research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of potassium hydrogen bis­­((E)-2-{4-[3-(thio­phen-3-yl)acrylo­yl]phen­­oxy}acetate)

crossmark logo

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam, bHigh School for Gifted Students, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam, cNguyen Trai High School, 50 Nam Cao Street, Ba Dinh, Hanoi 10000, Vietnam, dBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, eFaculty of Training Bachelor of Practice, Than Do University, Kim Chung, Hoai Duc, Hanoi 10000, Vietnam, fInstitute of Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam, gGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam, hFaculty of General Education, Hanoi University of Mining and Geology, Duc Thang Ward, Bac Tu Liem District, Hanoi 10000, Vietnam, iFaculty of Natural Sciences, Hong Duc University, 565 Quang Trung, Dong Ve Ward, Thanh Hoa City, Vietnam, and jDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, luc.vanmeervelt@kuleuven.be

Edited by D. Gray, University of Illinois Urbana-Champaign, USA (Received 29 March 2021; accepted 6 May 2021; online 11 May 2021)

The synthesis and spectroscopic data of (E)-2-{4-[3-(thio­phen-3-yl)acrylo­yl]phen­oxy}acetic acid are described. Crystallization from an ethanol–water mixture resulted in the title compound, C30H23KO8S2 or [K(C15H11O4S)(C15H12O4S)]n, containing one mol­ecule of the acid and one mol­ecule of the potassium salt in the asymmetric unit. Both mol­ecules share the H atom between their carboxyl groups and a potassium ion. The C=C bonds display an E configuration. The thio­phene and phenyl rings in the two mol­ecules are inclined by 43.3 (2) and 22.7 (2)°. The potassium ion is octa­hedrally coordinated by six O atoms. This distorted octa­hedron shares on opposite sides two oxygen atoms with inversion-related octa­hedra, resulting in chains of octa­hedra running in the [010] direction, which form ladder-like chains by C—H⋯π inter­actions. A Hirshfeld surface analysis indicates that the highest contributions to the surface contacts arise from inter­actions in which H atoms are involved, with the most important contribution being from H⋯H (31.6 and 31.9% for the two mol­ecules) inter­actions.

1. Chemical context

Over the last two decades, water-soluble polythio­phenes and their derivatives have been of particular importance among conjugated polyelectrolytes owing to a unique combination of high conductivity, environmental stability and structural versatility, allowing derivatization of the π-conjugated backbone in view of numerous technological applications (Wang et al., 2015[Wang, F., Li, M., Wang, B., Zhang, J., Cheng, Y., Liu, L., Ly, F. & Wang, S. (2015). Sci. Rep. 5, 1-8.]; Chayer et al., 1997[Chayer, M., Faïd, K. & Leclerc, M. (1997). Chem. Mater. 9, 2902-2905.]; Wang et al., 2013[Wang, L., Zhang, G., Pei, M., Hu, L., Li, E. & Li, H. (2013). J. Appl. Polym. Sci. 130, 939-943.]). Many regioregular polythio­phenes with pendant carb­oxy­lic acid functionality have been studied (Ewbank et al., 2004[Ewbank, P. C., Loewe, R. S., Zhai, L., Reddinger, J., Sauvé, G. & McCullough, R. D. (2004). Tetrahedron, 60, 11269-11275.]; McCullough et al., 1997[McCullough, R. D., Ewbank, P. C. & Loewe, R. S. (1997). J. Am. Chem. Soc. 119, 633-634.]; Wu et al., 2015[Wu, T., Wang, L., Zhang, Y., Du, S., Guo, W. & Pei, M. (2015). RSC Adv. 5, 16684-16690.]; Janáky et al., 2010[Janáky, C., Endrődi, B., Kovács, K., Timko, M., Sápi, A. & Visy, C. (2010). Synth. Met. 160, 65-71.]). The increased alkyl side-chain length allows for increased coplanarity of the main-chain thio­phene rings to advance regioregular polythio­phene backbones (Vu Quoc et al., 2019a[Trung, V. Q., Linh, N. N., Duong, T. T. T., Chinh, N. T., Linh, D. K., Hung, H. M. & Oanh, D. T. Y. (2019a). Vietnam. J. Chem. 57, 770-776.]). A lot of synthetic research has been conducted with a view to increasing the side-chain length of thio­phene rings (Vu Quoc et al., 2020[Vu Quoc, T., Tran, T. D., Nguyen, T. C., Nguyen, T. V., Nguyen, H., Vinh, P. V., Nguyen-Trong, D., Dinh Duc, N. & Nguyen-Tri, P. (2020). Polymers, 12, 1207.]). Crystal studies of thio­phene monomers have also been reported (Vu Quoc et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.], 2018[Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812-815.], 2019b[Vu Quoc, T., Nguyen Ngoc, L., Tran Thi Thuy, D., Vu Quoc, M., Vuong Nguyen, T., Oanh Doan Thi, Y. & Van Meervelt, L. (2019b). Acta Cryst. E75, 1090-1095.]).

[Scheme 1]

(E)-2-{4-[3-(thio­phen-3-yl)acrylo­yl]phen­oxy}acetic acid are reported. This compound is considered to be a good monomer for the synthesis of water-soluble polythio­phene-based conjugated polyelectrolytes. A single-crystal structure determination indicates that after crystallization, crystals were obtained containing one mol­ecule of the acid and one mol­ecule of the potassium salt in the asymmetric unit.

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}] as a complex formed between the acid and the potassium salt of the acid, as illustrated in Fig. 1[link]. In the following discussion, mol­ecule A includes atoms S1–O20 and mol­ecule B atoms S21–O40. Both mol­ecules share hydrogen atom H19 between their carboxyl groups and a potassium ion, K41. Atom H19 is involved in hydrogen-bonding inter­actions with atoms O39 and O40 (Table 1[link]). The dihedral angle between the thio­phene and phenyl rings is 43.3 (2)° for mol­ecule A and 22.7 (2)° for mol­ecule B. The C=C bonds display an E configuration, resulting in short intra­molecular C6—H6⋯O9 and C26—H26⋯O29 inter­actions (Table 1[link]). The terminal thio­phene groups are involved in intense thermal motion.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of rings C10–C15 and C30–C35, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O19—H19⋯O39 1.19 (4) 1.27 (4) 2.463 (3) 174 (4)
O19—H19⋯O40 1.19 (4) 2.47 (4) 3.259 (3) 122 (2)
C6—H6⋯O9 0.93 2.52 2.834 (6) 100
C26—H26⋯O29 0.93 2.49 2.814 (6) 100
C17—H17ACg4i 0.97 2.76 3.509 (4) 134
C37—H37BCg3ii 0.97 2.82 3.535 (4) 131
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level.

Fig. 2[link] shows an overlay diagram of the two mol­ecules A and B [r.m.s. deviation 0.5622 Å as calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.])]. The largest differences are caused by the different orientation of the phenyl groups.

[Figure 2]
Figure 2
Overlay diagram of the two mol­ecules A (green) and B (blue), comprising the asymmetric unit. H atoms are hidden for clarity (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Potassium ion K41 is octa­hedrally coordinated by six O atoms with K—O distances between 2.672 (2) and 2.906 (3) Å (Fig. 3[link]) and an octa­hedral volume of 21.871 Å3. The coord­ination sphere can be extended with atoms O16 and O36, but K⋯O distances are much longer [K41⋯O16iv = 3.245 (3), K41⋯O36ii = 3.347 (3) Å, symmetry codes: (ii) −x + 2, −y + 2, −z + 1, (iv) −x + 1, −y + 1, −z + 1].

[Figure 3]
Figure 3
Octa­hedral coordination around K in the title compound [symmetry codes: (i) x + 1, y, z, (ii) −x + 2, −y + 2, −z + 1, (iv) −x + 1, −y + 1, −z + 1].

3. Supra­molecular features

In the crystal packing, the potassium ion K41 inter­acts with six mol­ecules of which two occur in the carb­oxy­lic acid form (Fig. 4[link]). The distorted octa­hedron around K41 shares on opposite sides two oxygen atoms [at one side O40 and O40ii, at the other side O20i and O20iv; symmetry codes: (i) x + 1, y, z, (ii) −x + 2, −y + 2, −z + 1, (iv) −x + 1, −y + 1, −z + 1] with inversion-related octa­hedra (Figs. 3[link] and 5[link]). This results in parallel chains of octa­hedra running in the [010] direction and situated in the (002) plane. The K⋯K distances in the chains are 4.8084 (15) (for K41⋯K41ii) and 4.8353 (14) Å [for K41⋯K41v; symmetry code: (v) −x + 2, −y + 1, −z + 1].

[Figure 4]
Figure 4
Potassium atom K41 is surrounded by six different mol­ecules. The six K⋯O inter­actions participating in the distorted octa­hedral coordination are shown in turquoise, the two longer ones in yellow.
[Figure 5]
Figure 5
Parallel chains of K—O octa­hedra running in the [010] direction. Inversion centers are shown as yellow spheres.

Despite the presence of many aromatic rings, the crystal packing of the title compound does not show πany –π inter­actions. The shortest centroid–centroid distance is 4.735 (3) Å between thio­phene rings S1/C2–C5 and S21/C22–C25 with an angle between the rings of 52.3 (3)°. However, C—H⋯π inter­actions are present and give rise to a ladder-like chain also running in the [010] direction (Table 1[link], Fig. 6[link]). In addition, neigbouring chains inter­act by short C28=O29⋯Cg1v contacts [O29⋯Cg1v = 3.652 (4) Å; Cg1 is the centroid of thio­phene ring S1/C2–C5; symmetry code: (v) −x, −y + 1, −z + 1].

[Figure 6]
Figure 6
A view down the a axis of the inter­molecular C—H⋯π inter­actions of the title compound. Colour codes used: magenta for ring C10–C15, green for ring C30–C35. Cg3 and Cg4 are the centroids of the C10–C15 and C30–C35 rings, respectively. K atoms have been omitted.

The packing does not show any residual solvent-accessible voids.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces of mol­ecules A and B mapped over dnorm are given in Fig. 7[link]a and b, respectively. The relative distributions from the different inter­atomic contacts to the Hirshfeld surfaces are presented in Table 2[link]. The bright-red spots at atoms O19, H19 and O39 are indicative of the O19—H19⋯O39 hydrogen bond between the mol­ecules. The additional faint-red spots near atoms O16, O19, O20, O36, O39 and O40 concern the K⋯O inter­actions in the crystal structure. It should be noted that the Hirshfeld surfaces are almost identical for the two mol­ecules. The same is true for the fingerprint plots (Fig. 7[link]c and d). The sharp tips at de + di ≃ 1.4 Å arise from the O19—H19⋯O39 hydrogen bond. The principal contribution to the Hirshfeld surfaces involves H⋯H contacts at 31.6 and 31.9% for mol­ecules A and B, respectively. These are followed by C⋯H/H⋯C (21.1 and 20.0%) O⋯H/H⋯O (17.4 and 17.3%) and S⋯H/H⋯S (8.8 and 9.9%) contacts.

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces of the two mol­ecules

Mol­ecule A includes atoms S1–O20, mol­ecule B atoms S21–O40.

Contact Mol­ecule A Mol­ecule B
H⋯H 31.6 31.9
C⋯H/H⋯C 21.1 20.0
O⋯H/H⋯O 17.4 17.3
S⋯H/H⋯S 8.8 9.9
O⋯C/C⋯O 5.8 5.5
K⋯O/O⋯K 4.8 4.7
C⋯C 4.9 4.8
S⋯C/C⋯S 2.0 2.3
S⋯S 0.9 1.0
K⋯H/H⋯K 0.7 0.6
[Figure 7]
Figure 7
The Hirshfeld surfaces of mol­ecules (a) A and (b) B mapped over dnorm in the colour ranges −1.0475 to 1.0150 and −1.1101 to 1.0300 a.u., respectively, together with the full two-dimensional fingerprint plots for mol­ecules (c) A and (d) B.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the fragment R1—CH=CH—C(=O)—p-C6H4R2 gave 619 hits (with C atoms double-bond acyclic). For only 33 cases (5.3%), the double bond has the Z configuration (Fig. 8[link]a). The histogram of the dihedral angle between the planes of the double bond and the phenyl ring shows values between 0.0 and 86.2° (Fig. 8[link]b). A search with thio­phene as R1 resulted in only four hits (CSD refcodes XOLJUG, XOLKAN, XOLKER and XOLKIV; Vu Quoc et al., 2019c[Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019c). Acta Cryst. E75, 957-963.]) displaying the E configuration and dihedral angles in the range 6.7 to 15.8° (smaller than in the title compound). Only one structure was found for which R2 is the same as in the title compound (OCH2COOH; CSD refcode TAMJID; Abdul Ajees et al., 2017[Abdul Ajees, A., Shubhalaxmi, Manjunatha, B. S., Kumar, S. M., Byrappa, K. & Subrahmanya Bhat, K. (2017). Chem. Data Collect. 9-10, 61-67.]). In this monohydrate, a water mol­ecule makes hydrogen bonds to the carboxyl groups of two neighbouring mol­ecules and in addition to a carbonyl of a third neighbouring enone moiety.

[Figure 8]
Figure 8
(a) Polar histogram of torsion angle R1—C=C—C. (b) Histogram of the dihedral angle between the planes of the double bond and the phenyl ring.

6. Synthesis and crystallization

The synthetic pathway to synthesize the target compound, (E)-2-{4-[3-(thio­phen-3-yl)acrylo­yl]phen­oxy}acetic acid, is given in Fig. 9[link] (numbering on chemical formulas is only used for NMR spectroscopic analysis).

[Figure 9]
Figure 9
Reaction scheme for (E)-2-{4-[3-(thio­phen-3-yl)acrylo­yl]phen­oxy}acetic acid.

A mixture of ethyl 2-(4-acetyl­phen­oxy)acetate (5 mmol), 3-thio­phene­carbaldehyde (5 mmol) and 50 mL of ethanol was stirred in ice-cold water for 20 minutes. Then, 5 mL of 50% KOH solution was added dropwise to the reaction mixture, which was then stirred continuously for 5 h. At the end of the reaction, water was added to the reaction mixture and stirring was continued until all solids in the mixture were dissolved. Concentrated HCl was slowly added to the obtained solution until the solution changed from brown to yellow. The solution was then heated until crystals appeared. The solid then began to crystallize when the solution temperature started to decrease. The crystallized solid was filtered off, washed thoroughly with water and recrystallized from an ethanol–water mixture to give 2-{4-[3-(thio­phen-3-yl)acrylo­yl]phen­oxy}acetic acid (yield 62%) in the form of pale-yellow crystals (m.p. 455 K).

IR (Shimadzu FTIR-8400S, KBr, cm−1): 1017, 980 (=C—H bend), 1597 (C=C), 1659 (C=O), 3457 (broad, OH).

1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, (ppm), J (Hz)]: 7.60 (d, 1H, H2), 7.42 (m, 1H, 5J = 5.0, H4), 7.38 (t, 1H, 4J = 5.0, H5), 7.81 (d, 1H, 7J = 15.5, H6), 7.34 (d, 1H, 6J = 15.5, H7), 8.03 (t, 2H, J = 9.0, H10 and H14), 7.02 (m, 2H, H11 and H13), 4.77 (s, 2H, H15).

13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, (ppm)]: 121.81 (C2), 128.75 (C3), 127.01 (C4), 125.41 (C5), 132.67 (C6), 130.87 (C7), 171.85 (C8), 169.73 (C9), 138.39 (C10 and C14), 137.96 (C11 and C13), 114.65 (C12), 64.68 (C15), 189.09 (C16). Calculation for C15H11O4S: M = 287 au.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atom H19 was located from a difference electron-density map and refined freely with an Uiso(H) value of 1.5Ueq of the parent atom O19. The other H atoms were placed in idealized positions and included as riding contributions with an Uiso(H) values of 1.2Ueq of the parent atom, with C—H distances of 0.93 (aromatic) and 0.97 Å (CH2). In the final cycles of refinement, 12 outliers with |error/e.s.d.| > 5.0 were omitted.

Table 3
Experimental details

Crystal data
Chemical formula [K(C15H11O4S)(C15H12O4S)]
Mr 614.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.0036 (3), 9.6432 (5), 25.0966 (16)
α, β, γ (°) 92.412 (4), 90.548 (4), 105.808 (4)
V3) 1396.42 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.4 × 0.2 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.863, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15169, 4742, 2836
Rint 0.037
(sin θ/λ)max−1) 0.588
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.211, 1.02
No. of reflections 4742
No. of parameters 373
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.47
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Potassium hydrogen bis((E)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetate) top
Crystal data top
[K(C15H11O4S)(C15H12O4S)]Z = 2
Mr = 614.70F(000) = 636
Triclinic, P1Dx = 1.462 Mg m3
a = 6.0036 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6432 (5) ÅCell parameters from 3156 reflections
c = 25.0966 (16) Åθ = 3.2–24.6°
α = 92.412 (4)°µ = 0.39 mm1
β = 90.548 (4)°T = 293 K
γ = 105.808 (4)°Plate, colourless
V = 1396.42 (14) Å30.4 × 0.2 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
4742 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2836 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 15.9631 pixels mm-1θmax = 24.7°, θmin = 2.4°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1111
Tmin = 0.863, Tmax = 1.000l = 2929
15169 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.111P)2 + 0.2689P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4742 reflectionsΔρmax = 0.59 e Å3
373 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2860 (3)0.46353 (17)0.04899 (7)0.0970 (6)
C20.0473 (9)0.4037 (5)0.08824 (19)0.0737 (15)
H20.0677980.4511270.0906540.088*
C30.0407 (8)0.2770 (5)0.11636 (17)0.0590 (13)
C40.2427 (9)0.2331 (6)0.1050 (2)0.0793 (16)
H40.2713870.1506470.1206010.095*
C50.3963 (9)0.3270 (6)0.06777 (19)0.0773 (16)
H50.5363580.3150580.0555800.093*
C60.1494 (8)0.2019 (5)0.15232 (17)0.0590 (13)
H60.2786770.2374050.1527680.071*
C70.1570 (8)0.0887 (5)0.18434 (16)0.0564 (12)
H70.0282400.0527970.1861410.068*
C80.3652 (8)0.0173 (4)0.21754 (16)0.0492 (11)
O90.5535 (6)0.0384 (3)0.20858 (12)0.0645 (9)
C100.3407 (7)0.0826 (4)0.26258 (15)0.0415 (10)
C110.1313 (7)0.0763 (4)0.28700 (16)0.0481 (11)
H110.0033550.0103630.2737750.058*
C120.1206 (7)0.1658 (4)0.33031 (16)0.0453 (10)
H120.0195030.1576080.3471030.054*
C130.3197 (6)0.2689 (4)0.34915 (14)0.0345 (9)
C140.5284 (6)0.2788 (4)0.32503 (15)0.0399 (9)
H140.6616730.3472440.3376050.048*
C150.5386 (7)0.1867 (4)0.28211 (15)0.0424 (10)
H150.6796170.1938330.2658640.051*
O160.2876 (4)0.3529 (2)0.39231 (10)0.0382 (6)
C170.4768 (6)0.4721 (4)0.40807 (14)0.0319 (8)
H17A0.5359080.5272770.3773320.038*
H17B0.6005120.4383620.4233260.038*
C180.3947 (6)0.5661 (4)0.44896 (14)0.0306 (8)
O190.5596 (4)0.6761 (2)0.46588 (10)0.0377 (6)
H190.510 (5)0.754 (3)0.4992 (13)0.057*
O200.1957 (4)0.5391 (3)0.46318 (11)0.0438 (7)
K410.99969 (12)0.75075 (8)0.50093 (4)0.0469 (3)
S211.2169 (3)1.89226 (19)0.97523 (6)0.1039 (7)
C220.9574 (9)1.8038 (5)0.9458 (2)0.0810 (16)
H220.8157831.7867400.9626110.097*
C230.9853 (9)1.7605 (5)0.89334 (18)0.0594 (13)
C241.2196 (10)1.8010 (6)0.8802 (2)0.0792 (16)
H241.2732981.7807760.8469820.095*
C251.3664 (9)1.8759 (5)0.9226 (2)0.0764 (16)
H251.5264681.9109360.9206540.092*
C260.7955 (8)1.6804 (5)0.85850 (17)0.0609 (13)
H260.6476161.6825950.8684740.073*
C270.8094 (8)1.6051 (4)0.81437 (16)0.0544 (12)
H270.9552201.6047020.8022810.065*
C280.6044 (8)1.5216 (4)0.78335 (16)0.0507 (11)
O290.4111 (6)1.5305 (4)0.79430 (13)0.0712 (10)
C300.6352 (7)1.4222 (4)0.73870 (15)0.0417 (10)
C310.8468 (7)1.4318 (4)0.71402 (16)0.0511 (11)
H310.9786321.5013360.7266650.061*
C320.8639 (7)1.3410 (4)0.67160 (16)0.0471 (11)
H321.0054241.3511380.6552260.057*
C330.6704 (6)1.2342 (4)0.65314 (15)0.0362 (9)
C340.4595 (7)1.2207 (4)0.67660 (15)0.0415 (10)
H340.3291591.1496500.6641320.050*
C350.4435 (7)1.3150 (4)0.71934 (15)0.0437 (10)
H350.3011301.3057260.7351900.052*
O360.7068 (4)1.1507 (2)0.61025 (10)0.0382 (6)
C370.5203 (6)1.0305 (4)0.59364 (14)0.0337 (9)
H37A0.3962651.0635160.5781520.040*
H37B0.4602850.9743110.6240940.040*
C380.6055 (6)0.9381 (4)0.55283 (13)0.0294 (8)
O390.4427 (4)0.8279 (2)0.53558 (10)0.0377 (6)
O400.8052 (4)0.9662 (3)0.53874 (11)0.0437 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1100 (13)0.0799 (10)0.0923 (11)0.0172 (9)0.0278 (10)0.0307 (9)
C20.096 (4)0.058 (3)0.065 (3)0.021 (3)0.022 (3)0.016 (3)
C30.075 (3)0.054 (3)0.048 (3)0.019 (3)0.006 (2)0.009 (2)
C40.085 (4)0.082 (4)0.074 (3)0.033 (3)0.012 (3)0.030 (3)
C50.071 (3)0.104 (4)0.062 (3)0.035 (3)0.012 (3)0.020 (3)
C60.071 (3)0.056 (3)0.051 (3)0.022 (2)0.009 (2)0.018 (2)
C70.064 (3)0.059 (3)0.047 (2)0.021 (2)0.005 (2)0.011 (2)
C80.066 (3)0.043 (2)0.040 (2)0.017 (2)0.000 (2)0.007 (2)
O90.067 (2)0.070 (2)0.0599 (19)0.0291 (18)0.0033 (17)0.0232 (17)
C100.051 (3)0.033 (2)0.040 (2)0.0112 (19)0.0026 (19)0.0040 (18)
C110.043 (2)0.046 (2)0.048 (2)0.0037 (19)0.005 (2)0.017 (2)
C120.038 (2)0.045 (2)0.049 (2)0.0065 (19)0.0049 (19)0.007 (2)
C130.041 (2)0.0283 (19)0.035 (2)0.0125 (17)0.0021 (18)0.0055 (17)
C140.040 (2)0.033 (2)0.044 (2)0.0079 (18)0.0013 (19)0.0081 (18)
C150.042 (2)0.045 (2)0.043 (2)0.0168 (19)0.0027 (19)0.0065 (19)
O160.0329 (14)0.0307 (13)0.0467 (15)0.0037 (11)0.0042 (12)0.0143 (12)
C170.0271 (18)0.0277 (18)0.041 (2)0.0080 (15)0.0047 (16)0.0023 (17)
C180.034 (2)0.0231 (18)0.036 (2)0.0108 (16)0.0022 (17)0.0031 (16)
O190.0281 (13)0.0313 (13)0.0503 (16)0.0046 (11)0.0025 (12)0.0134 (12)
O200.0313 (15)0.0346 (15)0.0600 (17)0.0013 (12)0.0132 (13)0.0118 (13)
K410.0229 (5)0.0337 (5)0.0827 (7)0.0078 (4)0.0027 (4)0.0122 (5)
S210.1230 (14)0.1059 (13)0.0789 (11)0.0321 (11)0.0247 (10)0.0399 (10)
C220.087 (4)0.082 (4)0.067 (3)0.017 (3)0.003 (3)0.030 (3)
C230.076 (3)0.053 (3)0.050 (3)0.021 (3)0.006 (3)0.014 (2)
C240.086 (4)0.081 (4)0.061 (3)0.011 (3)0.000 (3)0.021 (3)
C250.062 (3)0.068 (3)0.089 (4)0.006 (3)0.003 (3)0.024 (3)
C260.073 (3)0.057 (3)0.056 (3)0.024 (3)0.002 (3)0.010 (2)
C270.067 (3)0.053 (3)0.043 (2)0.018 (2)0.002 (2)0.011 (2)
C280.066 (3)0.043 (2)0.043 (2)0.017 (2)0.001 (2)0.002 (2)
O290.068 (2)0.078 (2)0.071 (2)0.0307 (19)0.0031 (18)0.0287 (18)
C300.053 (3)0.038 (2)0.036 (2)0.018 (2)0.0015 (19)0.0054 (18)
C310.045 (2)0.048 (2)0.055 (3)0.007 (2)0.009 (2)0.020 (2)
C320.039 (2)0.044 (2)0.054 (3)0.0077 (19)0.000 (2)0.016 (2)
C330.040 (2)0.0291 (19)0.041 (2)0.0136 (17)0.0015 (18)0.0043 (17)
C340.042 (2)0.031 (2)0.048 (2)0.0050 (17)0.0015 (19)0.0088 (19)
C350.042 (2)0.046 (2)0.043 (2)0.0130 (19)0.0056 (19)0.000 (2)
O360.0343 (14)0.0296 (13)0.0467 (15)0.0042 (11)0.0040 (12)0.0128 (12)
C370.0314 (19)0.0255 (18)0.043 (2)0.0070 (16)0.0019 (17)0.0045 (17)
C380.030 (2)0.0262 (18)0.034 (2)0.0111 (16)0.0027 (17)0.0014 (16)
O390.0256 (13)0.0333 (13)0.0511 (16)0.0053 (11)0.0033 (12)0.0141 (12)
O400.0317 (15)0.0330 (14)0.0632 (18)0.0042 (12)0.0130 (13)0.0073 (13)
Geometric parameters (Å, º) top
S1—C21.682 (5)K41—K41iv4.8084 (15)
S1—C51.680 (5)K41—K41v4.8353 (14)
C2—H20.9300K41—O36iv3.347 (3)
C2—C31.375 (6)K41—O39iii2.685 (2)
C3—C41.419 (6)K41—O40iv2.885 (3)
C3—C61.455 (6)K41—O402.785 (2)
C4—H40.9300S21—C221.703 (5)
C4—C51.415 (6)S21—C251.631 (5)
C5—H50.9300C22—H220.9300
C6—H60.9300C22—C231.390 (6)
C6—C71.318 (5)C23—C241.400 (7)
C7—H70.9300C23—C261.451 (6)
C7—C81.481 (6)C24—H240.9300
C8—O91.223 (5)C24—C251.413 (6)
C8—C101.489 (5)C25—H250.9300
C10—C111.391 (5)C26—H260.9300
C10—C151.399 (5)C26—C271.314 (5)
C11—H110.9300C27—H270.9300
C11—C121.372 (5)C27—C281.469 (6)
C12—H120.9300C28—O291.220 (5)
C12—C131.394 (5)C28—C301.490 (5)
C13—C141.378 (5)C30—C311.400 (6)
C13—O161.372 (4)C30—C351.388 (5)
C14—H140.9300C31—H310.9300
C14—C151.380 (5)C31—C321.372 (5)
C15—H150.9300C32—H320.9300
O16—C171.417 (4)C32—C331.387 (5)
O16—K41i3.245 (3)C33—C341.377 (5)
C17—H17A0.9700C33—O361.372 (4)
C17—H17B0.9700C34—H340.9300
C17—C181.514 (5)C34—C351.398 (5)
C18—O191.292 (4)C35—H350.9300
C18—O201.212 (4)O36—K41iv3.347 (3)
O19—H191.19 (3)O36—C371.420 (4)
O19—K412.672 (2)C37—H37A0.9700
O20—K41ii2.760 (2)C37—H37B0.9700
O20—K41i2.906 (3)C37—C381.512 (5)
K41—O16i3.245 (3)C38—O391.288 (4)
K41—O192.672 (2)C38—O401.215 (4)
K41—H192.95 (3)O39—H191.27 (3)
K41—O20i2.906 (3)O39—K41ii2.685 (2)
K41—O20iii2.760 (2)O40—K41iv2.885 (3)
C5—S1—C294.1 (2)K41iv—K41—H1973.6 (6)
S1—C2—H2123.6K41iv—K41—K41v178.88 (4)
C3—C2—S1112.8 (4)O36iv—K41—H19116.2 (6)
C3—C2—H2123.6O36iv—K41—K41v99.62 (4)
C2—C3—C4110.3 (4)O36iv—K41—K41iv79.38 (5)
C2—C3—C6123.5 (4)O39iii—K41—O16i103.47 (7)
C4—C3—C6126.2 (4)O39iii—K41—H19156.1 (7)
C3—C4—H4123.2O39iii—K41—O20i105.57 (8)
C5—C4—C3113.5 (4)O39iii—K41—O20iii73.16 (7)
C5—C4—H4123.2O39iii—K41—K41v89.77 (5)
S1—C5—H5125.3O39iii—K41—K41iv90.48 (5)
C4—C5—S1109.3 (4)O39iii—K41—O36iv76.94 (7)
C4—C5—H5125.3O39iii—K41—O40106.49 (8)
C3—C6—H6116.7O39iii—K41—O40iv74.93 (7)
C7—C6—C3126.6 (4)O40—K41—O16i70.70 (7)
C7—C6—H6116.7O40iv—K41—O16i131.58 (7)
C6—C7—H7119.1O40iv—K41—H1997.8 (6)
C6—C7—C8121.7 (4)O40—K41—H1951.1 (6)
C8—C7—H7119.1O40iv—K41—O20i177.80 (7)
C7—C8—C10118.2 (4)O40—K41—O20i117.64 (8)
O9—C8—C7121.6 (4)O40iv—K41—K41v147.81 (6)
O9—C8—C10120.2 (4)O40—K41—K41v148.16 (6)
C11—C10—C8123.3 (4)O40—K41—K41iv32.63 (6)
C11—C10—C15118.1 (3)O40iv—K41—K41iv31.38 (5)
C15—C10—C8118.5 (4)O40iv—K41—O36iv49.80 (6)
C10—C11—H11119.5O40—K41—O36iv110.51 (7)
C12—C11—C10121.0 (4)O40—K41—O40iv64.01 (9)
C12—C11—H11119.5C25—S21—C2294.4 (2)
C11—C12—H12120.0S21—C22—H22124.5
C11—C12—C13120.0 (4)C23—C22—S21111.1 (4)
C13—C12—H12120.0C23—C22—H22124.5
C14—C13—C12120.0 (3)C22—C23—C24110.5 (4)
O16—C13—C12114.8 (3)C22—C23—C26123.7 (5)
O16—C13—C14125.2 (3)C24—C23—C26125.8 (4)
C13—C14—H14120.2C23—C24—H24123.3
C13—C14—C15119.6 (3)C23—C24—C25113.4 (5)
C15—C14—H14120.2C25—C24—H24123.3
C10—C15—H15119.4S21—C25—H25124.6
C14—C15—C10121.2 (3)C24—C25—S21110.7 (4)
C14—C15—H15119.4C24—C25—H25124.6
C13—O16—C17116.7 (3)C23—C26—H26116.4
C13—O16—K41i127.8 (2)C27—C26—C23127.1 (5)
C17—O16—K41i106.87 (18)C27—C26—H26116.4
O16—C17—H17A110.0C26—C27—H27118.6
O16—C17—H17B110.0C26—C27—C28122.8 (4)
O16—C17—C18108.7 (3)C28—C27—H27118.6
H17A—C17—H17B108.3C27—C28—C30118.8 (4)
C18—C17—H17A110.0O29—C28—C27121.1 (4)
C18—C17—H17B110.0O29—C28—C30120.1 (4)
O19—C18—C17112.2 (3)C31—C30—C28123.8 (4)
O20—C18—C17122.6 (3)C35—C30—C28118.7 (4)
O20—C18—O19125.2 (3)C35—C30—C31117.5 (3)
C18—O19—H19116.3 (15)C30—C31—H31119.3
C18—O19—K41142.1 (2)C32—C31—C30121.5 (4)
K41—O19—H1991.2 (14)C32—C31—H31119.3
C18—O20—K41ii122.3 (2)C31—C32—H32120.0
C18—O20—K41i115.7 (2)C31—C32—C33120.0 (4)
K41ii—O20—K41i117.15 (9)C33—C32—H32120.0
O16i—K41—H1963.9 (6)C34—C33—C32120.2 (3)
O16i—K41—K41v79.07 (5)O36—C33—C32115.1 (3)
O16i—K41—K41iv101.93 (5)O36—C33—C34124.7 (3)
O16i—K41—O36iv178.61 (5)C33—C34—H34120.4
O19—K41—O16i76.94 (7)C33—C34—C35119.3 (3)
O19—K41—H1923.9 (6)C35—C34—H34120.4
O19—K41—O20i74.97 (7)C30—C35—C34121.6 (4)
O19—K41—O20iii107.07 (8)C30—C35—H35119.2
O19—K41—K41v90.67 (5)C34—C35—H35119.2
O19—K41—K41iv89.07 (5)C33—O36—K41iv129.6 (2)
O19—K41—O36iv102.66 (7)C33—O36—C37117.0 (3)
O19—K41—O39iii179.45 (8)C37—O36—K41iv104.73 (18)
O19—K41—O4073.28 (7)O36—C37—H37A109.9
O19—K41—O40iv104.52 (8)O36—C37—H37B109.9
O20i—K41—O16i50.51 (6)O36—C37—C38109.1 (3)
O20iii—K41—O16i109.72 (7)H37A—C37—H37B108.3
O20i—K41—H1982.6 (6)C38—C37—H37A109.9
O20iii—K41—H19129.3 (6)C38—C37—H37B109.9
O20iii—K41—O20i62.85 (9)O39—C38—C37112.1 (3)
O20i—K41—K41iv150.25 (6)O40—C38—C37122.9 (3)
O20i—K41—K41v30.52 (5)O40—C38—O39125.0 (3)
O20iii—K41—K41v32.32 (6)K41ii—O39—H1994.4 (13)
O20iii—K41—K41iv146.88 (7)C38—O39—H19112.4 (14)
O20iii—K41—O36iv69.08 (7)C38—O39—K41ii142.1 (2)
O20i—K41—O36iv128.11 (6)K41—O40—K41iv115.99 (9)
O20iii—K41—O40iv115.51 (8)C38—O40—K41iv116.9 (2)
O20iii—K41—O40179.49 (8)C38—O40—K41121.3 (2)
K41v—K41—H19106.5 (6)
S1—C2—C3—C41.2 (6)K41iv—O36—C37—C3839.0 (3)
S1—C2—C3—C6178.9 (4)S21—C22—C23—C240.6 (6)
C2—S1—C5—C40.4 (5)S21—C22—C23—C26178.8 (4)
C2—C3—C4—C50.9 (7)C22—S21—C25—C240.0 (4)
C2—C3—C6—C7172.8 (5)C22—C23—C24—C250.6 (7)
C3—C4—C5—S10.3 (6)C22—C23—C26—C27161.5 (5)
C3—C6—C7—C8177.2 (4)C23—C24—C25—S210.3 (6)
C4—C3—C6—C77.1 (9)C23—C26—C27—C28176.8 (4)
C5—S1—C2—C30.9 (4)C24—C23—C26—C2716.4 (8)
C6—C3—C4—C5179.2 (5)C25—S21—C22—C230.4 (4)
C6—C7—C8—O916.3 (7)C26—C23—C24—C25178.8 (4)
C6—C7—C8—C10163.9 (4)C26—C27—C28—O297.8 (7)
C7—C8—C10—C1123.2 (6)C26—C27—C28—C30170.8 (4)
C7—C8—C10—C15158.0 (4)C27—C28—C30—C3119.3 (6)
C8—C10—C11—C12176.3 (4)C27—C28—C30—C35162.1 (4)
C8—C10—C15—C14177.6 (4)C28—C30—C31—C32177.4 (4)
O9—C8—C10—C11157.1 (4)C28—C30—C35—C34178.3 (4)
O9—C8—C10—C1521.7 (6)O29—C28—C30—C31162.1 (4)
C10—C11—C12—C132.6 (6)O29—C28—C30—C3516.5 (6)
C11—C10—C15—C141.2 (6)C30—C31—C32—C331.7 (7)
C11—C12—C13—C141.5 (6)C31—C30—C35—C340.5 (6)
C11—C12—C13—O16179.5 (3)C31—C32—C33—C341.3 (6)
C12—C13—C14—C150.3 (6)C31—C32—C33—O36179.4 (4)
C12—C13—O16—C17171.3 (3)C32—C33—C34—C350.5 (6)
C12—C13—O16—K41i45.4 (4)C32—C33—O36—K41iv44.3 (4)
C13—C14—C15—C100.2 (6)C32—C33—O36—C37173.4 (3)
C13—O16—C17—C18169.6 (3)C33—C34—C35—C300.1 (6)
C14—C13—O16—C179.7 (5)C33—O36—C37—C38170.2 (3)
C14—C13—O16—K41i133.6 (3)C34—C33—O36—K41iv133.7 (3)
C15—C10—C11—C122.4 (6)C34—C33—O36—C378.6 (5)
O16—C13—C14—C15179.2 (3)C35—C30—C31—C321.3 (6)
O16—C17—C18—O19178.9 (3)O36—C33—C34—C35178.4 (3)
O16—C17—C18—O201.5 (5)O36—C37—C38—O39179.0 (3)
C17—C18—O19—K4146.1 (5)O36—C37—C38—O401.2 (5)
C17—C18—O20—K41i52.3 (4)C37—C38—O39—K41ii44.9 (5)
C17—C18—O20—K41ii153.2 (2)C37—C38—O40—K41153.2 (3)
O19—C18—O20—K41ii26.3 (5)C37—C38—O40—K41iv54.7 (4)
O19—C18—O20—K41i128.2 (3)O39—C38—O40—K4126.5 (5)
O20—C18—O19—K41134.3 (3)O39—C38—O40—K41iv125.6 (3)
K41i—O16—C17—C1840.0 (3)O40—C38—O39—K41ii135.4 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y+2, z+1; (v) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C10–C15 and C30–C35, respectively.
D—H···AD—HH···AD···AD—H···A
O19—H19···O391.19 (4)1.27 (4)2.463 (3)174 (4)
O19—H19···O401.19 (4)2.47 (4)3.259 (3)122 (2)
C6—H6···O90.932.522.834 (6)100
C26—H26···O290.932.492.814 (6)100
C17—H17A···Cg4vi0.972.763.509 (4)134
C37—H37B···Cg3i0.972.823.535 (4)131
Symmetry codes: (i) x+1, y+1, z+1; (vi) x+1, y+2, z+1.
Percentage contributions of interatomic contacts to the Hirshfeld surfaces of the two molecules top
Molecule A includes atoms S1–O20, molecule B atoms S21–O40.
ContactMolecule AMolecule B
H···H31.631.9
C···H/H···C21.120.0
O···H/H···O17.417.3
S···H/H···S8.89.9
O···C/C···O5.85.5
K···O/O···K4.84.7
C···C4.94.8
S···C/C···S2.02.3
S···S0.91.0
K···H/H···K0.70.6
 

Acknowledgements

Author contributions are as follows. Conceptualization, LNN and TVQ; synthesis, LPT, DDB and DTTT; IR, NMR spectra measurements and analysis, LDK, HHM and KLV; writing (review and editing of the manuscript), CNT, HT and LVM; crystal-structure determination and validation, LVM.

Funding information

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035. This study is funded by Vietnam Ministry of Education and Training under grant No. B.2019-SPH-562–05.

References

First citationAbdul Ajees, A., Shubhalaxmi, Manjunatha, B. S., Kumar, S. M., Byrappa, K. & Subrahmanya Bhat, K. (2017). Chem. Data Collect. 9–10, 61–67.  Google Scholar
First citationChayer, M., Faïd, K. & Leclerc, M. (1997). Chem. Mater. 9, 2902–2905.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEwbank, P. C., Loewe, R. S., Zhai, L., Reddinger, J., Sauvé, G. & McCullough, R. D. (2004). Tetrahedron, 60, 11269–11275.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJanáky, C., Endrődi, B., Kovács, K., Timko, M., Sápi, A. & Visy, C. (2010). Synth. Met. 160, 65–71.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCullough, R. D., Ewbank, P. C. & Loewe, R. S. (1997). J. Am. Chem. Soc. 119, 633–634.  CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTrung, V. Q., Linh, N. N., Duong, T. T. T., Chinh, N. T., Linh, D. K., Hung, H. M. & Oanh, D. T. Y. (2019a). Vietnam. J. Chem. 57, 770–776.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVu Quoc, T., Tran, T. D., Nguyen, T. C., Nguyen, T. V., Nguyen, H., Vinh, P. V., Nguyen-Trong, D., Dinh Duc, N. & Nguyen-Tri, P. (2020). Polymers, 12, 1207.  Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Tran Thi Thuy, D., Vu Quoc, M., Vuong Nguyen, T., Oanh Doan Thi, Y. & Van Meervelt, L. (2019b). Acta Cryst. E75, 1090–1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019c). Acta Cryst. E75, 957–963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, F., Li, M., Wang, B., Zhang, J., Cheng, Y., Liu, L., Ly, F. & Wang, S. (2015). Sci. Rep. 5, 1–8.  Google Scholar
First citationWang, L., Zhang, G., Pei, M., Hu, L., Li, E. & Li, H. (2013). J. Appl. Polym. Sci. 130, 939–943.  Web of Science CrossRef CAS Google Scholar
First citationWu, T., Wang, L., Zhang, Y., Du, S., Guo, W. & Pei, M. (2015). RSC Adv. 5, 16684–16690.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds