research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and photoreactive behaviour of N,N-diisoprop­yl(p-phenyl­phen­yl)glyoxyl­amide

crossmark logo

aDepartment of Liberal Arts (Sciences & Mathematics), National Institute of Technology, Kurume College, Fukuoka 830-8555, Japan, and bGraduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
*Correspondence e-mail: h-miya@kurume-nct.ac.jp

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 10 March 2021; accepted 22 May 2021; online 28 May 2021)

The title compound [systematic name: 2-([1,1′-biphen­yl]-4-yl)-2-oxo-N,N-bis(propan-2-yl)acetamide], C20H23NO2 was synthesized and its photoreactive properties in the crystalline state and in aceto­nitrile solution were investigated. The compound crystallizes in the chiral space group P212121. The crystal does not react under UV light irradiation, perhaps due to the presence of the biphenyl group. However, the compound is photoreactive in aceto­nitrile solution to give racemic 3-(p-phenyl­phen­yl)-3-hy­droxy-N-isopropyl-4,4-di­methyl­azetidin-2-one.

1. Chemical context

The solid-state photochemistry of N,N-dialkyl-α-oxo­amides has been studied in relation to penicillin chemistry (Aoyama et al., 1979[Aoyama, H., Hasegawa, T. & Omote, Y. (1979). J. Am. Chem. Soc. 101, 5343-5347.]). The amides undergo Norrish type II cyclization giving β-lactams (Aoyama et al., 1978[Aoyama, H., Hasegawa, T., Watabe, M., Shiraishi, H. & Omote, Y. (1978). J. Org. Chem. 43, 419-422.]). The achiral mol­ecule N,N-diiso­propyl­phenyl­glyoxyl­amide 1a crystallizes in the chiral space group P212121 and is transformed to the optically active β-lactam derivative 2a upon UV light irradiation (Fig. 1[link]; Toda et al., 1987[Toda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413-1414.]; Sekine et al., 1989[Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697-699.]). N,N-Diisoprop­yl(m-chloro or m-methyl or o-methyl­phen­yl)glyoxyl­amides 1b and 1c also form chiral crystals, and photoirradiation in the solid state gives optically active β-lactam derivatives 2b and 2c, respectively (Toda & Miyamoto, 1993[Toda, F. & Miyamoto, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1129-1132.]; Hashizume et al., 1995[Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1995). Acta Cryst. C51, 929-933.], 1996[Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 61-66.], 1998[Hashizume, D., Kogo, H., Ohashi, Y., Miyamoto, H. & Toda, F. (1998). Anal. Sci. 14, 1187-1188.]). However, N,N-diisoprop­yl(p-chloro or o-chloro or p-methyl­phen­yl)glyoxyl­amide 1b and 1c do not form chiral crystals, and their photoirradiation in the solid state gives racemic β-lactam derivatives 2b and 2c, respectively. Therefore, we synthesized the novel title compound 1d having a phenyl group and investigated whether optically active β-lactam derivative 2d could be obtained by photoreaction. It was found that 1d formed a chiral crystal in the chiral space group P212121, but photoreaction did not proceed in the solid state. However, photoreaction of 1d in aceto­nitrile solution proceeded to give racemic 3-(p-phenyl­phen­yl)-3-hy­droxy-N-isopropyl-4,4-di­methyl­azetidin-2-one 2d in 26% yield. In this study, although 1d formed a chiral crystal, the reason why the photoreaction product of 1d in the solid state was not obtained was clarified by single-crystal X-ray structural analysis, UV spectroscopy and time-dependent density functional theory (TDDFT) calculations.

[Scheme 1]
[Figure 1]
Figure 1
Photoreaction of N,N-diiso­propyl­aryl­glyoxyl­amide derivatives.

2. Structural commentary

Table 1[link] summarizes intra and inter­molecular hydrogen bonds observed in the title compound. The phenyl rings in the biphenyl group are coplanar with the carbonyl group (C7=O1). The torsion angles C2—C1— C7—O1 and C3—C4—C15—C16 are 7.8 (3) and −0.4 (2)°, respectively, and the torsion angles O1—C7—C8—O2 and C7—C8—N1—C9 are 97.1 (2) and −3.9 (2)°, respectively (Fig. 2[link]). The corres­ponding torsion angles in 1a are 88.0 (4) and −5.1 (4)°. In order for the Norrish–Yang reaction to take place, the reacting atoms in the mol­ecular structure must be in close proximity. The Yang cyclization of α-oxo­amides to β-lactams starts with abstraction of the γ-hydrogen (with respect to the benzylic carbon­yl) by the benzylic carbonyl oxygen in the excited state. In the title compound, there are two γ-hydrogen atoms (H5 on C9 and H12 on C12). The distances between the carbonyl oxygen atom O1 and the respective γ-hydrogen atoms H5 and H12 are 2.65 and 5.01 Å. The former inter­atomic distance is within the ideal value of up to about 2.7 Å, at which photoreaction can proceed in the crystal (Konieczny et al., 2018[Konieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299-311.]). Moreover, the distance between the reacting C7 and C9 carbon atoms is 2.840 (2) Å, which is in the range of ideal values of up to about 3.2 Å. The corresponding distances are 2.78 (4) and 2.871 (4) Å in 1a. As shown in Fig. 3[link], the geometries of the oxo­amide moiety of 1d and 1a are almost the same. Despite satisfying the geometry and distance requirements for the photoreaction, the corresponding β-lactam was not detected in the solid-state reaction. From the UV spectrum of 1d, it is considered that the biphenyl group of 1d absorbs ultraviolet light preventing the solid-state reaction (Fig. 4[link]). In other words, the photocyclization reaction does not proceed in the solid state for at least 300 h because the irradiated UV light is absorbed by the ππ* transition of the biphenyl group.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H5⋯O1 1.00 2.65 3.245 (2) 119
C13—H15⋯O2 0.98 2.47 3.033 (3) 117
C14—H16⋯O2 0.98 2.51 3.072 (3) 116
C14—H18⋯O1i 0.98 2.71 3.612 (3) 154
C17—H20⋯O2ii 0.95 2.66 3.608 (2) 179
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of 1d. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 3]
Figure 3
Overlay of mol­ecules 1a (in red) and 1d (in blue).
[Figure 4]
Figure 4
UV spectra of 1a (in red, 51.3 x 10−6 M MeOH solution) and 1d (in blue, 48.6 x 10−6 M MeOH solution).

3. DFT calculations

The GAUSSIAN16 program (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16. Rev. C.01. Gaussian, Inc., Wallingford CT, USA.]) was used for density functional theory (DFT) calculations. Initial geom­etries of 1a and 1d were obtained from XRD data. Hydrogen atoms were optimized at the B3LYP/6–311G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]). The UV–vis spectra of 1a and 1d were calculated by the time-dependent density functional theory [TDDFT, B3LYP/6–311G(d,p)] method. In the calculated UV–vis spectra, there were two weak peaks at 254 and 362 nm for 1a, and there was an intense and broad peak at 310 nm for 1d. The calculated spectra were similar to the experimental spectra (Fig. 5[link]). For 1a, the peak at 254 nm corresponds to the ππ* transition of the Ph group, while that at the longer wavelength of 362 nm is due to nπ* transitions of the carbonyl groups. For 1d, the adsorption peak at 376 nm was assigned to nπ* transitions of carbonyl groups. A very weak absorption peak was observed around 370 nm in the experimental spectrum. A mercury lamp has an intense emission at 365 nm, such that the photoreaction for 1a proceeds rapidly in the solid state. In contrast, the large and broad absorption prevents the solid-state photoreaction for 1d. Since the mol­ecules can move freely in solution, light irradiation for 60 h was uniformly performed, and it seemed that the reaction proceeded slightly. It has been reported that an oxo­amide derivative having a naphthyl group slows down the photoreaction (Natarajan et al., 2005[Natarajan, A., Mague, J. T. & Ramamurthy, V. (2005). J. Am. Chem. Soc. 127, 3568-3576.]). The relationship between photoreactivity and irradiation wavelength is under investigation.

[Figure 5]
Figure 5
Calculated UV–vis spectra of (a) 1a and (b) 1d.

4. Supra­molecular features

In the crystal, the mol­ecules are linked by weak inter­molecular C—H⋯O (C14—H18⋯O1, 2.71 Å) inter­actions forming a 1D chain structure along the a-axis direction (Fig. 6[link]a), and C—H⋯O (C17—H20⋯O2, 2.66 Å) inter­actions forming a 1D zigzag chain structure along the b-axis direction (Fig. 6[link]b). Details of these inter­actions are given in Table 1[link].

[Figure 6]
Figure 6
Packing diagrams for 1d viewed (a) along the b axis and (b) along the a axis, showing inter­molecular C—H⋯O inter­actions as dotted blue lines.

5. Database survey

A search of the Cambridge Structural Database (Version 5.41, last update August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 18 hits for compounds based on the N,N-diiso­propyl­phenyl­glyoxyl­amide fragment shown in Fig. 1[link]: no substituent on the phenyl ring (JAGLAE; Sekine et al., 1989[Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697-699.]), various chiral amido groups on the phenyl ring (KAHWIA, NAHZIG, NAHZUS, NAJBAC, NAJBEG, NAJBIK, NAJBOQ, NAJBUW, NAJCAD, and NAJCEH; Natarajan et al., 2005[Natarajan, A., Mague, J. T. & Ramamurthy, V. (2005). J. Am. Chem. Soc. 127, 3568-3576.]), methyl or dimethyl group(s) on the phenyl ring (WIQKUC, YOWVUB, YOWVUF, and YOWWAI; Hashizume et al., 1995[Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1995). Acta Cryst. C51, 929-933.]), and a chlorine atom on the phenyl ring (ZOHNIT, ZOHNOZ, and ZOHNUF; Hashizume et al., 1996[Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 61-66.]).

6. Synthesis and crystallization

The title compound was prepared according to a reported method (Toda et al., 1987[Toda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413-1414.]; Sekine et al., 1989[Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697-699.]), i.e., chlorination of 2-oxo-2-(4-phenyl­phen­yl)acetic acid with thionyl chloride followed by reaction with N,N-diiso­propyl­amine. Thus, to an ice-cooled solution of N,N-diiso­propyl­amine (16 mL, 0.11 mol) in dry diethyl ether (45 mL) was added a solution of 4-phenyl­benzoyl­formyl chloride (13.8 g, 0.0564 mol) in dry diethyl ether (45 mL), and the reaction mixture was stirred for 10 h at room temperature. After filtration of N,N-diiso­propyl­ammonium chloride, the filtrate was washed with dilute HCl and aqueous NaHCO3 and dried over MgSO4. The crude product was purified by silica gel column chromatography (toluene:ethyl acetate = 9:1) and recrystallized from toluene to give 1d as colorless prisms (1.02 g, 5.8% yield, m.p. 397–398 K); IR (KBr): νmax 1640, 1680 cm−1; 1H NMR (500 MHz, CDCl3): δ 8.01 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.50–7.39 (m, 3H), 3.75 (sept, J = 6.9 Hz, 1H), 3.61 (sept, J = 6.9 Hz, 1H), 1.60 (d, J = 6.9 Hz, 6H), 1.20 (d, J = 6.6 Hz, 6H); 13C NMR (126 MHz, CDCl3): δ 190.7, 167.0, 147.1, 139.7, 132.1, 130.1, 129.0, 128.5, 127.6, 127.4, 50.2, 46.1, 20.6, 20.4; ESIMS m/z: calculated for C20H23NNaO2 [M + Na]+, 322.1621; found, 322.1586. Single crystals of 1d suitable for X-ray diffraction analysis were grown from a toluene solution.

7. Photoreaction

1d (0.100 g, 0.323 mmol) was pulverized in a mortar and irradiated with a 400 W high-pressure mercury lamp for 300 h. No reaction took place, as determined by TLC, IR and NMR spectroscopies. 1d (0.1368 g, 0.442 mmol) in aceto­nitrile (10 mL) was irradiated with a 400 W high-pressure mercury lamp for 60 h. The crude product was purified by silica gel column chromatography (toluene:ethyl acetate = 4:1) to give 3-(p-phenyl­phen­yl)-3-hy­droxy-N-isopropyl-4,4-di­methyl­aze­tidin-2-one 2d as a colorless powder (0.035 g, 26% yield, m.p. 467-469 K); IR (KBr): νmax 3200, 1720 cm−1; 1H NMR (60 MHz, CDCl3): δ 7.60–7.00 (m, 9H), 4.64 (s, 1H), 3.57 (sept, J = 7.0 Hz, 1H), 1.44 (d, J = 7.0 Hz, 6H), 1.27 (s, 3H), 0.87 (s, 3H); ESIMS m/z: calculated for C20H23NNaO2 [M + Na]+, 322.1621; found, 322.1569.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned in geometrically calculated positions (C—H = 0.95–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C-meth­yl). The Flack parameter x is 0.1 (4) as shown in Table 2[link]. The standard uncertainty is large. The Flack and Hooft (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) parameters are strongly indicative of the correct absolute configuration, even when the standard uncertainties are large (Thompson & Watkin, 2011[Thompson, A. L. & Watkin, D. J. (2011). J. Appl. Cryst. 44, 1017-1022.]). Hooft [0.19 (16)] and Parsons parameters [0.2 (3)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) were calculated using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 2
Experimental details

Crystal data
Chemical formula C20H23NO2
Mr 309.39
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 6.1313 (2), 7.3710 (2), 38.1143 (11)
V3) 1722.53 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.31 × 0.29 × 0.29
 
Data collection
Diffractometer Rigaku Saturn 724+ CCD
Absorption correction Numerical (CrystalClear-SM Expert; Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.985, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 16094, 3877, 3614
Rint 0.021
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.080, 1.05
No. of reflections 3877
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15
Absolute structure Flack x determined using 1346 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (4)
Computer programs: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

2-([1,1'-Biphenyl]-4-yl)-2-oxo-N,N-bis(propan-2-yl)acetamide top
Crystal data top
C20H23NO2Dx = 1.193 Mg m3
Mr = 309.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2939 reflections
a = 6.1313 (2) Åθ = 3.4–27.5°
b = 7.3710 (2) ŵ = 0.08 mm1
c = 38.1143 (11) ÅT = 173 K
V = 1722.53 (9) Å3Prism, colorless
Z = 40.31 × 0.29 × 0.29 mm
F(000) = 664
Data collection top
Rigaku Saturn 724+ CCD
diffractometer
3877 independent reflections
Radiation source: sealed tube3614 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.021
profile data from ω–scansθmax = 28.0°, θmin = 3.4°
Absorption correction: numerical
(CrystalClear-SM Expert; Rigaku, 2009)
h = 87
Tmin = 0.985, Tmax = 0.985k = 99
16094 measured reflectionsl = 4848
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.3778P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.16 e Å3
3877 reflectionsΔρmin = 0.15 e Å3
212 parametersAbsolute structure: Flack x determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.1 (4)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5093 (3)0.5728 (2)0.66469 (4)0.0240 (3)
C20.6161 (3)0.6491 (2)0.69356 (4)0.0264 (4)
H10.7570760.7005140.6907690.032*
C30.5171 (3)0.6499 (2)0.72609 (4)0.0256 (3)
H20.5917430.7027830.7453900.031*
C40.3097 (3)0.5750 (2)0.73146 (4)0.0231 (3)
O10.8128 (2)0.6133 (2)0.62656 (3)0.0413 (3)
O20.4869 (2)0.32629 (16)0.59665 (3)0.0381 (3)
N10.4188 (2)0.61084 (19)0.57509 (4)0.0276 (3)
C50.2040 (3)0.5007 (2)0.70210 (5)0.0282 (4)
H30.0629370.4492170.7047970.034*
C60.3012 (3)0.5011 (2)0.66922 (4)0.0287 (4)
H40.2251900.4521940.6496690.034*
C70.6227 (3)0.5697 (2)0.63028 (4)0.0284 (4)
C80.4985 (3)0.4927 (2)0.59863 (4)0.0281 (4)
C90.4364 (3)0.8099 (2)0.58034 (5)0.0318 (4)
H50.4973840.8297500.6043670.038*
C100.5949 (4)0.8947 (3)0.55449 (6)0.0470 (5)
H60.7364010.8334100.5562250.070*
H70.6129141.0237170.5599440.070*
H80.5378640.8815060.5306040.070*
C110.2145 (4)0.9013 (3)0.57929 (6)0.0424 (5)
H90.1565830.8965940.5553380.064*
H100.2291031.0281140.5866420.064*
H110.1145020.8381400.5952050.064*
C120.3111 (3)0.5445 (2)0.54250 (4)0.0309 (4)
H120.2701430.6542270.5285620.037*
C130.4680 (4)0.4345 (3)0.51993 (5)0.0466 (5)
H130.6012030.5049370.5158860.070*
H140.3988120.4067810.4973760.070*
H150.5047250.3212140.5320000.070*
C140.1007 (4)0.4442 (3)0.55063 (6)0.0434 (5)
H160.1344080.3311010.5630270.065*
H170.0245130.4162040.5286820.065*
H180.0075100.5204250.5654140.065*
C150.2068 (3)0.5729 (2)0.76699 (4)0.0242 (3)
C160.3150 (3)0.6450 (2)0.79631 (5)0.0327 (4)
H190.4547240.6985380.7933780.039*
C170.2219 (4)0.6397 (3)0.82944 (5)0.0385 (5)
H200.2992120.6874710.8489720.046*
C180.0172 (4)0.5653 (3)0.83418 (5)0.0387 (5)
H210.0474080.5633860.8568280.046*
C190.0930 (3)0.4937 (3)0.80572 (5)0.0360 (4)
H220.2334370.4418220.8088720.043*
C200.0005 (3)0.4972 (2)0.77263 (5)0.0295 (4)
H230.0771460.4470820.7533600.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (8)0.0234 (7)0.0201 (8)0.0024 (7)0.0035 (6)0.0011 (6)
C20.0249 (8)0.0275 (8)0.0267 (9)0.0027 (7)0.0031 (7)0.0002 (7)
C30.0275 (8)0.0278 (8)0.0216 (8)0.0033 (7)0.0061 (7)0.0022 (6)
C40.0267 (8)0.0202 (7)0.0223 (8)0.0028 (7)0.0031 (6)0.0009 (6)
O10.0359 (7)0.0594 (9)0.0286 (7)0.0063 (7)0.0036 (6)0.0020 (6)
O20.0598 (9)0.0259 (6)0.0285 (6)0.0030 (6)0.0079 (6)0.0004 (5)
N10.0376 (8)0.0255 (7)0.0198 (7)0.0002 (6)0.0016 (6)0.0001 (6)
C50.0252 (8)0.0313 (8)0.0283 (9)0.0048 (8)0.0037 (7)0.0017 (7)
C60.0303 (9)0.0334 (9)0.0224 (8)0.0006 (8)0.0081 (7)0.0034 (7)
C70.0338 (10)0.0271 (8)0.0244 (8)0.0000 (7)0.0023 (7)0.0021 (7)
C80.0365 (10)0.0284 (8)0.0194 (8)0.0010 (8)0.0007 (7)0.0000 (7)
C90.0442 (11)0.0264 (8)0.0248 (9)0.0025 (8)0.0018 (8)0.0011 (7)
C100.0446 (11)0.0382 (11)0.0581 (13)0.0029 (10)0.0089 (10)0.0104 (10)
C110.0506 (12)0.0316 (9)0.0451 (11)0.0038 (9)0.0135 (10)0.0045 (9)
C120.0421 (10)0.0311 (9)0.0195 (8)0.0074 (8)0.0050 (7)0.0020 (7)
C130.0593 (14)0.0570 (13)0.0234 (9)0.0184 (12)0.0023 (9)0.0081 (9)
C140.0476 (12)0.0433 (11)0.0395 (11)0.0028 (10)0.0093 (10)0.0081 (9)
C150.0293 (8)0.0193 (7)0.0240 (8)0.0019 (7)0.0004 (7)0.0002 (6)
C160.0396 (10)0.0323 (9)0.0260 (9)0.0076 (8)0.0005 (8)0.0016 (7)
C170.0568 (12)0.0351 (10)0.0238 (9)0.0080 (9)0.0009 (9)0.0033 (8)
C180.0555 (13)0.0322 (9)0.0285 (9)0.0005 (9)0.0126 (9)0.0031 (8)
C190.0360 (10)0.0348 (9)0.0373 (10)0.0009 (8)0.0090 (9)0.0038 (8)
C200.0305 (9)0.0281 (8)0.0300 (9)0.0011 (8)0.0023 (7)0.0000 (7)
Geometric parameters (Å, º) top
C1—C61.392 (3)C11—H90.9800
C1—C21.398 (2)C11—H100.9800
C1—C71.485 (2)C11—H110.9800
C2—C31.380 (2)C12—C141.519 (3)
C2—H10.9500C12—C131.524 (3)
C3—C41.401 (2)C12—H121.0000
C3—H20.9500C13—H130.9800
C4—C51.404 (2)C13—H140.9800
C4—C151.494 (2)C13—H150.9800
O1—C71.217 (2)C14—H160.9800
O2—C81.231 (2)C14—H170.9800
N1—C81.342 (2)C14—H180.9800
N1—C91.485 (2)C15—C201.399 (3)
N1—C121.489 (2)C15—C161.404 (2)
C5—C61.388 (2)C16—C171.386 (3)
C5—H30.9500C16—H190.9500
C6—H40.9500C17—C181.382 (3)
C7—C81.535 (2)C17—H200.9500
C9—C101.519 (3)C18—C191.382 (3)
C9—C111.519 (3)C18—H210.9500
C9—H51.0000C19—C201.385 (3)
C10—H60.9800C19—H220.9500
C10—H70.9800C20—H230.9500
C10—H80.9800
C6—C1—C2118.98 (15)H9—C11—H10109.5
C6—C1—C7122.22 (15)C9—C11—H11109.5
C2—C1—C7118.80 (15)H9—C11—H11109.5
C3—C2—C1120.18 (15)H10—C11—H11109.5
C3—C2—H1119.9N1—C12—C14111.50 (15)
C1—C2—H1119.9N1—C12—C13111.46 (16)
C2—C3—C4121.88 (15)C14—C12—C13113.10 (17)
C2—C3—H2119.1N1—C12—H12106.8
C4—C3—H2119.1C14—C12—H12106.8
C3—C4—C5117.15 (15)C13—C12—H12106.8
C3—C4—C15121.29 (14)C12—C13—H13109.5
C5—C4—C15121.56 (15)C12—C13—H14109.5
C8—N1—C9121.65 (14)H13—C13—H14109.5
C8—N1—C12120.38 (14)C12—C13—H15109.5
C9—N1—C12117.97 (14)H13—C13—H15109.5
C6—C5—C4121.36 (16)H14—C13—H15109.5
C6—C5—H3119.3C12—C14—H16109.5
C4—C5—H3119.3C12—C14—H17109.5
C5—C6—C1120.44 (15)H16—C14—H17109.5
C5—C6—H4119.8C12—C14—H18109.5
C1—C6—H4119.8H16—C14—H18109.5
O1—C7—C1123.19 (16)H17—C14—H18109.5
O1—C7—C8118.74 (16)C20—C15—C16117.12 (16)
C1—C7—C8117.87 (15)C20—C15—C4121.66 (15)
O2—C8—N1125.77 (17)C16—C15—C4121.21 (16)
O2—C8—C7116.41 (16)C17—C16—C15121.34 (18)
N1—C8—C7117.78 (15)C17—C16—H19119.3
N1—C9—C10111.42 (16)C15—C16—H19119.3
N1—C9—C11111.71 (16)C18—C17—C16120.26 (18)
C10—C9—C11111.97 (16)C18—C17—H20119.9
N1—C9—H5107.1C16—C17—H20119.9
C10—C9—H5107.1C17—C18—C19119.54 (17)
C11—C9—H5107.1C17—C18—H21120.2
C9—C10—H6109.5C19—C18—H21120.2
C9—C10—H7109.5C18—C19—C20120.33 (19)
H6—C10—H7109.5C18—C19—H22119.8
C9—C10—H8109.5C20—C19—H22119.8
H6—C10—H8109.5C19—C20—C15121.40 (17)
H7—C10—H8109.5C19—C20—H23119.3
C9—C11—H9109.5C15—C20—H23119.3
C9—C11—H10109.5
C6—C1—C2—C31.2 (2)C1—C7—C8—N1104.20 (19)
C7—C1—C2—C3178.37 (15)C8—N1—C9—C10110.4 (2)
C1—C2—C3—C40.3 (2)C12—N1—C9—C1069.1 (2)
C2—C3—C4—C51.0 (2)C8—N1—C9—C11123.57 (18)
C2—C3—C4—C15178.55 (15)C12—N1—C9—C1157.0 (2)
C3—C4—C5—C60.2 (3)C8—N1—C12—C1465.9 (2)
C15—C4—C5—C6179.27 (16)C9—N1—C12—C14114.69 (18)
C4—C5—C6—C11.2 (3)C8—N1—C12—C1361.6 (2)
C2—C1—C6—C51.9 (2)C9—N1—C12—C13117.88 (18)
C7—C1—C6—C5177.64 (16)C3—C4—C15—C20179.53 (16)
C6—C1—C7—O1171.73 (18)C5—C4—C15—C200.1 (2)
C2—C1—C7—O17.8 (3)C3—C4—C15—C160.4 (2)
C6—C1—C7—C83.1 (2)C5—C4—C15—C16179.07 (17)
C2—C1—C7—C8177.40 (15)C20—C15—C16—C170.6 (3)
C9—N1—C8—O2178.42 (19)C4—C15—C16—C17178.57 (17)
C12—N1—C8—O22.2 (3)C15—C16—C17—C181.1 (3)
C9—N1—C8—C73.9 (2)C16—C17—C18—C191.0 (3)
C12—N1—C8—C7175.50 (16)C17—C18—C19—C200.3 (3)
O1—C7—C8—O297.1 (2)C18—C19—C20—C150.2 (3)
C1—C7—C8—O277.9 (2)C16—C15—C20—C190.0 (2)
O1—C7—C8—N180.7 (2)C4—C15—C20—C19179.20 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H5···O11.002.653.245 (2)119
C13—H15···O20.982.473.033 (3)117
C14—H16···O20.982.513.072 (3)116
C14—H18···O1i0.982.713.612 (3)154
C17—H20···O2ii0.952.663.608 (2)179
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

Theoretical calculations were performed at the Super Computer System of Academic Centre for Computing and Media Studies, Kyoto University.

References

First citationAoyama, H., Hasegawa, T. & Omote, Y. (1979). J. Am. Chem. Soc. 101, 5343–5347.  CrossRef CAS Web of Science Google Scholar
First citationAoyama, H., Hasegawa, T., Watabe, M., Shiraishi, H. & Omote, Y. (1978). J. Org. Chem. 43, 419–422.  CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16. Rev. C.01. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHashizume, D., Kogo, H., Ohashi, Y., Miyamoto, H. & Toda, F. (1998). Anal. Sci. 14, 1187–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationHashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1995). Acta Cryst. C51, 929–933.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 61–66.  CSD CrossRef Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKonieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299–311.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNatarajan, A., Mague, J. T. & Ramamurthy, V. (2005). J. Am. Chem. Soc. 127, 3568–3576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697–699.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, A. L. & Watkin, D. J. (2011). J. Appl. Cryst. 44, 1017–1022.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToda, F. & Miyamoto, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1129–1132.  CrossRef Web of Science Google Scholar
First citationToda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413–1414.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds