research communications
N-(2-amino-5-methylphenyl)-2-(5-methyl-1H-pyrazol-3-yl)acetamide
Hirshfeld surface analysis and DFT study ofaLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cDepartment of Biochemistry, Faculty of Education & Science, Al-Baydha University, Yemen
*Correspondence e-mail: abadnadeem3@gmail.com
The title molecule, C13H16N4O, adopts an angular conformation. In the crystal a layer structure is generated by N—H⋯O and N—H⋯N hydrogen bonds together with C—H⋯π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.8%), H⋯C/C⋯H (21.7%), H⋯N/N⋯H (13.6%), and H⋯O/O⋯H (10.8%) interactions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 5.0452 eV.
Keywords: crystal structure; pyrazolylacetamide; hydrogen bond.
CCDC reference: 2083102
1. Chemical context
Nitrogen-based structures have attracted more attention in recent years because of their interesting properties in structural and inorganic chemistry (Lahmidi et al., 2018; Chkirate et al., 2020a; Taia et al., 2020; Al Ati et al., 2021). The pyrazolyl-acetamide family is important in medicinal chemistry because of the wide range of pharmacological applications (Deprez-Poulain et al., 2011) such as anti-inflammatory (Sunder et al., 2013), antimicrobial and anticancer (Jitender Dev et al., 2017) and as an anti-amoebic agent (Shukla et al., 2020). They also have antioxidant activity (Chkirate et al., 2019a) and have been biologically evaluated (Yan et al., 2021). Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out for the synthesis of compounds resulting from 1,5-benzodiazepine (Chkirate et al., 2001, 2018, 2019b, 2020b, 2021; Idrissi et al., 2021) a similar approach gave the title compound, N-(2-amino-5-methylphenyl)-2-(5-methyl-1H-pyrazol-3-yl)acetamide, (I). Besides the synthesis, we also report the molecular and crystal structures along with a Hirshfeld surface analysis and a density functional theory computational calculation carried out at the B3LYP/6–311 G(d,p) level.
2. Structural commentary
The N2/C8/C9/O1 portion of the title molecule is planar (r.m.s. deviation = 0.0013 Å) with the mean planes of the C1–C6 and N3/N4/C10–C12 rings inclined to the above plane by 86.56 (6) and 72.84 (7)°, respectively, giving the molecule an angular shape (Fig. 1). Bond distances and angles are as expected for the given formulation.
3. Supramolecular features
In the crystal, inversion-related pairs of N1—H1B⋯O1, and N2—H2A⋯N1 hydrogen bonds, together with C11—H11⋯Cg2 interactions (Table 1) form chains of molecules extending along the a-axis direction (Fig. 2). The chains are connected into layers parallel to (100) by N4—H4⋯O1 hydrogen bonds (Table 1 and Fig. 3). Intermolecular interactions viewed down the c axis are shown in Fig. 3.
4. Hirshfeld surface analysis
The CrystalExplorer program (Turner et al., 2017) was used to investigate and visualize further the intermolecular interactions of (I). The Hirshfeld surface plotted over dnorm in the range −0.6149 to 1.3177 a.u. is shown in Fig. 4a. The electrostatic potential calculated using the STO-3G basis set at the Hartree–Fock level of theory and mapped on the Hirshfeld surface over the range ±0.05 a.u. clearly shows the positions of close intermolecular contacts in the compound (Fig. 4b). The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region). The shape-index (Fig. 5) generated in the range −1 to 1 Å reveals that there are no significant π–π interactions, normally indicated by adjacent red and blue triangles.
The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 6a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H contacts are illustrated in Fig. 6b–e, respectively, together with their relative contributions to the Hirshfeld surface (HS). The most important interaction is H⋯H, contributing 53.8% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.18 Å. In the presence of C—H interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (21.7% contribution to the HS), Fig. 6c, has the tips at de + di = 2.76 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯N/N⋯H, Fig. 6d (13.6%), have the tips at de + di = 2.01 Å. Finally, the H⋯O/O⋯H contacts, Fig. 6e, make only a 10.8% contribution to the HS and have a low-density distribution of points.
5. Density functional theory calculations
The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis-set, which is based on Becke's model (Becke, 1993) and considers a mixture of the exact (Hartree–Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were done with the Gaussian 09 program (Frisch et al., 2009). Theoretical and experimental results related to bond lengths and angles are in good agreement and are summarized in Table 2. Calculated numerical values for the title compound including (χ), hardness (η), (I), (μ), (A), (ω) and softness (σ) are collated in Table 3. The electron transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) energy level is shown in Fig. 7. The HOMO and LUMO are localized in the plane extending over the whole N-(2-amino-5-methylphenyl)-2-(5-methyl-1H-pyrazol-3-yl)acetamide system. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 5.0452 eV, and the frontier molecular orbital energies, EHOMO and ELUMO, are −5.3130 and −0.2678 eV, respectively.
|
|
6. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, updated March 2020; Groom et al., 2016) with the 2-(5-methyl-1H-pyrazol-3-yl)acetamide fragment yielded multiple matches. Of these, two had an N-(2-aminophenyl) substituent comparable to (I) and they are shown in Fig. 8. The first compound (II) (refcode XITFUE; Chkirate et al., 2019c) carries N-(2-{[(4-methylphenyl)methylidene]amino}phenyl) on nitrogen 2. The second one (III) (refcode YODZEZ; Chkirate et al., 2019a) carries N-(2-aminophenyl) on nitrogen 2. The pyrazole ring (N3/N4/C10–C12) in XITFUE is inclined to the C1–C6 benzene ring by 70.83 (8)°. In YODZEZ, the dihedral angle between the mean planes of the 2-aminophenyl and pyrazolyl rings is 65.63 (8)°. In (I), the N2/C8/C9/O1 fragment is planar (r.m.s. deviation = 0.0013 Å) with the mean planes of the C1–C6 and N3/N4/C10–C12 rings inclined to the above plane by 86.56 (6) and 72.84 (7)°, respectively, which is approximately the same as in XITFUE, but less tilted than in YODZEZ.
7. Synthesis and crystallization
2 g (9.3 mmol) of (Z)-4-(2-oxopropylidene)-1,5-benzodiazepin-2-one and a stoichiometric amount of hydrazine were refluxed in ethanol (40 mL) for 2 h. After concentration of the solvent volume to 20 mL, the solution was allowed to stand; the precipitate formed was filtered off and then recrystallized in ethanol. Single crystals were obtained after recrystallization from methanol in the presence of MnCl2·4H2O, which was left at room temperature for 72 h. Yield: 70%.
8. Refinement
Crystal data, data collection and structure . H atoms were included as riding contributions in idealized positions (N—H = 0.88–0.91 Å, C—H = 0.95–0.99 Å) with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. Residual density observed after the initial converged was identified as an isomer of the primary molecule having the C7 methyl group attached to C3 instead of to C4 and with a refined occupancy of 5%. The final model was generated with a combination of rigid group and to make the minor component have a comparable geometry to that of the major component.
details are summarized in Table 4Supporting information
CCDC reference: 2083102
https://doi.org/10.1107/S205698902100503X/dj2025sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S205698902100503X/dj2025Isup3.cml
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100503X/dj2025Isup5.hkl
Data collection: APEX3 (Bruker, 2020); cell
SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H16N4O | F(000) = 520 |
Mr = 244.30 | Dx = 1.329 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1271 (3) Å | Cell parameters from 9878 reflections |
b = 8.9295 (3) Å | θ = 2.5–34.4° |
c = 19.2508 (7) Å | µ = 0.09 mm−1 |
β = 94.683 (1)° | T = 150 K |
V = 1221.06 (8) Å3 | Parallelepiped, colourless |
Z = 4 | 0.37 × 0.26 × 0.16 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 5120 independent reflections |
Radiation source: fine-focus sealed tube | 4794 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 34.4°, θmin = 2.5° |
φ and ω scans | h = −11→11 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.93, Tmax = 0.99 | l = −30→30 |
66426 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: mixed |
wR(F2) = 0.164 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.23 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.8885P] where P = (Fo2 + 2Fc2)/3 |
5120 reflections | (Δ/σ)max = 0.007 |
212 parameters | Δρmax = 0.44 e Å−3 |
32 restraints | Δρmin = −0.33 e Å−3 |
Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 15 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were included as riding contributions in idealized positions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Residual density observed after the initial refinement converged was identified as an isomer of the primary molecule having the C7 methyl group attached to C3 instead of to C4 and with a refined occupancy of 5%. The final model was generated with a combination of rigid group and restrained refinement to make the minor component have a comparable geometry to that of the major component. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.59624 (16) | 0.37274 (17) | 0.37033 (6) | 0.0232 (2) | 0.9480 (17) |
N1 | 0.71759 (18) | 0.54183 (13) | 0.54033 (7) | 0.0217 (2) | 0.9480 (17) |
H1A | 0.705685 | 0.575800 | 0.495619 | 0.032* | 0.9480 (17) |
H1B | 0.625376 | 0.578103 | 0.565705 | 0.032* | 0.9480 (17) |
N2 | 0.87261 (16) | 0.36438 (14) | 0.43708 (6) | 0.0194 (2) | 0.9480 (17) |
H2A | 0.997675 | 0.386010 | 0.438829 | 0.029* | 0.9480 (17) |
O1A | 0.611 (2) | 0.392 (4) | 0.3551 (15) | 0.0232 (2) | 0.0520 (17) |
N1A | 0.726 (2) | 0.5270 (12) | 0.5246 (10) | 0.0217 (2) | 0.0520 (17) |
H1C | 0.714407 | 0.560992 | 0.479901 | 0.032* | 0.0520 (17) |
H1D | 0.634098 | 0.563294 | 0.549991 | 0.032* | 0.0520 (17) |
N2A | 0.892 (3) | 0.379 (3) | 0.4164 (9) | 0.0194 (2) | 0.0520 (17) |
H2C | 1.010632 | 0.408561 | 0.419618 | 0.023* | 0.0520 (17) |
C1 | 0.71306 (17) | 0.38417 (14) | 0.54490 (7) | 0.0183 (2) | 0.9480 (17) |
C2 | 0.63639 (19) | 0.31229 (16) | 0.60084 (8) | 0.0211 (2) | 0.9480 (17) |
H2 | 0.581442 | 0.370326 | 0.635231 | 0.025* | 0.9480 (17) |
C3 | 0.63985 (19) | 0.15736 (16) | 0.60656 (8) | 0.0217 (2) | 0.9480 (17) |
H3 | 0.588038 | 0.111015 | 0.645085 | 0.026* | 0.9480 (17) |
C4 | 0.71811 (19) | 0.06826 (15) | 0.55670 (7) | 0.0201 (2) | 0.9480 (17) |
C5 | 0.79467 (18) | 0.13954 (15) | 0.50122 (7) | 0.0190 (2) | 0.9480 (17) |
H5 | 0.848761 | 0.081079 | 0.466773 | 0.023* | 0.9480 (17) |
C6 | 0.79337 (17) | 0.29531 (14) | 0.49529 (7) | 0.0173 (2) | 0.9480 (17) |
C7 | 0.7163 (2) | −0.10021 (16) | 0.56184 (9) | 0.0267 (3) | 0.9480 (17) |
H7A | 0.762818 | −0.143428 | 0.519718 | 0.040* | 0.9480 (17) |
H7B | 0.587355 | −0.134775 | 0.566403 | 0.040* | 0.9480 (17) |
H7C | 0.797458 | −0.131927 | 0.602734 | 0.040* | 0.9480 (17) |
C8 | 0.76818 (18) | 0.39484 (15) | 0.37725 (7) | 0.0181 (2) | 0.9480 (17) |
C9 | 0.87268 (19) | 0.45874 (17) | 0.31874 (7) | 0.0233 (3) | 0.9480 (17) |
H9A | 1.009431 | 0.458403 | 0.332792 | 0.028* | 0.9480 (17) |
H9B | 0.850612 | 0.394239 | 0.277043 | 0.028* | 0.9480 (17) |
C1A | 0.7392 (15) | 0.3693 (12) | 0.5253 (6) | 0.0183 (2) | 0.0520 (17) |
C2A | 0.664 (2) | 0.2879 (16) | 0.5780 (7) | 0.0211 (2) | 0.0520 (17) |
H2B | 0.604271 | 0.338398 | 0.613539 | 0.025* | 0.0520 (17) |
C3A | 0.677 (2) | 0.1325 (16) | 0.5786 (8) | 0.0217 (2) | 0.0520 (17) |
C4A | 0.764 (2) | 0.0586 (12) | 0.5266 (9) | 0.0201 (2) | 0.0520 (17) |
H4A | 0.773122 | −0.047555 | 0.527024 | 0.024* | 0.0520 (17) |
C5A | 0.839 (2) | 0.1400 (14) | 0.4739 (8) | 0.0190 (2) | 0.0520 (17) |
H5A | 0.899373 | 0.089494 | 0.438300 | 0.023* | 0.0520 (17) |
C6A | 0.827 (2) | 0.2954 (14) | 0.4732 (7) | 0.0173 (2) | 0.0520 (17) |
C7A | 0.603 (4) | 0.043 (3) | 0.6369 (11) | 0.0267 (3) | 0.0520 (17) |
H7D | 0.545542 | 0.110860 | 0.669177 | 0.040* | 0.0520 (17) |
H7E | 0.508277 | −0.028421 | 0.617575 | 0.040* | 0.0520 (17) |
H7F | 0.706943 | −0.011442 | 0.661987 | 0.040* | 0.0520 (17) |
C8A | 0.783 (2) | 0.415 (3) | 0.3584 (9) | 0.0181 (2) | 0.0520 (17) |
C9A | 0.890 (3) | 0.487 (2) | 0.3025 (7) | 0.0233 (3) | 0.0520 (17) |
H9C | 1.025101 | 0.495079 | 0.318091 | 0.028* | 0.0520 (17) |
H9D | 0.876172 | 0.427022 | 0.259173 | 0.028* | 0.0520 (17) |
N3 | 0.67894 (16) | 0.63909 (15) | 0.24804 (6) | 0.0255 (3) | 0.9480 (17) |
N4 | 0.65868 (16) | 0.79091 (15) | 0.24611 (6) | 0.0252 (3) | 0.9480 (17) |
H4 | 0.574 (3) | 0.834 (3) | 0.2145 (10) | 0.036 (6)* | 0.9480 (17) |
C10 | 0.81137 (15) | 0.61509 (16) | 0.30054 (6) | 0.0208 (2) | 0.9480 (17) |
C11 | 0.87425 (16) | 0.75120 (17) | 0.33163 (7) | 0.0218 (2) | 0.9480 (17) |
H11 | 0.966736 | 0.764031 | 0.369572 | 0.026* | 0.9480 (17) |
C12 | 0.77310 (17) | 0.86140 (17) | 0.29529 (6) | 0.0219 (3) | 0.9480 (17) |
C13 | 0.7758 (2) | 1.0282 (2) | 0.30308 (9) | 0.0301 (3) | 0.9480 (17) |
H13A | 0.898183 | 1.059745 | 0.325150 | 0.045* | 0.9480 (17) |
H13B | 0.675980 | 1.059071 | 0.332152 | 0.045* | 0.9480 (17) |
H13C | 0.754972 | 1.074905 | 0.257033 | 0.045* | 0.9480 (17) |
N3A | 0.6378 (14) | 0.668 (2) | 0.2606 (3) | 0.0255 (3) | 0.0520 (17) |
N4A | 0.6309 (16) | 0.819 (2) | 0.2618 (3) | 0.0252 (3) | 0.0520 (17) |
H4B | 0.530526 | 0.868604 | 0.244696 | 0.036 (6)* | 0.0520 (17) |
C10A | 0.8062 (14) | 0.639 (2) | 0.2901 (3) | 0.0208 (2) | 0.0520 (17) |
C11A | 0.900 (2) | 0.773 (2) | 0.3088 (5) | 0.0218 (2) | 0.0520 (17) |
H11B | 1.023731 | 0.780410 | 0.330902 | 0.026* | 0.0520 (17) |
C12A | 0.783 (3) | 0.891 (2) | 0.2898 (6) | 0.0219 (3) | 0.0520 (17) |
C13A | 0.809 (4) | 1.053 (3) | 0.2971 (9) | 0.0301 (3) | 0.0520 (17) |
H13D | 0.934950 | 1.073535 | 0.319707 | 0.045* | 0.0520 (17) |
H13E | 0.797247 | 1.099750 | 0.250883 | 0.045* | 0.0520 (17) |
H13F | 0.713733 | 1.094159 | 0.325523 | 0.045* | 0.0520 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0175 (4) | 0.0273 (6) | 0.0240 (6) | −0.0023 (4) | −0.0030 (4) | 0.0038 (5) |
N1 | 0.0196 (5) | 0.0157 (5) | 0.0292 (6) | 0.0003 (4) | −0.0008 (4) | 0.0004 (4) |
N2 | 0.0152 (4) | 0.0210 (5) | 0.0216 (5) | −0.0027 (4) | −0.0012 (4) | 0.0056 (4) |
O1A | 0.0175 (4) | 0.0273 (6) | 0.0240 (6) | −0.0023 (4) | −0.0030 (4) | 0.0038 (5) |
N1A | 0.0196 (5) | 0.0157 (5) | 0.0292 (6) | 0.0003 (4) | −0.0008 (4) | 0.0004 (4) |
N2A | 0.0152 (4) | 0.0210 (5) | 0.0216 (5) | −0.0027 (4) | −0.0012 (4) | 0.0056 (4) |
C1 | 0.0140 (5) | 0.0165 (5) | 0.0237 (6) | −0.0001 (4) | −0.0026 (4) | 0.0018 (4) |
C2 | 0.0183 (5) | 0.0204 (6) | 0.0245 (6) | 0.0016 (4) | 0.0020 (4) | 0.0013 (5) |
C3 | 0.0192 (5) | 0.0217 (6) | 0.0244 (6) | −0.0005 (4) | 0.0029 (4) | 0.0049 (5) |
C4 | 0.0185 (5) | 0.0165 (5) | 0.0250 (6) | −0.0017 (4) | −0.0003 (4) | 0.0042 (4) |
C5 | 0.0184 (5) | 0.0170 (5) | 0.0211 (5) | −0.0004 (4) | −0.0003 (4) | 0.0012 (4) |
C6 | 0.0153 (5) | 0.0163 (5) | 0.0200 (5) | −0.0016 (4) | −0.0012 (4) | 0.0032 (4) |
C7 | 0.0276 (6) | 0.0175 (6) | 0.0350 (7) | −0.0023 (5) | 0.0027 (5) | 0.0061 (5) |
C8 | 0.0183 (5) | 0.0153 (5) | 0.0204 (6) | 0.0008 (4) | 0.0000 (4) | 0.0021 (4) |
C9 | 0.0233 (6) | 0.0237 (6) | 0.0233 (6) | 0.0026 (5) | 0.0052 (5) | 0.0059 (5) |
C1A | 0.0140 (5) | 0.0165 (5) | 0.0237 (6) | −0.0001 (4) | −0.0026 (4) | 0.0018 (4) |
C2A | 0.0183 (5) | 0.0204 (6) | 0.0245 (6) | 0.0016 (4) | 0.0020 (4) | 0.0013 (5) |
C3A | 0.0192 (5) | 0.0217 (6) | 0.0244 (6) | −0.0005 (4) | 0.0029 (4) | 0.0049 (5) |
C4A | 0.0185 (5) | 0.0165 (5) | 0.0250 (6) | −0.0017 (4) | −0.0003 (4) | 0.0042 (4) |
C5A | 0.0184 (5) | 0.0170 (5) | 0.0211 (5) | −0.0004 (4) | −0.0003 (4) | 0.0012 (4) |
C6A | 0.0153 (5) | 0.0163 (5) | 0.0200 (5) | −0.0016 (4) | −0.0012 (4) | 0.0032 (4) |
C7A | 0.0276 (6) | 0.0175 (6) | 0.0350 (7) | −0.0023 (5) | 0.0027 (5) | 0.0061 (5) |
C8A | 0.0183 (5) | 0.0153 (5) | 0.0204 (6) | 0.0008 (4) | 0.0000 (4) | 0.0021 (4) |
C9A | 0.0233 (6) | 0.0237 (6) | 0.0233 (6) | 0.0026 (5) | 0.0052 (5) | 0.0059 (5) |
N3 | 0.0249 (6) | 0.0251 (6) | 0.0254 (5) | 0.0008 (4) | −0.0042 (4) | 0.0001 (4) |
N4 | 0.0234 (5) | 0.0266 (6) | 0.0244 (6) | 0.0024 (4) | −0.0054 (4) | 0.0024 (5) |
C10 | 0.0180 (5) | 0.0231 (6) | 0.0210 (5) | 0.0005 (4) | 0.0003 (4) | 0.0049 (4) |
C11 | 0.0175 (5) | 0.0257 (6) | 0.0213 (6) | 0.0004 (4) | −0.0027 (4) | 0.0026 (5) |
C12 | 0.0179 (5) | 0.0232 (7) | 0.0243 (6) | 0.0012 (5) | 0.0005 (4) | 0.0033 (5) |
C13 | 0.0283 (8) | 0.0251 (7) | 0.0368 (8) | 0.0005 (6) | 0.0012 (6) | 0.0012 (6) |
N3A | 0.0249 (6) | 0.0251 (6) | 0.0254 (5) | 0.0008 (4) | −0.0042 (4) | 0.0001 (4) |
N4A | 0.0234 (5) | 0.0266 (6) | 0.0244 (6) | 0.0024 (4) | −0.0054 (4) | 0.0024 (5) |
C10A | 0.0180 (5) | 0.0231 (6) | 0.0210 (5) | 0.0005 (4) | 0.0003 (4) | 0.0049 (4) |
C11A | 0.0175 (5) | 0.0257 (6) | 0.0213 (6) | 0.0004 (4) | −0.0027 (4) | 0.0026 (5) |
C12A | 0.0179 (5) | 0.0232 (7) | 0.0243 (6) | 0.0012 (5) | 0.0005 (4) | 0.0033 (5) |
C13A | 0.0283 (8) | 0.0251 (7) | 0.0368 (8) | 0.0005 (6) | 0.0012 (6) | 0.0012 (6) |
O1—C8 | 1.2376 (16) | C3A—C4A | 1.3900 |
N1—C1 | 1.4112 (17) | C3A—C7A | 1.508 (3) |
N1—H1A | 0.9099 | C4A—C5A | 1.3900 |
N1—H1B | 0.9099 | C4A—H4A | 0.9500 |
N2—C8 | 1.3471 (17) | C5A—C6A | 1.3900 |
N2—C6 | 1.4347 (17) | C5A—H5A | 0.9500 |
N2—H2A | 0.9100 | C7A—H7D | 0.9800 |
O1A—C8A | 1.238 (3) | C7A—H7E | 0.9800 |
N1A—C1A | 1.412 (3) | C7A—H7F | 0.9800 |
N1A—H1C | 0.9099 | C8A—C9A | 1.511 (3) |
N1A—H1D | 0.9100 | C9A—C10A | 1.496 (3) |
N2A—C8A | 1.347 (3) | C9A—H9C | 0.9900 |
N2A—C6A | 1.434 (3) | C9A—H9D | 0.9900 |
N2A—H2C | 0.8800 | N3—C10 | 1.3425 (18) |
C1—C6 | 1.3995 (19) | N3—N4 | 1.3635 (19) |
C1—C2 | 1.4022 (19) | N4—C12 | 1.3534 (19) |
C2—C3 | 1.388 (2) | N4—H4 | 0.907 (9) |
C2—H2 | 0.9500 | C10—C11 | 1.412 (2) |
C3—C4 | 1.397 (2) | C11—C12 | 1.3766 (19) |
C3—H3 | 0.9500 | C11—H11 | 0.9500 |
C4—C5 | 1.3925 (18) | C12—C13 | 1.497 (2) |
C4—C7 | 1.5077 (19) | C13—H13A | 0.9800 |
C5—C6 | 1.3956 (18) | C13—H13B | 0.9800 |
C5—H5 | 0.9500 | C13—H13C | 0.9800 |
C7—H7A | 0.9800 | N3A—C10A | 1.311 (12) |
C7—H7B | 0.9800 | N3A—N4A | 1.351 (17) |
C7—H7C | 0.9800 | N4A—C12A | 1.331 (16) |
C8—C9 | 1.5119 (18) | N4A—H4B | 0.8800 |
C9—C10 | 1.496 (2) | C10A—C11A | 1.397 (16) |
C9—H9A | 0.9900 | C11A—C12A | 1.375 (17) |
C9—H9B | 0.9900 | C11A—H11B | 0.9500 |
C1A—C2A | 1.3900 | C12A—C13A | 1.468 (17) |
C1A—C6A | 1.3900 | C13A—H13D | 0.9800 |
C2A—C3A | 1.3900 | C13A—H13E | 0.9800 |
C2A—H2B | 0.9500 | C13A—H13F | 0.9800 |
C1—N1—H1A | 113.0 | C6A—C5A—H5A | 120.0 |
C1—N1—H1B | 107.5 | C4A—C5A—H5A | 120.0 |
H1A—N1—H1B | 111.9 | C5A—C6A—C1A | 120.0 |
C8—N2—C6 | 121.97 (11) | C5A—C6A—N2A | 120.1 (13) |
C8—N2—H2A | 117.4 | C1A—C6A—N2A | 119.7 (13) |
C6—N2—H2A | 120.6 | C3A—C7A—H7D | 109.5 |
C1A—N1A—H1C | 110.0 | C3A—C7A—H7E | 109.5 |
C1A—N1A—H1D | 113.5 | H7D—C7A—H7E | 109.5 |
H1C—N1A—H1D | 111.9 | C3A—C7A—H7F | 109.5 |
C8A—N2A—C6A | 123.6 (15) | H7D—C7A—H7F | 109.5 |
C8A—N2A—H2C | 118.2 | H7E—C7A—H7F | 109.5 |
C6A—N2A—H2C | 118.2 | O1A—C8A—N2A | 120.4 (18) |
C6—C1—C2 | 118.12 (12) | O1A—C8A—C9A | 126 (2) |
C6—C1—N1 | 120.68 (12) | N2A—C8A—C9A | 113.7 (11) |
C2—C1—N1 | 121.12 (12) | C10A—C9A—C8A | 106.6 (14) |
C3—C2—C1 | 120.77 (13) | C10A—C9A—H9C | 110.4 |
C3—C2—H2 | 119.6 | C8A—C9A—H9C | 110.4 |
C1—C2—H2 | 119.6 | C10A—C9A—H9D | 110.4 |
C2—C3—C4 | 121.24 (13) | C8A—C9A—H9D | 110.4 |
C2—C3—H3 | 119.4 | H9C—C9A—H9D | 108.6 |
C4—C3—H3 | 119.4 | C10—N3—N4 | 104.22 (12) |
C5—C4—C3 | 118.03 (12) | C12—N4—N3 | 112.76 (12) |
C5—C4—C7 | 120.82 (13) | C12—N4—H4 | 126.7 (16) |
C3—C4—C7 | 121.13 (13) | N3—N4—H4 | 120.5 (16) |
C4—C5—C6 | 121.19 (12) | N3—C10—C11 | 111.17 (12) |
C4—C5—H5 | 119.4 | N3—C10—C9 | 119.95 (13) |
C6—C5—H5 | 119.4 | C11—C10—C9 | 128.88 (12) |
C5—C6—C1 | 120.64 (12) | C12—C11—C10 | 105.37 (12) |
C5—C6—N2 | 119.46 (12) | C12—C11—H11 | 127.3 |
C1—C6—N2 | 119.89 (11) | C10—C11—H11 | 127.3 |
C4—C7—H7A | 109.5 | N4—C12—C11 | 106.48 (13) |
C4—C7—H7B | 109.5 | N4—C12—C13 | 122.33 (14) |
H7A—C7—H7B | 109.5 | C11—C12—C13 | 131.18 (14) |
C4—C7—H7C | 109.5 | C12—C13—H13A | 109.5 |
H7A—C7—H7C | 109.5 | C12—C13—H13B | 109.5 |
H7B—C7—H7C | 109.5 | H13A—C13—H13B | 109.5 |
O1—C8—N2 | 122.20 (12) | C12—C13—H13C | 109.5 |
O1—C8—C9 | 121.58 (12) | H13A—C13—H13C | 109.5 |
N2—C8—C9 | 116.22 (11) | H13B—C13—H13C | 109.5 |
C10—C9—C8 | 111.99 (9) | C10A—N3A—N4A | 102.8 (12) |
C10—C9—H9A | 109.2 | C12A—N4A—N3A | 117.0 (13) |
C8—C9—H9A | 109.2 | C12A—N4A—H4B | 121.5 |
C10—C9—H9B | 109.2 | N3A—N4A—H4B | 121.5 |
C8—C9—H9B | 109.2 | N3A—C10A—C11A | 110.3 (14) |
H9A—C9—H9B | 107.9 | N3A—C10A—C9A | 125.8 (16) |
C2A—C1A—C6A | 120.0 | C11A—C10A—C9A | 123.9 (14) |
C2A—C1A—N1A | 119.99 (8) | C12A—C11A—C10A | 108.4 (13) |
C6A—C1A—N1A | 120.01 (8) | C12A—C11A—H11B | 125.8 |
C1A—C2A—C3A | 120.0 | C10A—C11A—H11B | 125.8 |
C1A—C2A—H2B | 120.0 | N4A—C12A—C11A | 101.4 (13) |
C3A—C2A—H2B | 120.0 | N4A—C12A—C13A | 127.2 (19) |
C4A—C3A—C2A | 120.0 | C11A—C12A—C13A | 131.3 (18) |
C4A—C3A—C7A | 119.3 (14) | C12A—C13A—H13D | 109.5 |
C2A—C3A—C7A | 120.6 (14) | C12A—C13A—H13E | 109.5 |
C3A—C4A—C5A | 120.0 | H13D—C13A—H13E | 109.5 |
C3A—C4A—H4A | 120.0 | C12A—C13A—H13F | 109.5 |
C5A—C4A—H4A | 120.0 | H13D—C13A—H13F | 109.5 |
C6A—C5A—C4A | 120.0 | H13E—C13A—H13F | 109.5 |
C6—C1—C2—C3 | −0.18 (19) | C2A—C1A—C6A—N2A | 175.7 (15) |
N1—C1—C2—C3 | −177.18 (12) | N1A—C1A—C6A—N2A | −4.3 (15) |
C1—C2—C3—C4 | −0.5 (2) | C8A—N2A—C6A—C5A | 90 (3) |
C2—C3—C4—C5 | 0.6 (2) | C8A—N2A—C6A—C1A | −86 (3) |
C2—C3—C4—C7 | −178.08 (13) | C6A—N2A—C8A—O1A | 9 (5) |
C3—C4—C5—C6 | −0.09 (19) | C6A—N2A—C8A—C9A | −173 (2) |
C7—C4—C5—C6 | 178.64 (13) | O1A—C8A—C9A—C10A | 59 (4) |
C4—C5—C6—C1 | −0.60 (19) | N2A—C8A—C9A—C10A | −119 (2) |
C4—C5—C6—N2 | −179.60 (11) | C10—N3—N4—C12 | −0.05 (3) |
C2—C1—C6—C5 | 0.73 (18) | N4—N3—C10—C11 | 0.05 (2) |
N1—C1—C6—C5 | 177.74 (12) | N4—N3—C10—C9 | −179.92 (3) |
C2—C1—C6—N2 | 179.72 (11) | C8—C9—C10—N3 | −95.38 (12) |
N1—C1—C6—N2 | −3.27 (18) | C8—C9—C10—C11 | 84.65 (12) |
C8—N2—C6—C5 | 90.79 (16) | N3—C10—C11—C12 | −0.04 (4) |
C8—N2—C6—C1 | −88.21 (16) | C9—C10—C11—C12 | 179.93 (5) |
C6—N2—C8—O1 | 4.1 (2) | N3—N4—C12—C11 | 0.02 (5) |
C6—N2—C8—C9 | −176.27 (12) | N3—N4—C12—C13 | 179.89 (4) |
O1—C8—C9—C10 | 64.49 (19) | C10—C11—C12—N4 | 0.01 (5) |
N2—C8—C9—C10 | −115.16 (14) | C10—C11—C12—C13 | −179.84 (5) |
C6A—C1A—C2A—C3A | 0.0 | C10A—N3A—N4A—C12A | 0.00 (3) |
N1A—C1A—C2A—C3A | 180.0 | N4A—N3A—C10A—C11A | 0.00 (3) |
C1A—C2A—C3A—C4A | 0.0 | N4A—N3A—C10A—C9A | 180.00 (4) |
C1A—C2A—C3A—C7A | 177.6 (19) | C8A—C9A—C10A—N3A | −69.6 (15) |
C2A—C3A—C4A—C5A | 0.0 | C8A—C9A—C10A—C11A | 110.4 (15) |
C7A—C3A—C4A—C5A | −177.6 (18) | N3A—C10A—C11A—C12A | 0.00 (5) |
C3A—C4A—C5A—C6A | 0.0 | C9A—C10A—C11A—C12A | 179.99 (6) |
C4A—C5A—C6A—C1A | 0.0 | N3A—N4A—C12A—C11A | 0.00 (5) |
C4A—C5A—C6A—N2A | −175.7 (15) | N3A—N4A—C12A—C13A | 180.00 (5) |
C2A—C1A—C6A—C5A | 0.0 | C10A—C11A—C12A—N4A | 0.00 (6) |
N1A—C1A—C6A—C5A | 180.0 | C10A—C11A—C12A—C13A | 180.00 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1i | 0.91 | 2.13 | 3.0284 (19) | 171 |
N2—H2A···N1ii | 0.91 | 2.14 | 3.0354 (17) | 170 |
C2—H2···O1i | 0.95 | 2.62 | 3.334 (2) | 132 |
N4—H4···O1iii | 0.91 (1) | 1.99 (1) | 2.8625 (17) | 163 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2. |
X-ray | B3LYP/6–311G(d,p) | |
N1—C1 | 1.4112 (17) | 1.4114 |
N2—C6 | 1.4347 (17) | 1.4139 |
N2—C8 | 1.3471 (17) | 1.3692 |
O1—C8 | 1.2376 (16) | 1.2179 |
N3—C10 | 1.3425 (18) | 1.3316 |
N3—N4 | 1.3635 (19) | 1.3524 |
N4—C12 | 1.3534 (19) | 1.3598 |
C8—C9 | 1.5119 (18) | 1.5409 |
C9—C10 | 1.496 (2) | 1.5007 |
C2—C1—N1 | 121.12 (12) | 122.0542 |
C6—C1—N1 | 120.68 (12) | 119.3119 |
C1—C6—N2 | 119.89 (11) | 116.726 |
C5—C6—N2 | 119.46 (12) | 123.4969 |
O1—C8—N2 | 122.20 (12) | 125.0222 |
N2—C8—C9 | 116.22 (11) | 114.6561 |
O1—C8—C9 | 121.58 (12) | 120.2798 |
N3—C10—C9 | 119.95 (13) | 120.7841 |
N3—C10—C11 | 111.17 (12) | 110.8968 |
C10—N3—N4 | 104.22 (12) | 104.754 |
C12—N4—N3 | 112.76 (12) | 113.2928 |
N4—C12—C11 | 106.48 (13) | 105.3557 |
N4—C12—C13 | 122.33 (14) | 122.8603 |
Molecular Energy | Compound (I) |
Total Energy TE (eV) | -21754.8403 |
EHOMO (eV) | -5.3130 |
ELUMO (eV) | -0.2678 |
Gap, ΔE (eV) | 5.0452 |
Dipole moment, µ (Debye) | 6.7706 |
Ionization potential, I (eV) | 5.3130 |
Electron affinity, A | 0.2678 |
Electronegativity, χ | 2.7904 |
Hardness, η | 2.5226 |
Electrophilicity, index ω | 1.5433 |
Softness, σ | 0.3964 |
Fraction of electron transferred, ΔN | 0.8344 |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contribution are as follows. Conceptualization, GAA and KC; methodology, GAA; investigation, KC and NA; theoretical calculations, KC; writing (original draft) KC; writing (review and editing of the manuscript) NA; supervision, KC, EME and RA; crystal-structure determination and validation, JTM.
References
Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750. Web of Science CrossRef Google Scholar
Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21–28. Web of Science CSD CrossRef Google Scholar
Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019a). J. Inorg. Biochem. 191, 21–28. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019c). Acta Cryst. E75, 154–158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221. Web of Science CSD CrossRef CAS Google Scholar
Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636. CAS Google Scholar
Chkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669–1673. Web of Science CSD CrossRef IUCr Journals Google Scholar
Deprez-Poulain, R., Cousaert, N., Toto, P., Willand, N. & Deprez, B. (2011). Eur. J. Med. Chem. 46, 3867–3876. Web of Science CAS PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision A.02. Gaussian Inc, Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Idrissi, A., Chkirate, K., Abad, N., Djerrari, B., Achour, R., Essassi, E. M. & Van Meervelt, L. (2021). Acta Cryst. E77, 396–401. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lahmidi, S., Sebbar, N. K., Hökelek, T., Chkirate, K., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1833–1837. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Jitender Dev, G., Poornachandra, Y., Ratnakar Reddy, K., Naresh Kumar, R., Ravikumar, N., Krishna Swaroop, D., Ranjithreddy, P., Shravan Kumar, G., Nanubolu, J. B., Ganesh Kumar, C. & Narsaiah, B. (2017). Eur. J. Med. Chem. 130, 223–239. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shukla, B. K. & Yadava, U. (2020). Heliyon, 6, e04176. Web of Science CrossRef PubMed Google Scholar
Sunder, K. S. & Maleraju, J. (2013). Drug Invent. Today, 5, 288–295. Google Scholar
Taia, A., Essaber, M., Aatif, A., Chkirate, K., Hökelek, T., Mague, J. T. & Sebbar, N. K. (2020). Acta Cryst. E76, 962–966. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Yan, W., Zhang, L., Lv, F., Moccia, M., Carlomagno, F., Landry, C., Santoro, M., Gosselet, F., Frett, B. & Li, H. (2021). Eur. J. Med. Chem. 216, 113265. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.