research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-[(Z)-(2-hy­dr­oxy­phen­yl)methyl­­idene]aniline N-oxide

crossmark logo

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cChemistry Department, Faculty of Science, Assuit University, Egypt, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eChemistry Department, Faculty of Science, South Valley University, Egypt, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and gFaculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D. Gray, University of Illinois Urbana-Champaign, USA (Received 25 January 2021; accepted 6 May 2021; online 11 May 2021)

The conformation of the title compound, C13H11NO2, is partially determined by a strong, intra­molecular O—H⋯O hydrogen bond. The crystal packing consists of strongly corrugated layers parallel to the ac plane and associated through C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (44.1%), C⋯H/H⋯C (29.4%) and O⋯H/H⋯O (17.3%) contacts.

1. Chemical context

Nitro­nes are a very important class of organic compounds as a result of their medicinal and pharmaceutical applications. They show anti­fungal (Salman et al., 2013[Salman, H. H. & Majeed, N. N. (2013). J. Basrah Res. 39, 99-111.]), anti­bacterial (Chakraborty et al., 2010[Chakraborty, B., Schhetric, M., Kafly, S. & Samanta, A. (2010). Indian J. Chem. Sect. B, 49, 209-215.]), neuroprotective (Chioua et al., 2012[Chioua, M., Sucunza, D., Soriano, E., Hadjipavlou-Litina, D., Alcázar, A., Ayuso, I., Oset-Gasque, M. J., González, M. P., Monjas, L., Rodríguez-Franco, M. I., Marco-Contelles, J. & Samadi, A. (2012). J. Med. Chem. 55, 153-168.]) and anti­cancer (Floyd et al., 2011[Floyd, R. A, Chandru, H. K., He, T. & Towner, R. (2011). Anticancer Agents Med. Chem. 11, 373-379.]) activities. In addition, nitrone compounds are widely used as anti­oxidant agents (Al-Mowali et al., 2014[Al-Mowali, A. H., Majeed, N. N. & Abbas, A. F. (2014). Res. J. Pharm. Biol. Chem. Sci. 5, 2119-2123.]) because of their ability to scavenge free radicals. Based on these findings and following our inter­est in this area, we report herein the crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (Fig. 1[link]) is almost planar, with maximum deviations of 0.398 (2) Å for O1 and −0.756 (2) Å for O2. The N1—O2 distance of 1.331 (2) Å is normal for a single bond and agrees well with those observed in other amine N-oxides. The dihedral angle between the aromatic rings (C1–C6 and C8–C13) is 1.94 (12) °. The torsion angles C2—C1—C7—N1, C1—C7—N1—C8, C1—C7—N1—O2, C7—N1—C8—C9 and O2—N1—C8–C-9 are −30.2 (3), −179.7 (2), −0.4 (3), 27.3 (3) and −152.0 (2)°, respectively. The conformation of the title compound is partially determined by a strong, intra­molecular O1—H1⋯O2 hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.97 1.53 2.479 (2) 167
C7—H7⋯O2i 0.95 2.43 3.368 (3) 167
C10—H10⋯O1ii 0.95 2.53 3.227 (3) 131
C11—H11⋯Cg1iii 0.95 2.94 3.662 (3) 136
C4—H4⋯Cg2iv 0.95 2.77 3.545 (3) 140
Symmetry codes: (i) [x-1, y, z]; (ii) [x-1, -y, z-{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is shown by a dashed line.

3. Supra­molecular features

In the crystal, C7—H7⋯O2i hydrogen bonds (Table 1[link]) link the mol­ecules, forming chains along the a-axis direction. The chains are linked into strongly corrugated sheets parallel to the ac plane by C10—H10⋯O2ii hydrogen bonds and C11—H11⋯Cg1iii inter­actions (Cg1 is the centroid of the C1–C6 hy­droxy­phenyl ring; Table 1[link] and Fig. 2[link]). The sheets are stacked along the b-axis direction by C4—H4⋯Cg2iv inter­actions (Cg2 is the centroid of the C8–C13 phenyl ring; Table 1[link] and Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Detail of the inter­molecular C—H⋯O hydrogen bonds and the C—H⋯π(ring) inter­actions (black and green dashed lines, respectively) viewed along the b-axis direction.
[Figure 3]
Figure 3
Packing viewed along the (120) direction with inter­molecular inter­actions shown as in Fig. 2[link].

4. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to visualize the inter­molecular inter­actions in the title compound. The Hirshfeld surface mapped over dnorm (Fig. 4[link]) shows the expected bright-red spots near atoms O1, O2, H7 and H10, which are involved in the C—H⋯O hydrogen-bonding inter­actions. The bright-red spot near O1 indicates its role as a hydrogen-bond acceptor to (C10)H10 (Fig. 4[link]) and another red region near O2 correlates with the C7—H7⋯O2 inter­action.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface with the C—H⋯O inter­actions for the title compound, plotted over dnorm in the range −0.2242 to 1.2146 a.u. (a) front view, (b) back view.

The two-dimensional fingerprint plots show the relative contributions of the various types of contacts to the Hirshfeld surface for the title compound (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The plots (Fig. 5[link]) reveal that H⋯H and C⋯H/H⋯C inter­actions make the greatest contributions to the surface contacts, while O⋯H/H⋯O, C⋯C, N⋯H/H⋯N, N⋯C/C⋯N and O⋯C/C⋯O contacts are less significant (Tables 2[link] and 3[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O2⋯H7 2.43 1 + x, y, z
O1⋯H10 2.53 1 + x, −y, [{1\over 2}] + z
O2⋯H12 2.87 x, 1 + y, z
C3⋯H12 3.02 x, −y, [{1\over 2}] + z
H4⋯C11 2.86 x, 1 − y, [{1\over 2}] + z
H6⋯H13 2.46 −1 + x, 1 + y, z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 44.1
C⋯H/H⋯C 29.4
O⋯H/H⋯O 17.3
C⋯C 5.3
N⋯C/C⋯N 1.7
N⋯H/H⋯N 1.5
O⋯C/C⋯O 0.7
[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

The four most closely related structures are (Z)-N-[(1,3-diphenyl-1H-pyrazol-4-yl)methanimine]-N-oxido (DEPVOM; Mohamed et al., 2018[Mohamed, S. K., Mague, J. T., Akkurt, M., Said, A. I., Hawaiz, F. E. & Elgarhy, S. M. I. (2018). IUCrData, 3, x180208.]), (Z)-1,2-bis­(3-bromo­phen­yl)diazene 1-oxide (SIYHAK01; Goswami et al., 2018[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2018). IUCrData, 3, x181486.]), (Z)-N-benzyl­idene-1-phenyl­methanamine oxide hydrogen peroxide solvate (JELQOJ; Churakov et al., 2017[Churakov, A. V., Prikhodchenko, P. V., Medvedev, A. G. & Mikhaylov, A. A. (2017). Acta Cryst. E73, 1666-1669.]) and (Z)-N-(2-chloro­benzyl­idene)aniline N-oxide (ERIXEJ; Fu et al., 2011[Fu, Y., Liu, Y., Yang, Y. & Chen, Y. (2011). Acta Cryst. E67, o1320.]).

In the crystal of DEPVOM, (101) layers are generated by C—H⋯O hydrogen bonds coupled with C—H⋯π(ring) and offset ππ stacking inter­actions. In the crystal of SIYHAK01, C—H⋯O and C—H⋯Br hydrogen bonds together with offset ππ inter­actions stack the mol­ecules along the a-axis direction. In the crystal of JELQOJ, the organic and peroxide mol­ecules are linked through both peroxide O—H donor groups to oxide O-atom acceptors, giving one-dimensional chains extending along the b-axis direction. Weak inter­molecular C—H⋯O hydrogen-bonding inter­actions are also present. In the crystal of ERIXEJ, the mol­ecule is stabilized by an intra­molecular C—H⋯O hydrogen bond. The geometry about the C=N bond is Z [C—C—N—O torsion angle = −4.2 (3)°] and the phenyl and benzene rings are trans-oriented around the C=N bond. The phenyl and benzene rings make a dihedral angle of 56.99 (2)°.

6. Synthesis and crystallization

(Z)-(2-Hy­droxy­phen­yl)methyl­idene]benzenimine N-oxide (nitrone) was prepared according to the reported procedures (Mobinikhaledi et al., 2005[Mobinikhaledi, A., Foroughifar, N. & Kalate, Z. (2005). Turk. J. Chem. 29, 147-152.]). 0.7 ml (6 mmol) of salicyaldehyde were added to a warmed solution of 0.8 g (6 mmol) N-phenyl­hydroxy­amine in ethanol followed by stirring for 5 minutes, then standing at room temperature in the dark overnight gave the nitrone, which was recrystallized from ethanol in 53% yield; m.p. 387–388 K.

7. Refinement

Crystal and refinement details are presented in Table 4[link]. The H atom of the OH group was found in difference-Fourier maps, and its positional parameters were fixed using the AFIX 3 instruction in SHELXL and were refined with the isotropic displacement parameter Uiso(H) = 1.5Ueq(O). The C-bound H atoms were positioned geometrically, with C—H = 0.95 Å, and constrained to ride on their parent atoms, withUiso(H) = 1.2Ueq(C). Attempts to determine the absolute structure did not produce a definitive result, viz.: Flack x = 0.2 (3) by classical fit to all intensities 0.30 (14) from 611 selected quotients (Parsons' method). A round of TWIN/BASF refinement gave BASF = 0.2 (4) with no improvement in the model.

Table 4
Experimental details

Crystal data
Chemical formula C13H11NO2
Mr 213.23
Crystal system, space group Monoclinic, Pc
Temperature (K) 150
a, b, c (Å) 5.5391 (1), 5.7873 (2), 16.0859 (4)
β (°) 99.067 (1)
V3) 509.21 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.19 × 0.17 × 0.15
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.77, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 3578, 1654, 1607
Rint 0.023
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.06
No. of reflections 1654
No. of parameters 145
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18
Absolute structure Flack x determined using 611 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.30 (13)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

N-[(Z)-(2-Hydroxyphenyl)methylidene]aniline N-oxide top
Crystal data top
C13H11NO2F(000) = 224
Mr = 213.23Dx = 1.391 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54178 Å
a = 5.5391 (1) ÅCell parameters from 3430 reflections
b = 5.7873 (2) Åθ = 5.6–72.4°
c = 16.0859 (4) ŵ = 0.77 mm1
β = 99.067 (1)°T = 150 K
V = 509.21 (2) Å3Block, yellow
Z = 20.19 × 0.17 × 0.15 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1654 independent reflections
Radiation source: INCOATEC IµS micro–focus source1607 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 5.6°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 77
Tmin = 0.77, Tmax = 0.89l = 1919
3578 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.084P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.18 e Å3
1654 reflectionsΔρmin = 0.18 e Å3
145 parametersAbsolute structure: Flack x determined using 611 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
2 restraintsAbsolute structure parameter: 0.30 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8449 (3)0.3532 (3)0.64513 (12)0.0342 (4)
H10.8418750.2895270.5892140.051*
O20.7828 (3)0.2215 (3)0.49662 (12)0.0338 (4)
N10.5424 (3)0.1864 (3)0.48272 (13)0.0267 (4)
C10.4520 (4)0.4953 (4)0.57874 (14)0.0260 (5)
C20.6705 (4)0.5169 (4)0.63617 (15)0.0280 (5)
C30.7030 (4)0.7093 (4)0.68930 (16)0.0328 (5)
H30.8526510.7283540.7265920.039*
C40.5207 (5)0.8717 (4)0.68821 (18)0.0348 (5)
H40.5459061.0016060.7246350.042*
C50.3009 (4)0.8470 (4)0.63443 (17)0.0349 (6)
H50.1747970.9582610.6345890.042*
C60.2662 (4)0.6611 (4)0.58092 (16)0.0304 (5)
H60.1144100.6436510.5446950.036*
C70.3908 (4)0.3082 (4)0.51888 (15)0.0270 (5)
H70.2223900.2707340.5046480.032*
C80.4586 (4)0.0034 (4)0.42327 (14)0.0263 (5)
C90.2257 (4)0.0070 (4)0.37527 (15)0.0304 (5)
H90.1160180.1301150.3808720.036*
C100.1571 (4)0.1720 (4)0.31930 (17)0.0340 (5)
H100.0011690.1716730.2863840.041*
C110.3176 (5)0.3521 (4)0.31083 (16)0.0327 (5)
H110.2699180.4735870.2719730.039*
C120.5480 (5)0.3533 (4)0.35956 (18)0.0324 (5)
H120.6573960.4770400.3543740.039*
C130.6199 (4)0.1748 (4)0.41587 (16)0.0301 (5)
H130.7780430.1753370.4488650.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (9)0.0382 (9)0.0363 (9)0.0038 (6)0.0010 (7)0.0001 (7)
O20.0137 (7)0.0461 (9)0.0418 (9)0.0015 (7)0.0047 (7)0.0028 (8)
N10.0170 (9)0.0340 (9)0.0290 (10)0.0013 (7)0.0031 (7)0.0025 (8)
C10.0253 (12)0.0287 (11)0.0250 (12)0.0010 (8)0.0073 (10)0.0032 (8)
C20.0232 (12)0.0314 (11)0.0301 (12)0.0004 (8)0.0057 (10)0.0066 (9)
C30.0308 (13)0.0359 (12)0.0320 (12)0.0082 (10)0.0059 (10)0.0024 (10)
C40.0380 (14)0.0300 (11)0.0397 (13)0.0066 (9)0.0166 (11)0.0022 (10)
C50.0346 (14)0.0328 (12)0.0403 (15)0.0032 (9)0.0150 (11)0.0065 (10)
C60.0232 (11)0.0362 (12)0.0321 (12)0.0026 (9)0.0054 (9)0.0071 (10)
C70.0185 (10)0.0327 (11)0.0293 (11)0.0009 (8)0.0028 (9)0.0049 (9)
C80.0241 (11)0.0292 (11)0.0258 (13)0.0022 (8)0.0044 (10)0.0029 (8)
C90.0218 (11)0.0379 (12)0.0316 (13)0.0017 (9)0.0053 (10)0.0012 (9)
C100.0246 (11)0.0448 (13)0.0329 (12)0.0037 (9)0.0052 (10)0.0013 (11)
C110.0328 (12)0.0340 (12)0.0328 (13)0.0066 (9)0.0096 (10)0.0021 (10)
C120.0336 (12)0.0307 (11)0.0341 (12)0.0044 (9)0.0096 (10)0.0023 (10)
C130.0249 (11)0.0350 (12)0.0307 (13)0.0025 (8)0.0056 (9)0.0053 (9)
Geometric parameters (Å, º) top
O1—C21.345 (3)C5—H50.9500
O1—H10.9697C6—H60.9500
O2—N11.331 (2)C7—H70.9500
N1—C71.302 (3)C8—C131.382 (3)
N1—C81.454 (3)C8—C91.395 (3)
C1—C21.407 (3)C9—C101.386 (4)
C1—C61.411 (3)C9—H90.9500
C1—C71.453 (3)C10—C111.391 (4)
C2—C31.398 (4)C10—H100.9500
C3—C41.377 (4)C11—C121.389 (4)
C3—H30.9500C11—H110.9500
C4—C51.385 (4)C12—C131.390 (4)
C4—H40.9500C12—H120.9500
C5—C61.372 (4)C13—H130.9500
C2—O1—H1105.1N1—C7—C1126.9 (2)
C7—N1—O2122.78 (18)N1—C7—H7116.6
C7—N1—C8121.79 (18)C1—C7—H7116.6
O2—N1—C8115.43 (17)C13—C8—C9121.2 (2)
C2—C1—C6118.6 (2)C13—C8—N1117.2 (2)
C2—C1—C7125.97 (19)C9—C8—N1121.66 (19)
C6—C1—C7115.4 (2)C10—C9—C8118.9 (2)
O1—C2—C3118.3 (2)C10—C9—H9120.5
O1—C2—C1122.5 (2)C8—C9—H9120.5
C3—C2—C1119.1 (2)C9—C10—C11120.6 (2)
C4—C3—C2120.8 (2)C9—C10—H10119.7
C4—C3—H3119.6C11—C10—H10119.7
C2—C3—H3119.6C12—C11—C10119.6 (2)
C3—C4—C5120.5 (2)C12—C11—H11120.2
C3—C4—H4119.7C10—C11—H11120.2
C5—C4—H4119.7C11—C12—C13120.5 (2)
C6—C5—C4119.6 (2)C11—C12—H12119.8
C6—C5—H5120.2C13—C12—H12119.8
C4—C5—H5120.2C8—C13—C12119.2 (2)
C5—C6—C1121.2 (2)C8—C13—H13120.4
C5—C6—H6119.4C12—C13—H13120.4
C1—C6—H6119.4
C6—C1—C2—O1172.1 (2)C6—C1—C7—N1153.4 (2)
C7—C1—C2—O14.2 (3)C7—N1—C8—C13153.0 (2)
C6—C1—C2—C34.4 (3)O2—N1—C8—C1327.7 (3)
C7—C1—C2—C3179.3 (2)C7—N1—C8—C927.3 (3)
O1—C2—C3—C4174.0 (2)O2—N1—C8—C9152.0 (2)
C1—C2—C3—C42.6 (3)C13—C8—C9—C100.1 (3)
C2—C3—C4—C50.1 (4)N1—C8—C9—C10179.6 (2)
C3—C4—C5—C61.0 (4)C8—C9—C10—C110.2 (4)
C4—C5—C6—C10.9 (4)C9—C10—C11—C120.6 (4)
C2—C1—C6—C53.6 (3)C10—C11—C12—C130.7 (4)
C7—C1—C6—C5179.7 (2)C9—C8—C13—C120.0 (3)
O2—N1—C7—C10.4 (3)N1—C8—C13—C12179.8 (2)
C8—N1—C7—C1179.7 (2)C11—C12—C13—C80.4 (4)
C2—C1—C7—N130.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.971.532.479 (2)167
C7—H7···O2i0.952.433.368 (3)167
C10—H10···O1ii0.952.533.227 (3)131
C11—H11···Cg1iii0.952.943.662 (3)136
C4—H4···Cg2iv0.952.773.545 (3)140
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1/2; (iii) x, y, z1/2; (iv) x, y+1, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O2···H72.431 + x, y, z
O1···H102.531 + x, -y, 1/2 + z
O2···H122.87x, 1 + y, z
C3···H123.02x, -y, 1/2 + z
H4···C112.86x, 1 - y, 1/2 + z
H6···H132.46-1 + x, 1 + y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H44.1
C···H/H···C29.4
O···H/H···O17.3
C···C5.3
N···C/C···N1.7
N···H/H···N1.5
O···C/C···O0.7
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAl-Mowali, A. H., Majeed, N. N. & Abbas, A. F. (2014). Res. J. Pharm. Biol. Chem. Sci. 5, 2119–2123.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, B., Schhetric, M., Kafly, S. & Samanta, A. (2010). Indian J. Chem. Sect. B, 49, 209–215.  Google Scholar
First citationChioua, M., Sucunza, D., Soriano, E., Hadjipavlou-Litina, D., Alcázar, A., Ayuso, I., Oset-Gasque, M. J., González, M. P., Monjas, L., Rodríguez-Franco, M. I., Marco-Contelles, J. & Samadi, A. (2012). J. Med. Chem. 55, 153–168.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChurakov, A. V., Prikhodchenko, P. V., Medvedev, A. G. & Mikhaylov, A. A. (2017). Acta Cryst. E73, 1666–1669.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFloyd, R. A, Chandru, H. K., He, T. & Towner, R. (2011). Anticancer Agents Med. Chem. 11, 373–379.  Web of Science CAS PubMed Google Scholar
First citationFu, Y., Liu, Y., Yang, Y. & Chen, Y. (2011). Acta Cryst. E67, o1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2018). IUCrData, 3, x181486.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMobinikhaledi, A., Foroughifar, N. & Kalate, Z. (2005). Turk. J. Chem. 29, 147–152.  CAS Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Said, A. I., Hawaiz, F. E. & Elgarhy, S. M. I. (2018). IUCrData, 3, x180208.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSalman, H. H. & Majeed, N. N. (2013). J. Basrah Res. 39, 99–111.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds