research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(anthracen-9-yl)pyridine

crossmark logo

aDepartment of Nuclear Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, People's Republic of China
*Correspondence e-mail: lifei007@139.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 31 March 2021; accepted 4 May 2021; online 11 May 2021)

The title compound, C19H13N, which crystallizes in the monoclinic C2/c space group with one half-mol­ecule in the asymmetric unit, was synthesized by Suzuki–Miyaura cross-coupling reaction of 9-bromo­anthracene with pyridin-4-ylboronic acid and purified by column chromatography on silica gel. Light-yellow crystals of 4-(anthracen-9-yl)-pyridine suitable for X-ray diffraction were collected by the solvent evaporation method. In the crystal, pairs of mol­ecules are connected by inter­molecular C—H⋯π (pyridine) inter­actions [d(H7⋯Cg) = 2.7391 (2) Å], forming cyclic centrosymmetric dimers, further resulting in an infinite one-dimensional linear chain along the c-axis direction. Weak face-to-face ππ stacking inter­actions [d(CgCg) = 3.6061 (2) Å] link neighboring lamellar networks into the supra­molecular structure.

1. Chemical context

Anthracene and its derivatives constitute a very famous class of fluoro­phores that have been widely used in the development of functional fluorescent chemosensors because of their intriguing photophysical properties and chemical stability (Martínez-Máñez et al., 2003[Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419-4476.]). One of the most important steps in the rational mol­ecule design of anthracene-based chemosensors is the judicious combination with functional chemical recognition moieties, which can be used for monitoring and qu­anti­fying of abnormal physiological changes at the subcellular level (Densil et al., 2018[Densil, S., Chang, C. H., Chen, C. L., Mathavan, A., Ramdass, A., Sathish, V., Thanasekaran, P., Li, W. S. & Rajagopal, S. (2018). Luminescence, 33, 780-789.]; Mondal et al., 2014[Mondal, B. & Kumar, V. (2014). RSC Adv. 4, 61944-61947.]; Anand et al., 2015[Anand, T., Sivaraman, G., Mahesh, A. & Chellappa, D. (2015). Anal. Chim. Acta, 853, 596-601.]; Shree et al., 2019[Shree, G. J., Sivaraman, G., Siva, A. & Chellappa, D. (2019). Dyes Pigments, 163, 204-212.]). It has been found that 9,10-distyrylanthracene derivatives with restricted intra­molecular rotations often lead to aggregation-induced emission characteristics (Lu et al., 2010[Lu, H., Xu, B., Dong, Y., Chen, F., Li, Y., Li, Z., He, J., Li, H. & Tian, W. (2010). Langmuir, 26, 6838-6844.]). In recent years, there has been an increased effort to combine anthracene derivatives with N- or O-coordinated single ligands and other attractive mixed ligands in order to construct tunable fluorescent ligands (Dey et al., 2016[Dey, B., Mondal, R. K., Dhibar, S., Chattopadhyay, A. P. & Bhattacharya, S. C. (2016). J. Lumin. 172, 1-6.]; Yao et al., 2019[Yao, S. L., Liu, S. J., Tian, X. M., Zheng, T. F., Cao, C., Niu, C. Y., Chen, Y. Q., Chen, J. L., Huang, H. & Wen, H. R. (2019). Inorg. Chem. 58, 3578-3581.]). As part of our studies in this area, we report herein the synthesis and crystal structure of a fluorescent mono­pyridine ligand, C19H13N.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], single-crystal X-ray diffraction analysis reveals that 4-(anthracen-9-yl)-pyridine crystallizes in the monoclinic C2/c space group with half mol­ecule in the asymmetric unit (Table 1[link]). In the structure of the title compound, the C–C bond lengths of the benzene ring range from 1.3534 (13) to 1.4352 (1) Å, and the C–N bond length is 1.3351 (11), which is comparable with the literature reported (Zhao et al., 2016[Zhao, M., Tan, J., Su, J., Zhang, J., Zhang, S., Wu, J. & Tian, Y. (2016). Dyes Pigments, 130, 216-225.]). The bond angle of N1–C1–C2 is 124.161 (7)°, closed to the ideal bond angle of 120° for benzene ring. The pyridine ring is inclined to the benzene ring at a dihedral angle of 71.64 (4)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cgi 0.93 2.74 3.5606 (12) 148
C7—H7⋯Cgii 0.93 2.74 3.5606 (12) 148
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+1, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of 4-(anthracen-9-yl)-pyridine with displacement ellipsoids at the 50% probability level. Symmetry code: (i) −x, y, [1\over2] − z.

3. Supra­molecular features

In the crystal, the hydrogen atom of anthracene ring contributes to the formation of a C7—H7⋯π contact with the pyridine ring (Table 1[link]); the resulting cyclic centrosymmetric dimer is shown in Fig. 2[link]. Subsequently, the paired C—H⋯π(pyridine) hydrogen-bonding inter­actions connect neighboring dimers, resulting in an infinite 1-D linear chain (Fig. 3[link]), which is basis for extension of the dimensionality. As shown in Figs. 4[link] and 5[link], the crystal packing involves weak face-to-face ππ stacking inter­actions [d(CgCg) = 3.6095 (7) Å] between two benzene rings related by the symmetry operation 1 − x, y, [1\over2] − z.

[Figure 2]
Figure 2
The hydrogen-bonded centrosymmetric dimer along the c axis. Dashed lines indicate C—H⋯π inter­actions.
[Figure 3]
Figure 3
View of the 1-D chain-like structure of the title compound along the c axis.
[Figure 4]
Figure 4
Crystal packing projected via C—H⋯π and ππ stacking inter­actions.
[Figure 5]
Figure 5
ππ stacking inter­actions of mol­ecules in the crystal structure of the title compound.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, update March 2021; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that this is the first example of a structurally characterized 4-(anthracen-9-yl)-pyridine. At the same time, a CSD search for compounds containing the 4-(anthracen-9-yl)-pyridine substructure identified only one compound, viz. Ag12(SCH2C6H5)6(CF3COO)6(L4)6 [L4 = 4-(anthracen-9-yl)-pyridine; Li et al., 2018[Li, Y. L., Zhang, W. M., Wang, J., Tian, Y., Wang, Z. Y., Du, C. X., Zang, S. Q. & Mak, T. C. W. (2018). Dalton Trans. 47, 14884-14888.]] in which the pyridine ring of this compound is inclined to the benzene ring at a dihedral angle of 73.28°.

5. Synthesis and crystallization

4-(Anthracen-9-yl)-pyridine was synthesized by the Suzuki–Miyaura cross-coupling reaction according to a previously reported protocol (Zhao et al., 2019[Zhao, M., Gao, Y., Ye, S., Ding, J., Wang, A., Li, P. & Shi, H. (2019). Analyst, 144, 6262-6269.]). As shown in Fig. 6[link], under a nitro­gen atmosphere, 9-bromo­anthracene (2.56 g, 10 mmol), pyridin-4-ylboronic acid (1.23 g, 10 mmol) and tetra­triphenyl phosphine palladium (0.10 g, 0.1 mmol) were dissolved in toluene (90 mL) followed by the addition of potassium carbonate aqueous solution (22 wt%, 40 mL) under constant stirring. The reaction mixture was subsequently refluxed for 12 h, and the mixture was then further purified by column chromatography using petroleum/ethyl acetate (3:1, v/v) as eluent to give yellow solid 4-(anthracen-9-yl)pyridine (1.76 g, yield 69%).

[Figure 6]
Figure 6
Synthesis of 4-(anthracen-9-yl)-pyridine.

Crystals of 4-(anthracen-9-yl)-pyridine suitable for X-ray analysis were obtained by the solvent evaporation method. In detail, solid 4-(anthracen-9-yl)-pyridine (0.013 g, 0.05 mmol) was dissolved in 0.5 mL of di­chloro­methane and 5 mL of ethyl acetate. The mixture solvent was evaporated slowly at room temperature for about 2 weeks. Light-yellow crystals of 4-(anthracen-9-yl)-pyridine suitable for X-ray diffraction were collected.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C19H13N
Mr 255.30
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 6.0777 (4), 20.9211 (16), 10.2574 (7)
β (°) 102.476 (3)
V3) 1273.45 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.15 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.699, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 4703, 1144, 1022
Rint 0.029
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.11
No. of reflections 1144
No. of parameters 94
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.14
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-(Anthracen-9-yl)pyridine top
Crystal data top
C19H13NF(000) = 536
Mr = 255.30Dx = 1.332 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 6.0777 (4) ÅCell parameters from 2979 reflections
b = 20.9211 (16) Åθ = 3.7–25.3°
c = 10.2574 (7) ŵ = 0.08 mm1
β = 102.476 (3)°T = 296 K
V = 1273.45 (16) Å3Bulk, light yellow
Z = 40.18 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
1022 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.3°, θmin = 3.7°
Tmin = 0.699, Tmax = 0.745h = 76
4703 measured reflectionsk = 2224
1144 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.3319P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1144 reflectionsΔρmax = 0.15 e Å3
94 parametersΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0000000.36240 (5)0.2500000.0360 (4)
C10.12815 (18)0.39626 (5)0.18480 (11)0.0359 (3)
H10.2194950.3740320.1384230.043*
C20.13369 (17)0.46237 (5)0.18183 (10)0.0324 (3)
H20.2264720.4833170.1344220.039*
C30.0000000.49724 (7)0.2500000.0266 (4)
C40.0000000.56870 (6)0.2500000.0267 (4)
C50.18833 (15)0.60220 (5)0.32231 (9)0.0279 (3)
C60.38307 (17)0.57083 (5)0.39762 (10)0.0308 (3)
H60.3878090.5264050.3992260.037*
C70.56176 (18)0.60434 (5)0.46706 (11)0.0357 (3)
H70.6862620.5825940.5156360.043*
C80.56061 (19)0.67201 (5)0.46633 (12)0.0405 (3)
H80.6837090.6944910.5144400.049*
C90.38025 (19)0.70397 (5)0.39555 (11)0.0407 (4)
H90.3818570.7484150.3948050.049*
C100.18747 (17)0.67085 (5)0.32198 (10)0.0325 (3)
C110.0000000.70319 (7)0.2500000.0371 (4)
H110.0000020.7476430.2500030.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0410 (8)0.0233 (7)0.0417 (7)0.0000.0045 (6)0.000
C10.0393 (6)0.0281 (6)0.0414 (6)0.0039 (4)0.0110 (5)0.0046 (4)
C20.0351 (6)0.0280 (6)0.0363 (6)0.0016 (4)0.0123 (4)0.0006 (4)
C30.0274 (7)0.0243 (7)0.0269 (7)0.0000.0026 (5)0.000
C40.0323 (8)0.0235 (8)0.0262 (7)0.0000.0108 (5)0.000
C50.0328 (6)0.0261 (6)0.0268 (6)0.0010 (4)0.0110 (4)0.0001 (3)
C60.0351 (6)0.0260 (6)0.0320 (6)0.0004 (4)0.0085 (4)0.0000 (4)
C70.0333 (6)0.0362 (7)0.0364 (6)0.0006 (4)0.0050 (4)0.0003 (4)
C80.0391 (7)0.0359 (7)0.0443 (7)0.0109 (5)0.0039 (5)0.0035 (5)
C90.0479 (7)0.0250 (6)0.0473 (7)0.0073 (4)0.0062 (6)0.0017 (4)
C100.0393 (7)0.0255 (6)0.0333 (6)0.0029 (4)0.0091 (5)0.0004 (4)
C110.0467 (9)0.0209 (7)0.0427 (9)0.0000.0075 (7)0.000
Geometric parameters (Å, º) top
N1—C11.3345 (12)C6—H60.9300
N1—C1i1.3345 (12)C6—C71.3579 (15)
C1—H10.9300C7—H70.9300
C1—C21.3840 (15)C7—C81.4158 (16)
C2—H20.9300C8—H80.9300
C2—C31.3881 (12)C8—C91.3534 (16)
C3—C41.4951 (19)C9—H90.9300
C4—C5i1.4088 (12)C9—C101.4284 (15)
C4—C51.4088 (12)C10—C111.3920 (13)
C5—C61.4259 (14)C11—H110.9300
C5—C101.4362 (16)
C1—N1—C1i115.86 (12)C7—C6—C5121.52 (10)
N1—C1—H1117.9C7—C6—H6119.2
N1—C1—C2124.14 (10)C6—C7—H7119.6
C2—C1—H1117.9C6—C7—C8120.73 (10)
C1—C2—H2120.2C8—C7—H7119.6
C1—C2—C3119.63 (10)C7—C8—H8120.0
C3—C2—H2120.2C9—C8—C7119.95 (10)
C2i—C3—C2116.60 (13)C9—C8—H8120.0
C2—C3—C4121.70 (6)C8—C9—H9119.3
C2i—C3—C4121.70 (6)C8—C9—C10121.38 (11)
C5i—C4—C3119.84 (6)C10—C9—H9119.3
C5—C4—C3119.83 (6)C9—C10—C5118.80 (9)
C5—C4—C5i120.33 (13)C11—C10—C5119.30 (10)
C4—C5—C6122.77 (10)C11—C10—C9121.90 (11)
C4—C5—C10119.61 (9)C10i—C11—C10121.84 (14)
C6—C5—C10117.62 (9)C10i—C11—H11119.1
C5—C6—H6119.2C10—C11—H11119.1
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cgii0.932.743.5606 (12)148
C7—H7···Cgiii0.932.743.5606 (12)148
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1/2.
 

Funding information

This work was supported by grants from the National Natural Science Foundation of China Incubation Program of the Second Hospital of Anhui Medical University (2020GQFY04) and Anhui Medical University Research Fund (2020xkj024).

References

First citationAnand, T., Sivaraman, G., Mahesh, A. & Chellappa, D. (2015). Anal. Chim. Acta, 853, 596–601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDensil, S., Chang, C. H., Chen, C. L., Mathavan, A., Ramdass, A., Sathish, V., Thanasekaran, P., Li, W. S. & Rajagopal, S. (2018). Luminescence, 33, 780–789.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDey, B., Mondal, R. K., Dhibar, S., Chattopadhyay, A. P. & Bhattacharya, S. C. (2016). J. Lumin. 172, 1–6.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y. L., Zhang, W. M., Wang, J., Tian, Y., Wang, Z. Y., Du, C. X., Zang, S. Q. & Mak, T. C. W. (2018). Dalton Trans. 47, 14884–14888.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLu, H., Xu, B., Dong, Y., Chen, F., Li, Y., Li, Z., He, J., Li, H. & Tian, W. (2010). Langmuir, 26, 6838–6844.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMartínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMondal, B. & Kumar, V. (2014). RSC Adv. 4, 61944–61947.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShree, G. J., Sivaraman, G., Siva, A. & Chellappa, D. (2019). Dyes Pigments, 163, 204–212.  Web of Science CrossRef CAS Google Scholar
First citationYao, S. L., Liu, S. J., Tian, X. M., Zheng, T. F., Cao, C., Niu, C. Y., Chen, Y. Q., Chen, J. L., Huang, H. & Wen, H. R. (2019). Inorg. Chem. 58, 3578–3581.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, M., Gao, Y., Ye, S., Ding, J., Wang, A., Li, P. & Shi, H. (2019). Analyst, 144, 6262–6269.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, M., Tan, J., Su, J., Zhang, J., Zhang, S., Wu, J. & Tian, Y. (2016). Dyes Pigments, 130, 216–225.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds