (6), 9.4443 (6), 12.7427 (8)
α, β, γ (°) 90, 91.825 (2), 90 78.552 (2), 75.929 (2), 60.806 (2)
V3) 1610.57 (13) 943.06 (11)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 0.08
Crystal size (mm) 0.38 × 0.3 × 0.06 0.3 × 0.22 × 0.2
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.687, 0.745 0.722, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29365, 3035, 2466 37231, 3565, 3006
Rint 0.038 0.032
(sin θ/λ)max−1) 0.610 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.06 0.052, 0.142, 1.05
No. of reflections 3035 3565
No. of parameters 189 228
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.17 0.29, −0.15
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-N-propylpropan-1-amine (umd2187e_a) top
Crystal data top
C17H26N2OF(000) = 600
Mr = 274.40Dx = 1.132 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.2223 (3) ÅCell parameters from 9916 reflections
b = 13.0931 (6) Åθ = 3.3–25.6°
c = 19.7791 (10) ŵ = 0.07 mm1
β = 91.825 (2)°T = 297 K
V = 1610.57 (13) Å3PLATE, colourless
Z = 40.38 × 0.3 × 0.06 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2466 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 3.3°
Tmin = 0.687, Tmax = 0.745h = 77
29365 measured reflectionsk = 1515
3035 independent reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.050P)2 + 0.3694P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.14 e Å3
3035 reflectionsΔρmin = 0.17 e Å3
189 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.046 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64844 (19)0.70622 (10)0.52927 (6)0.0702 (4)
N10.9733 (2)0.87177 (9)0.29883 (7)0.0504 (3)
N20.28056 (16)0.56376 (8)0.22986 (5)0.0412 (3)
C10.8201 (2)0.84119 (10)0.25168 (8)0.0494 (4)
H1A0.8214750.8576580.2059610.059*
C20.9167 (2)0.83449 (10)0.36067 (7)0.0452 (3)
C31.0138 (2)0.84559 (12)0.42487 (8)0.0569 (4)
H31.1407670.8823800.4309490.068*
C40.9172 (3)0.80093 (13)0.47864 (8)0.0597 (4)
H40.9804350.8072520.5216850.072*
C50.7252 (2)0.74592 (11)0.47013 (8)0.0523 (4)
C60.6272 (2)0.73433 (10)0.40727 (7)0.0472 (4)
H60.4993700.6979760.4019650.057*
C70.7248 (2)0.77873 (9)0.35118 (7)0.0421 (3)
C80.6655 (2)0.78344 (10)0.28070 (7)0.0442 (3)
C90.4698 (2)0.73615 (10)0.24763 (8)0.0501 (4)
H9A0.4509380.7632360.2021850.060*
H9B0.3444900.7551160.2727540.060*
C100.4834 (2)0.61913 (10)0.24396 (7)0.0429 (3)
H10A0.5831070.6013440.2091310.051*
H10B0.5444320.5945390.2866660.051*
C110.1721 (2)0.60049 (11)0.16734 (7)0.0476 (4)
H11A0.2795450.6138150.1339830.057*
H11B0.1007230.6645750.1767090.057*
C120.0078 (2)0.52602 (12)0.13767 (8)0.0530 (4)
H12A0.0808790.4642830.1240030.064*
H12B0.0923720.5076080.1722130.064*
C130.1154 (4)0.56964 (18)0.07758 (10)0.0941 (7)
H13A0.2163690.5198550.0603620.141*
H13B0.0171900.5871350.0429620.141*
H13C0.1913240.6297280.0911080.141*
C140.1352 (2)0.56727 (12)0.28718 (7)0.0508 (4)
H14A0.0076260.5471600.2712280.061*
H14B0.1266230.6372150.3030360.061*
C150.2017 (3)0.50025 (12)0.34569 (8)0.0598 (4)
H15A0.3396190.5232010.3642190.072*
H15B0.2189420.4307410.3297830.072*
C160.0390 (3)0.50174 (17)0.40067 (10)0.0814 (6)
H16A0.0842910.4561100.4363430.122*
H16B0.0984130.4803190.3823110.122*
H16C0.0275430.5697550.4183350.122*
C170.4531 (3)0.65147 (16)0.52456 (10)0.0800 (6)
H17A0.4148350.6290140.5687870.120*
H17B0.4697440.5932540.4956920.120*
H17C0.3418080.6949240.5059970.120*
H11.073 (3)0.9177 (14)0.2916 (9)0.066 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0744 (8)0.0789 (8)0.0573 (7)0.0026 (6)0.0055 (6)0.0104 (6)
N10.0454 (7)0.0430 (7)0.0630 (8)0.0051 (5)0.0051 (6)0.0007 (6)
N20.0352 (5)0.0404 (6)0.0482 (6)0.0007 (4)0.0025 (4)0.0014 (5)
C10.0542 (8)0.0387 (7)0.0554 (8)0.0021 (6)0.0036 (7)0.0006 (6)
C20.0399 (7)0.0370 (7)0.0587 (8)0.0038 (5)0.0017 (6)0.0042 (6)
C30.0425 (7)0.0584 (9)0.0691 (10)0.0016 (7)0.0065 (7)0.0082 (8)
C40.0540 (9)0.0680 (10)0.0564 (9)0.0060 (8)0.0074 (7)0.0066 (8)
C50.0527 (8)0.0495 (8)0.0550 (9)0.0098 (7)0.0039 (7)0.0013 (7)
C60.0435 (7)0.0394 (7)0.0587 (9)0.0014 (6)0.0013 (6)0.0002 (6)
C70.0387 (7)0.0320 (6)0.0555 (8)0.0045 (5)0.0010 (6)0.0035 (6)
C80.0446 (7)0.0319 (6)0.0559 (8)0.0032 (5)0.0008 (6)0.0030 (6)
C90.0487 (8)0.0392 (7)0.0616 (9)0.0025 (6)0.0092 (6)0.0008 (6)
C100.0363 (7)0.0395 (7)0.0528 (8)0.0019 (5)0.0013 (5)0.0017 (6)
C110.0469 (7)0.0464 (8)0.0493 (8)0.0055 (6)0.0007 (6)0.0040 (6)
C120.0456 (8)0.0514 (8)0.0617 (9)0.0052 (6)0.0030 (6)0.0013 (7)
C130.0982 (15)0.1021 (16)0.0794 (13)0.0435 (13)0.0369 (11)0.0253 (12)
C140.0422 (7)0.0563 (9)0.0543 (8)0.0048 (6)0.0060 (6)0.0050 (7)
C150.0695 (10)0.0524 (9)0.0579 (9)0.0011 (8)0.0090 (7)0.0071 (7)
C160.0866 (13)0.0960 (15)0.0627 (11)0.0025 (11)0.0185 (9)0.0148 (10)
C170.0822 (12)0.0812 (13)0.0773 (12)0.0058 (10)0.0137 (10)0.0226 (10)
Geometric parameters (Å, º) top
O1—C51.3794 (18)C10—H10A0.9700
O1—C171.412 (2)C10—H10B0.9700
N1—C11.3716 (19)C11—H11A0.9700
N1—C21.3734 (19)C11—H11B0.9700
N1—H10.878 (18)C11—C121.5171 (19)
N2—C101.4745 (16)C12—H12A0.9700
N2—C111.4705 (17)C12—H12B0.9700
N2—C141.4735 (17)C12—C131.506 (2)
C1—H1A0.9300C13—H13A0.9600
C1—C81.364 (2)C13—H13B0.9600
C2—C31.396 (2)C13—H13C0.9600
C2—C71.4070 (18)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C3—C41.369 (2)C14—C151.500 (2)
C4—H40.9300C15—H15A0.9700
C4—C51.401 (2)C15—H15B0.9700
C5—C61.376 (2)C15—C161.510 (2)
C6—H60.9300C16—H16A0.9600
C6—C71.4071 (19)C16—H16B0.9600
C7—C81.4318 (19)C16—H16C0.9600
C8—C91.4980 (19)C17—H17A0.9600
C9—H9A0.9700C17—H17B0.9600
C9—H9B0.9700C17—H17C0.9600
C9—C101.5363 (18)
C5—O1—C17117.15 (13)N2—C11—H11A108.8
C1—N1—C2108.02 (12)N2—C11—H11B108.8
C1—N1—H1124.6 (11)N2—C11—C12113.62 (11)
C2—N1—H1126.2 (11)H11A—C11—H11B107.7
C11—N2—C10111.44 (10)C12—C11—H11A108.8
C11—N2—C14111.12 (10)C12—C11—H11B108.8
C14—N2—C10112.44 (11)C11—C12—H12A109.1
N1—C1—H1A124.5C11—C12—H12B109.1
C8—C1—N1111.08 (13)H12A—C12—H12B107.9
C8—C1—H1A124.5C13—C12—C11112.43 (13)
N1—C2—C3131.08 (13)C13—C12—H12A109.1
N1—C2—C7107.83 (12)C13—C12—H12B109.1
C3—C2—C7121.08 (14)C12—C13—H13A109.5
C2—C3—H3120.8C12—C13—H13B109.5
C4—C3—C2118.30 (14)C12—C13—H13C109.5
C4—C3—H3120.8H13A—C13—H13B109.5
C3—C4—H4119.3H13A—C13—H13C109.5
C3—C4—C5121.32 (15)H13B—C13—H13C109.5
C5—C4—H4119.3N2—C14—H14A108.6
O1—C5—C4114.14 (14)N2—C14—H14B108.6
C6—C5—O1124.69 (14)N2—C14—C15114.48 (12)
C6—C5—C4121.16 (14)H14A—C14—H14B107.6
C5—C6—H6120.8C15—C14—H14A108.6
C5—C6—C7118.48 (13)C15—C14—H14B108.6
C7—C6—H6120.8C14—C15—H15A109.2
C2—C7—C6119.65 (13)C14—C15—H15B109.2
C2—C7—C8107.37 (12)C14—C15—C16111.92 (14)
C6—C7—C8132.94 (12)H15A—C15—H15B107.9
C1—C8—C7105.68 (12)C16—C15—H15A109.2
C1—C8—C9128.30 (14)C16—C15—H15B109.2
C7—C8—C9126.00 (13)C15—C16—H16A109.5
C8—C9—H9A109.0C15—C16—H16B109.5
C8—C9—H9B109.0C15—C16—H16C109.5
C8—C9—C10112.80 (11)H16A—C16—H16B109.5
H9A—C9—H9B107.8H16A—C16—H16C109.5
C10—C9—H9A109.0H16B—C16—H16C109.5
C10—C9—H9B109.0O1—C17—H17A109.5
N2—C10—C9116.81 (11)O1—C17—H17B109.5
N2—C10—H10A108.1O1—C17—H17C109.5
N2—C10—H10B108.1H17A—C17—H17B109.5
C9—C10—H10A108.1H17A—C17—H17C109.5
C9—C10—H10B108.1H17B—C17—H17C109.5
H10A—C10—H10B107.3
O1—C5—C6—C7179.67 (13)C3—C4—C5—C60.3 (2)
N1—C1—C8—C70.81 (15)C4—C5—C6—C70.3 (2)
N1—C1—C8—C9179.30 (13)C5—C6—C7—C20.84 (19)
N1—C2—C3—C4178.54 (14)C5—C6—C7—C8178.36 (13)
N1—C2—C7—C6178.18 (11)C6—C7—C8—C1177.31 (14)
N1—C2—C7—C80.08 (14)C6—C7—C8—C91.2 (2)
N2—C11—C12—C13174.55 (15)C7—C2—C3—C40.1 (2)
N2—C14—C15—C16176.15 (14)C7—C8—C9—C1071.42 (18)
C1—N1—C2—C3178.24 (14)C8—C9—C10—N2163.85 (12)
C1—N1—C2—C70.57 (15)C10—N2—C11—C12160.69 (11)
C1—C8—C9—C10110.38 (16)C10—N2—C14—C1574.13 (16)
C2—N1—C1—C80.88 (16)C11—N2—C10—C955.06 (16)
C2—C3—C4—C50.4 (2)C11—N2—C14—C15160.17 (13)
C2—C7—C8—C10.44 (14)C14—N2—C10—C970.46 (15)
C2—C7—C8—C9178.97 (12)C14—N2—C11—C1273.06 (15)
C3—C2—C7—C60.77 (19)C17—O1—C5—C4178.83 (15)
C3—C2—C7—C8178.88 (12)C17—O1—C5—C61.2 (2)
C3—C4—C5—O1179.69 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.878 (18)2.167 (19)3.0070 (17)160.0 (16)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Bis{N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-N-propylpropan-1-aminium}; but-2-enedioate (umd2188f_a) top
Crystal data top
C17H27N2O+·0.5C4H2O42Z = 2
Mr = 332.43F(000) = 360
Triclinic, P1Dx = 1.171 Mg m3
a = 9.2956 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4443 (6) ÅCell parameters from 9966 reflections
c = 12.7427 (8) Åθ = 2.6–25.6°
α = 78.552 (2)°µ = 0.08 mm1
β = 75.929 (2)°T = 297 K
γ = 60.806 (2)°BLOCK, colourless
V = 943.06 (11) Å30.3 × 0.22 × 0.2 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3006 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.8°, θmin = 2.6°
Tmin = 0.722, Tmax = 0.745h = 1111
37231 measured reflectionsk = 1111
3565 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3068P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3565 reflectionsΔρmax = 0.29 e Å3
228 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.12338 (18)0.1921 (2)0.42565 (12)0.0820 (5)
O30.56136 (18)0.70109 (14)0.91994 (11)0.0619 (4)
O40.38521 (19)0.94777 (15)0.85790 (10)0.0619 (4)
N10.6457 (2)0.7968 (2)0.29933 (12)0.0592 (4)
N20.45383 (17)0.62296 (15)0.77576 (10)0.0428 (3)
C10.5216 (3)0.8238 (2)0.38795 (14)0.0569 (5)
H1A0.4195160.9177930.3951030.068*
C20.7767 (2)0.6468 (2)0.31704 (13)0.0494 (4)
C30.9290 (3)0.5609 (3)0.25118 (14)0.0611 (5)
H30.9553150.6050710.1817430.073*
C41.0389 (2)0.4104 (3)0.29047 (15)0.0635 (5)
H41.1409480.3518770.2471610.076*
C51.0004 (2)0.3427 (2)0.39518 (15)0.0564 (4)
C60.8487 (2)0.4243 (2)0.45998 (13)0.0497 (4)
H60.8224090.3776420.5284970.060*
C70.7346 (2)0.5788 (2)0.42102 (12)0.0450 (4)
C80.5686 (2)0.6934 (2)0.46471 (13)0.0474 (4)
C90.4679 (2)0.6678 (2)0.57159 (13)0.0477 (4)
H9A0.4802310.5583420.5797460.057*
H9B0.3506720.7435360.5709110.057*
C100.5191 (2)0.6913 (2)0.66834 (12)0.0470 (4)
H10A0.6402530.6391740.6583210.056*
H10B0.4785620.8068150.6708810.056*
C110.2669 (2)0.7020 (2)0.79912 (13)0.0506 (4)
H11A0.2282840.6582110.7555370.061*
H11B0.2235550.8179530.7777020.061*
C120.1977 (3)0.6766 (3)0.91717 (16)0.0767 (6)
H12A0.2324150.5612870.9368520.092*
H12B0.2445060.7110490.9612890.092*
C130.0122 (3)0.7678 (4)0.9418 (2)0.1035 (10)
H13A0.0266240.7323141.0139360.155*
H13B0.0346480.7478320.8904590.155*
H13C0.0219800.8823130.9370020.155*
C140.5291 (2)0.44102 (19)0.78992 (14)0.0502 (4)
H14A0.5041930.4050080.7334840.060*
H14B0.4774790.4080590.8594280.060*
C150.7152 (2)0.3582 (2)0.78522 (16)0.0616 (5)
H15A0.7408080.3955860.8405570.074*
H15B0.7676060.3882530.7149860.074*
C160.7866 (3)0.1758 (3)0.8025 (2)0.0940 (8)
H16A0.9060710.1272380.7950090.141*
H16B0.7581810.1386660.7494250.141*
H16C0.7411530.1450890.8740570.141*
C171.1057 (3)0.1353 (3)0.5365 (2)0.0943 (8)
H17A1.2095040.0441500.5514430.141*
H17B1.0195270.1019810.5537960.141*
H17C1.0760980.2208670.5799270.141*
C180.4904 (2)0.85411 (19)0.91702 (12)0.0450 (4)
C190.5356 (2)0.92260 (19)0.99289 (13)0.0459 (4)
H190.6196640.8504771.0324620.055*
H20.488 (3)0.653 (3)0.8317 (18)0.076 (6)*
H10.632 (3)0.872 (3)0.247 (2)0.082 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0612 (9)0.0809 (10)0.0683 (9)0.0035 (7)0.0085 (7)0.0156 (8)
O30.0872 (9)0.0419 (7)0.0638 (8)0.0273 (6)0.0301 (7)0.0058 (5)
O40.0964 (10)0.0497 (7)0.0545 (7)0.0402 (7)0.0335 (7)0.0072 (5)
N10.0791 (11)0.0579 (9)0.0412 (8)0.0367 (9)0.0112 (7)0.0089 (7)
N20.0549 (8)0.0428 (7)0.0346 (6)0.0256 (6)0.0093 (6)0.0018 (5)
C10.0699 (12)0.0494 (10)0.0460 (9)0.0234 (9)0.0121 (8)0.0018 (7)
C20.0618 (10)0.0595 (10)0.0377 (8)0.0384 (9)0.0076 (7)0.0000 (7)
C30.0678 (12)0.0912 (15)0.0387 (9)0.0523 (11)0.0002 (8)0.0052 (9)
C40.0516 (10)0.0923 (15)0.0507 (10)0.0368 (11)0.0031 (8)0.0204 (10)
C50.0494 (10)0.0653 (11)0.0528 (10)0.0225 (9)0.0094 (8)0.0125 (8)
C60.0530 (9)0.0553 (10)0.0389 (8)0.0253 (8)0.0057 (7)0.0027 (7)
C70.0528 (9)0.0508 (9)0.0366 (8)0.0290 (8)0.0062 (7)0.0034 (6)
C80.0589 (10)0.0483 (9)0.0382 (8)0.0269 (8)0.0091 (7)0.0039 (6)
C90.0522 (9)0.0518 (9)0.0401 (8)0.0246 (8)0.0066 (7)0.0069 (7)
C100.0602 (10)0.0447 (8)0.0402 (8)0.0278 (8)0.0094 (7)0.0021 (6)
C110.0560 (10)0.0518 (9)0.0417 (8)0.0234 (8)0.0094 (7)0.0020 (7)
C120.0666 (13)0.0915 (16)0.0490 (11)0.0273 (12)0.0023 (9)0.0073 (10)
C130.0757 (16)0.114 (2)0.0622 (14)0.0133 (15)0.0082 (12)0.0053 (13)
C140.0616 (10)0.0422 (9)0.0496 (9)0.0266 (8)0.0120 (8)0.0001 (7)
C150.0619 (11)0.0588 (11)0.0547 (10)0.0233 (9)0.0086 (8)0.0003 (8)
C160.0797 (16)0.0574 (13)0.1040 (19)0.0150 (12)0.0017 (14)0.0112 (12)
C170.0861 (17)0.0747 (15)0.0759 (16)0.0002 (13)0.0186 (13)0.0065 (12)
C180.0623 (10)0.0445 (9)0.0353 (7)0.0316 (8)0.0082 (7)0.0003 (6)
C190.0571 (10)0.0450 (8)0.0415 (8)0.0280 (7)0.0102 (7)0.0024 (6)
Geometric parameters (Å, º) top
O1—C51.375 (2)C10—H10A0.9700
O1—C171.408 (3)C10—H10B0.9700
O3—C181.2592 (19)C11—H11A0.9700
O4—C181.247 (2)C11—H11B0.9700
N1—C11.365 (2)C11—C121.507 (2)
N1—C21.365 (2)C12—H12A0.9700
N1—H10.86 (2)C12—H12B0.9700
N2—C101.512 (2)C12—C131.486 (3)
N2—C111.496 (2)C13—H13A0.9600
N2—C141.497 (2)C13—H13B0.9600
N2—H20.98 (2)C13—H13C0.9600
C1—H1A0.9300C14—H14A0.9700
C1—C81.367 (2)C14—H14B0.9700
C2—C31.392 (3)C14—C151.503 (3)
C2—C71.406 (2)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C3—C41.365 (3)C15—C161.504 (3)
C4—H40.9300C16—H16A0.9600
C4—C51.404 (3)C16—H16B0.9600
C5—C61.375 (2)C16—H16C0.9600
C6—H60.9300C17—H17A0.9600
C6—C71.400 (2)C17—H17B0.9600
C7—C81.433 (2)C17—H17C0.9600
C8—C91.503 (2)C18—C191.497 (2)
C9—H9A0.9700C19—C19i1.308 (3)
C9—H9B0.9700C19—H190.9300
C9—C101.514 (2)
C5—O1—C17116.90 (16)N2—C11—H11B109.0
C1—N1—H1119.0 (17)N2—C11—C12113.04 (14)
C2—N1—C1108.73 (15)H11A—C11—H11B107.8
C2—N1—H1132.3 (17)C12—C11—H11A109.0
C10—N2—H2105.8 (13)C12—C11—H11B109.0
C11—N2—C10112.05 (12)C11—C12—H12A109.0
C11—N2—C14111.85 (13)C11—C12—H12B109.0
C11—N2—H2106.2 (13)H12A—C12—H12B107.8
C14—N2—C10114.43 (12)C13—C12—C11112.83 (18)
C14—N2—H2105.8 (13)C13—C12—H12A109.0
N1—C1—H1A124.8C13—C12—H12B109.0
N1—C1—C8110.45 (17)C12—C13—H13A109.5
C8—C1—H1A124.8C12—C13—H13B109.5
N1—C2—C3131.24 (16)C12—C13—H13C109.5
N1—C2—C7107.90 (15)H13A—C13—H13B109.5
C3—C2—C7120.85 (17)H13A—C13—H13C109.5
C2—C3—H3120.6H13B—C13—H13C109.5
C4—C3—C2118.74 (16)N2—C14—H14A108.9
C4—C3—H3120.6N2—C14—H14B108.9
C3—C4—H4119.5N2—C14—C15113.16 (14)
C3—C4—C5121.06 (17)H14A—C14—H14B107.8
C5—C4—H4119.5C15—C14—H14A108.9
O1—C5—C4115.19 (17)C15—C14—H14B108.9
O1—C5—C6123.99 (17)C14—C15—H15A109.2
C6—C5—C4120.82 (18)C14—C15—H15B109.2
C5—C6—H6120.6C14—C15—C16111.96 (18)
C5—C6—C7118.85 (16)H15A—C15—H15B107.9
C7—C6—H6120.6C16—C15—H15A109.2
C2—C7—C8106.94 (15)C16—C15—H15B109.2
C6—C7—C2119.63 (15)C15—C16—H16A109.5
C6—C7—C8133.41 (15)C15—C16—H16B109.5
C1—C8—C7105.96 (15)C15—C16—H16C109.5
C1—C8—C9128.30 (17)H16A—C16—H16B109.5
C7—C8—C9125.70 (15)H16A—C16—H16C109.5
C8—C9—H9A108.9H16B—C16—H16C109.5
C8—C9—H9B108.9O1—C17—H17A109.5
C8—C9—C10113.31 (14)O1—C17—H17B109.5
H9A—C9—H9B107.7O1—C17—H17C109.5
C10—C9—H9A108.9H17A—C17—H17B109.5
C10—C9—H9B108.9H17A—C17—H17C109.5
N2—C10—C9113.69 (13)H17B—C17—H17C109.5
N2—C10—H10A108.8O3—C18—C19115.90 (14)
N2—C10—H10B108.8O4—C18—O3124.28 (15)
C9—C10—H10A108.8O4—C18—C19119.80 (14)
C9—C10—H10B108.8C18—C19—H19117.9
H10A—C10—H10B107.7C19i—C19—C18124.2 (2)
N2—C11—H11A109.0C19i—C19—H19117.9
O1—C5—C6—C7178.60 (17)C3—C4—C5—O1178.61 (17)
O3—C18—C19—C19i174.3 (2)C3—C4—C5—C61.8 (3)
O4—C18—C19—C19i4.2 (3)C4—C5—C6—C71.9 (3)
N1—C1—C8—C71.0 (2)C5—C6—C7—C20.2 (2)
N1—C1—C8—C9176.59 (16)C5—C6—C7—C8178.52 (17)
N1—C2—C3—C4179.92 (18)C6—C7—C8—C1179.95 (18)
N1—C2—C7—C6179.66 (15)C6—C7—C8—C92.4 (3)
N1—C2—C7—C81.61 (18)C7—C2—C3—C41.6 (3)
N2—C11—C12—C13174.7 (2)C7—C8—C9—C1078.1 (2)
N2—C14—C15—C16178.56 (17)C8—C9—C10—N2164.36 (13)
C1—N1—C2—C3177.59 (18)C10—N2—C11—C12162.09 (16)
C1—N1—C2—C71.0 (2)C10—N2—C14—C1560.72 (19)
C1—C8—C9—C10104.8 (2)C11—N2—C10—C960.66 (18)
C2—N1—C1—C80.0 (2)C11—N2—C14—C15170.49 (14)
C2—C3—C4—C50.0 (3)C14—N2—C10—C968.03 (18)
C2—C7—C8—C11.58 (19)C14—N2—C11—C1267.9 (2)
C2—C7—C8—C9176.07 (15)C17—O1—C5—C4166.9 (2)
C3—C2—C7—C61.5 (2)C17—O1—C5—C613.5 (3)
C3—C2—C7—C8177.18 (15)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.98 (2)1.68 (2)2.6588 (17)175 (2)
N1—H1···O4ii0.86 (2)1.91 (3)2.757 (2)171 (2)
Symmetry code: (ii) x+1, y+2, z+1.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationÅstrand, A., Guerrieri, D., Vikingsson, S., Kronstrand, R. & Green, H. (2020). Forensic Sci. Int. 317, 110553.  Web of Science PubMed Google Scholar
First citationBergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x191469.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). IUCrData, 5, x200498.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3219–3228.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPetcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.  CSD CrossRef Web of Science Google Scholar
First citationPham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 190–194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Sammeta, V. R., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 416–419.  CSD CrossRef IUCr Journals Google Scholar
First citationSammeta, V. R., Rasapalli, S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2020). IUCrData, 5, x201546.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, H.-W., Jiang, X.-L., Winter, J. C. & Yu, A.-M. (2010). Curr. Drug Metab. 11, 659–666.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShulgin, A. & Shulgin, A. (1997). TIKHAL: The Continuation. Berkeley, CA: Transform Press.  Google Scholar
First citationUthaug, M. V., Lancelotta, R., van Oorsouw, K., Kuypers, K. P. C., Mason, N., Rak, J., Šuláková, A., Jurok, R., Maryška, M., Kuchař, M., Páleníček, T., Riba, J. & Ramaekers, J. G. (2019). Psychopharmacology, 236, 2653–2666.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWeber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942–946.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds