research communications
E)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetate)
of potassium hydrogen bis((aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam, bHigh School for Gifted Students, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam, cNguyen Trai High School, 50 Nam Cao Street, Ba Dinh, Hanoi 10000, Vietnam, dBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, eFaculty of Training Bachelor of Practice, Than Do University, Kim Chung, Hoai Duc, Hanoi 10000, Vietnam, fInstitute of Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam, gGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam, hFaculty of General Education, Hanoi University of Mining and Geology, Duc Thang Ward, Bac Tu Liem District, Hanoi 10000, Vietnam, iFaculty of Natural Sciences, Hong Duc University, 565 Quang Trung, Dong Ve Ward, Thanh Hoa City, Vietnam, and jDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, luc.vanmeervelt@kuleuven.be
The synthesis and spectroscopic data of (E)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid are described. Crystallization from an ethanol–water mixture resulted in the title compound, C30H23KO8S2 or [K(C15H11O4S)(C15H12O4S)]n, containing one molecule of the acid and one molecule of the potassium salt in the Both molecules share the H atom between their carboxyl groups and a potassium ion. The C=C bonds display an E configuration. The thiophene and phenyl rings in the two molecules are inclined by 43.3 (2) and 22.7 (2)°. The potassium ion is octahedrally coordinated by six O atoms. This distorted octahedron shares on opposite sides two oxygen atoms with inversion-related octahedra, resulting in chains of octahedra running in the [010] direction, which form ladder-like chains by C—H⋯π interactions. A Hirshfeld surface analysis indicates that the highest contributions to the surface contacts arise from interactions in which H atoms are involved, with the most important contribution being from H⋯H (31.6 and 31.9% for the two molecules) interactions.
Keywords: crystal structure; hydrogen bonding; potassium salt; thiophene; Hirshfeld analysis.
CCDC reference: 2082049
1. Chemical context
Over the last two decades, water-soluble polythiophenes and their derivatives have been of particular importance among conjugated polyelectrolytes owing to a unique combination of high conductivity, environmental stability and structural versatility, allowing derivatization of the π-conjugated backbone in view of numerous technological applications (Wang et al., 2015; Chayer et al., 1997; Wang et al., 2013). Many regioregular polythiophenes with pendant carboxylic acid functionality have been studied (Ewbank et al., 2004; McCullough et al., 1997; Wu et al., 2015; Janáky et al., 2010). The increased alkyl side-chain length allows for increased coplanarity of the main-chain thiophene rings to advance regioregular polythiophene backbones (Vu Quoc et al., 2019a). A lot of synthetic research has been conducted with a view to increasing the side-chain length of thiophene rings (Vu Quoc et al., 2020). Crystal studies of thiophene monomers have also been reported (Vu Quoc et al., 2017, 2018, 2019b).
(E)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid are reported. This compound is considered to be a good monomer for the synthesis of water-soluble polythiophene-based conjugated polyelectrolytes. A single-crystal indicates that after crystallization, crystals were obtained containing one molecule of the acid and one molecule of the potassium salt in the asymmetric unit.
2. Structural commentary
The title compound crystallizes in the triclinic P as a complex formed between the acid and the potassium salt of the acid, as illustrated in Fig. 1. In the following discussion, molecule A includes atoms S1–O20 and molecule B atoms S21–O40. Both molecules share hydrogen atom H19 between their carboxyl groups and a potassium ion, K41. Atom H19 is involved in hydrogen-bonding interactions with atoms O39 and O40 (Table 1). The dihedral angle between the thiophene and phenyl rings is 43.3 (2)° for molecule A and 22.7 (2)° for molecule B. The C=C bonds display an E configuration, resulting in short intramolecular C6—H6⋯O9 and C26—H26⋯O29 interactions (Table 1). The terminal thiophene groups are involved in intense thermal motion.
Fig. 2 shows an overlay diagram of the two molecules A and B [r.m.s. deviation 0.5622 Å as calculated using Mercury (Macrae et al., 2020)]. The largest differences are caused by the different orientation of the phenyl groups.
Potassium ion K41 is octahedrally coordinated by six O atoms with K—O distances between 2.672 (2) and 2.906 (3) Å (Fig. 3) and an octahedral volume of 21.871 Å3. The coordination sphere can be extended with atoms O16 and O36, but K⋯O distances are much longer [K41⋯O16iv = 3.245 (3), K41⋯O36ii = 3.347 (3) Å, symmetry codes: (ii) −x + 2, −y + 2, −z + 1, (iv) −x + 1, −y + 1, −z + 1].
3. Supramolecular features
In the crystal packing, the potassium ion K41 interacts with six molecules of which two occur in the carboxylic acid form (Fig. 4). The distorted octahedron around K41 shares on opposite sides two oxygen atoms [at one side O40 and O40ii, at the other side O20i and O20iv; symmetry codes: (i) x + 1, y, z, (ii) −x + 2, −y + 2, −z + 1, (iv) −x + 1, −y + 1, −z + 1] with inversion-related octahedra (Figs. 3 and 5). This results in parallel chains of octahedra running in the [010] direction and situated in the (002) plane. The K⋯K distances in the chains are 4.8084 (15) (for K41⋯K41ii) and 4.8353 (14) Å [for K41⋯K41v; symmetry code: (v) −x + 2, −y + 1, −z + 1].
Despite the presence of many aromatic rings, the crystal packing of the title compound does not show πany –π interactions. The shortest centroid–centroid distance is 4.735 (3) Å between thiophene rings S1/C2–C5 and S21/C22–C25 with an angle between the rings of 52.3 (3)°. However, C—H⋯π interactions are present and give rise to a ladder-like chain also running in the [010] direction (Table 1, Fig. 6). In addition, neigbouring chains interact by short C28=O29⋯Cg1v contacts [O29⋯Cg1v = 3.652 (4) Å; Cg1 is the centroid of thiophene ring S1/C2–C5; symmetry code: (v) −x, −y + 1, −z + 1].
The packing does not show any residual solvent-accessible voids.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces of molecules A and B mapped over dnorm are given in Fig. 7a and b, respectively. The relative distributions from the different interatomic contacts to the Hirshfeld surfaces are presented in Table 2. The bright-red spots at atoms O19, H19 and O39 are indicative of the O19—H19⋯O39 hydrogen bond between the molecules. The additional faint-red spots near atoms O16, O19, O20, O36, O39 and O40 concern the K⋯O interactions in the It should be noted that the Hirshfeld surfaces are almost identical for the two molecules. The same is true for the fingerprint plots (Fig. 7c and d). The sharp tips at de + di ≃ 1.4 Å arise from the O19—H19⋯O39 hydrogen bond. The principal contribution to the Hirshfeld surfaces involves H⋯H contacts at 31.6 and 31.9% for molecules A and B, respectively. These are followed by C⋯H/H⋯C (21.1 and 20.0%) O⋯H/H⋯O (17.4 and 17.3%) and S⋯H/H⋯S (8.8 and 9.9%) contacts.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) for the fragment R1—CH=CH—C(=O)—p-C6H4—R2 gave 619 hits (with C atoms double-bond acyclic). For only 33 cases (5.3%), the double bond has the Z configuration (Fig. 8a). The histogram of the dihedral angle between the planes of the double bond and the phenyl ring shows values between 0.0 and 86.2° (Fig. 8b). A search with thiophene as R1 resulted in only four hits (CSD refcodes XOLJUG, XOLKAN, XOLKER and XOLKIV; Vu Quoc et al., 2019c) displaying the E configuration and dihedral angles in the range 6.7 to 15.8° (smaller than in the title compound). Only one structure was found for which R2 is the same as in the title compound (OCH2COOH; CSD refcode TAMJID; Abdul Ajees et al., 2017). In this monohydrate, a water molecule makes hydrogen bonds to the carboxyl groups of two neighbouring molecules and in addition to a carbonyl of a third neighbouring enone moiety.
6. Synthesis and crystallization
The synthetic pathway to synthesize the target compound, (E)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid, is given in Fig. 9 (numbering on chemical formulas is only used for NMR spectroscopic analysis).
A mixture of ethyl 2-(4-acetylphenoxy)acetate (5 mmol), 3-thiophenecarbaldehyde (5 mmol) and 50 mL of ethanol was stirred in ice-cold water for 20 minutes. Then, 5 mL of 50% KOH solution was added dropwise to the reaction mixture, which was then stirred continuously for 5 h. At the end of the reaction, water was added to the reaction mixture and stirring was continued until all solids in the mixture were dissolved. Concentrated HCl was slowly added to the obtained solution until the solution changed from brown to yellow. The solution was then heated until crystals appeared. The solid then began to crystallize when the solution temperature started to decrease. The crystallized solid was filtered off, washed thoroughly with water and recrystallized from an ethanol–water mixture to give 2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid (yield 62%) in the form of pale-yellow crystals (m.p. 455 K).
IR (Shimadzu FTIR-8400S, KBr, cm−1): 1017, 980 (=C—H bend), 1597 (C=C), 1659 (C=O), 3457 (broad, OH).
1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, (ppm), J (Hz)]: 7.60 (d, 1H, H2), 7.42 (m, 1H, 5J = 5.0, H4), 7.38 (t, 1H, 4J = 5.0, H5), 7.81 (d, 1H, 7J = 15.5, H6), 7.34 (d, 1H, 6J = 15.5, H7), 8.03 (t, 2H, J = 9.0, H10 and H14), 7.02 (m, 2H, H11 and H13), 4.77 (s, 2H, H15).
13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, (ppm)]: 121.81 (C2), 128.75 (C3), 127.01 (C4), 125.41 (C5), 132.67 (C6), 130.87 (C7), 171.85 (C8), 169.73 (C9), 138.39 (C10 and C14), 137.96 (C11 and C13), 114.65 (C12), 64.68 (C15), 189.09 (C16). Calculation for C15H11O4S: M = 287 au.
7. Refinement
Crystal data, data collection and structure . Hydrogen atom H19 was located from a difference electron-density map and refined freely with an Uiso(H) value of 1.5Ueq of the parent atom O19. The other H atoms were placed in idealized positions and included as riding contributions with an Uiso(H) values of 1.2Ueq of the parent atom, with C—H distances of 0.93 (aromatic) and 0.97 Å (CH2). In the final cycles of 12 outliers with |error/e.s.d.| > 5.0 were omitted.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2082049
https://doi.org/10.1107/S2056989021004801/ey2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021004801/ey2007Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021004801/ey2007Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[K(C15H11O4S)(C15H12O4S)] | Z = 2 |
Mr = 614.70 | F(000) = 636 |
Triclinic, P1 | Dx = 1.462 Mg m−3 |
a = 6.0036 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6432 (5) Å | Cell parameters from 3156 reflections |
c = 25.0966 (16) Å | θ = 3.2–24.6° |
α = 92.412 (4)° | µ = 0.39 mm−1 |
β = 90.548 (4)° | T = 293 K |
γ = 105.808 (4)° | Plate, colourless |
V = 1396.42 (14) Å3 | 0.4 × 0.2 × 0.05 mm |
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer | 4742 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2836 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 24.7°, θmin = 2.4° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −11→11 |
Tmin = 0.863, Tmax = 1.000 | l = −29→29 |
15169 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.211 | w = 1/[σ2(Fo2) + (0.111P)2 + 0.2689P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4742 reflections | Δρmax = 0.59 e Å−3 |
373 parameters | Δρmin = −0.47 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.2860 (3) | −0.46353 (17) | 0.04899 (7) | 0.0970 (6) | |
C2 | −0.0473 (9) | −0.4037 (5) | 0.08824 (19) | 0.0737 (15) | |
H2 | 0.067798 | −0.451127 | 0.090654 | 0.088* | |
C3 | −0.0407 (8) | −0.2770 (5) | 0.11636 (17) | 0.0590 (13) | |
C4 | −0.2427 (9) | −0.2331 (6) | 0.1050 (2) | 0.0793 (16) | |
H4 | −0.271387 | −0.150647 | 0.120601 | 0.095* | |
C5 | −0.3963 (9) | −0.3270 (6) | 0.06777 (19) | 0.0773 (16) | |
H5 | −0.536358 | −0.315058 | 0.055580 | 0.093* | |
C6 | 0.1494 (8) | −0.2019 (5) | 0.15232 (17) | 0.0590 (13) | |
H6 | 0.278677 | −0.237405 | 0.152768 | 0.071* | |
C7 | 0.1570 (8) | −0.0887 (5) | 0.18434 (16) | 0.0564 (12) | |
H7 | 0.028240 | −0.052797 | 0.186141 | 0.068* | |
C8 | 0.3652 (8) | −0.0173 (4) | 0.21754 (16) | 0.0492 (11) | |
O9 | 0.5535 (6) | −0.0384 (3) | 0.20858 (12) | 0.0645 (9) | |
C10 | 0.3407 (7) | 0.0826 (4) | 0.26258 (15) | 0.0415 (10) | |
C11 | 0.1313 (7) | 0.0763 (4) | 0.28700 (16) | 0.0481 (11) | |
H11 | −0.003355 | 0.010363 | 0.273775 | 0.058* | |
C12 | 0.1206 (7) | 0.1658 (4) | 0.33031 (16) | 0.0453 (10) | |
H12 | −0.019503 | 0.157608 | 0.347103 | 0.054* | |
C13 | 0.3197 (6) | 0.2689 (4) | 0.34915 (14) | 0.0345 (9) | |
C14 | 0.5284 (6) | 0.2788 (4) | 0.32503 (15) | 0.0399 (9) | |
H14 | 0.661673 | 0.347244 | 0.337605 | 0.048* | |
C15 | 0.5386 (7) | 0.1867 (4) | 0.28211 (15) | 0.0424 (10) | |
H15 | 0.679617 | 0.193833 | 0.265864 | 0.051* | |
O16 | 0.2876 (4) | 0.3529 (2) | 0.39231 (10) | 0.0382 (6) | |
C17 | 0.4768 (6) | 0.4721 (4) | 0.40807 (14) | 0.0319 (8) | |
H17A | 0.535908 | 0.527277 | 0.377332 | 0.038* | |
H17B | 0.600512 | 0.438362 | 0.423326 | 0.038* | |
C18 | 0.3947 (6) | 0.5661 (4) | 0.44896 (14) | 0.0306 (8) | |
O19 | 0.5596 (4) | 0.6761 (2) | 0.46588 (10) | 0.0377 (6) | |
H19 | 0.510 (5) | 0.754 (3) | 0.4992 (13) | 0.057* | |
O20 | 0.1957 (4) | 0.5391 (3) | 0.46318 (11) | 0.0438 (7) | |
K41 | 0.99969 (12) | 0.75075 (8) | 0.50093 (4) | 0.0469 (3) | |
S21 | 1.2169 (3) | 1.89226 (19) | 0.97523 (6) | 0.1039 (7) | |
C22 | 0.9574 (9) | 1.8038 (5) | 0.9458 (2) | 0.0810 (16) | |
H22 | 0.815783 | 1.786740 | 0.962611 | 0.097* | |
C23 | 0.9853 (9) | 1.7605 (5) | 0.89334 (18) | 0.0594 (13) | |
C24 | 1.2196 (10) | 1.8010 (6) | 0.8802 (2) | 0.0792 (16) | |
H24 | 1.273298 | 1.780776 | 0.846982 | 0.095* | |
C25 | 1.3664 (9) | 1.8759 (5) | 0.9226 (2) | 0.0764 (16) | |
H25 | 1.526468 | 1.910936 | 0.920654 | 0.092* | |
C26 | 0.7955 (8) | 1.6804 (5) | 0.85850 (17) | 0.0609 (13) | |
H26 | 0.647616 | 1.682595 | 0.868474 | 0.073* | |
C27 | 0.8094 (8) | 1.6051 (4) | 0.81437 (16) | 0.0544 (12) | |
H27 | 0.955220 | 1.604702 | 0.802281 | 0.065* | |
C28 | 0.6044 (8) | 1.5216 (4) | 0.78335 (16) | 0.0507 (11) | |
O29 | 0.4111 (6) | 1.5305 (4) | 0.79430 (13) | 0.0712 (10) | |
C30 | 0.6352 (7) | 1.4222 (4) | 0.73870 (15) | 0.0417 (10) | |
C31 | 0.8468 (7) | 1.4318 (4) | 0.71402 (16) | 0.0511 (11) | |
H31 | 0.978632 | 1.501336 | 0.726665 | 0.061* | |
C32 | 0.8639 (7) | 1.3410 (4) | 0.67160 (16) | 0.0471 (11) | |
H32 | 1.005424 | 1.351138 | 0.655226 | 0.057* | |
C33 | 0.6704 (6) | 1.2342 (4) | 0.65314 (15) | 0.0362 (9) | |
C34 | 0.4595 (7) | 1.2207 (4) | 0.67660 (15) | 0.0415 (10) | |
H34 | 0.329159 | 1.149650 | 0.664132 | 0.050* | |
C35 | 0.4435 (7) | 1.3150 (4) | 0.71934 (15) | 0.0437 (10) | |
H35 | 0.301130 | 1.305726 | 0.735190 | 0.052* | |
O36 | 0.7068 (4) | 1.1507 (2) | 0.61025 (10) | 0.0382 (6) | |
C37 | 0.5203 (6) | 1.0305 (4) | 0.59364 (14) | 0.0337 (9) | |
H37A | 0.396265 | 1.063516 | 0.578152 | 0.040* | |
H37B | 0.460285 | 0.974311 | 0.624094 | 0.040* | |
C38 | 0.6055 (6) | 0.9381 (4) | 0.55283 (13) | 0.0294 (8) | |
O39 | 0.4427 (4) | 0.8279 (2) | 0.53558 (10) | 0.0377 (6) | |
O40 | 0.8052 (4) | 0.9662 (3) | 0.53874 (11) | 0.0437 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.1100 (13) | 0.0799 (10) | 0.0923 (11) | 0.0172 (9) | −0.0278 (10) | −0.0307 (9) |
C2 | 0.096 (4) | 0.058 (3) | 0.065 (3) | 0.021 (3) | −0.022 (3) | −0.016 (3) |
C3 | 0.075 (3) | 0.054 (3) | 0.048 (3) | 0.019 (3) | −0.006 (2) | −0.009 (2) |
C4 | 0.085 (4) | 0.082 (4) | 0.074 (3) | 0.033 (3) | −0.012 (3) | −0.030 (3) |
C5 | 0.071 (3) | 0.104 (4) | 0.062 (3) | 0.035 (3) | −0.012 (3) | −0.020 (3) |
C6 | 0.071 (3) | 0.056 (3) | 0.051 (3) | 0.022 (2) | −0.009 (2) | −0.018 (2) |
C7 | 0.064 (3) | 0.059 (3) | 0.047 (2) | 0.021 (2) | −0.005 (2) | −0.011 (2) |
C8 | 0.066 (3) | 0.043 (2) | 0.040 (2) | 0.017 (2) | 0.000 (2) | −0.007 (2) |
O9 | 0.067 (2) | 0.070 (2) | 0.0599 (19) | 0.0291 (18) | 0.0033 (17) | −0.0232 (17) |
C10 | 0.051 (3) | 0.033 (2) | 0.040 (2) | 0.0112 (19) | −0.0026 (19) | −0.0040 (18) |
C11 | 0.043 (2) | 0.046 (2) | 0.048 (2) | 0.0037 (19) | −0.005 (2) | −0.017 (2) |
C12 | 0.038 (2) | 0.045 (2) | 0.049 (2) | 0.0065 (19) | 0.0049 (19) | −0.007 (2) |
C13 | 0.041 (2) | 0.0283 (19) | 0.035 (2) | 0.0125 (17) | −0.0021 (18) | −0.0055 (17) |
C14 | 0.040 (2) | 0.033 (2) | 0.044 (2) | 0.0079 (18) | −0.0013 (19) | −0.0081 (18) |
C15 | 0.042 (2) | 0.045 (2) | 0.043 (2) | 0.0168 (19) | 0.0027 (19) | −0.0065 (19) |
O16 | 0.0329 (14) | 0.0307 (13) | 0.0467 (15) | 0.0037 (11) | 0.0042 (12) | −0.0143 (12) |
C17 | 0.0271 (18) | 0.0277 (18) | 0.041 (2) | 0.0080 (15) | 0.0047 (16) | −0.0023 (17) |
C18 | 0.034 (2) | 0.0231 (18) | 0.036 (2) | 0.0108 (16) | 0.0022 (17) | 0.0031 (16) |
O19 | 0.0281 (13) | 0.0313 (13) | 0.0503 (16) | 0.0046 (11) | −0.0025 (12) | −0.0134 (12) |
O20 | 0.0313 (15) | 0.0346 (15) | 0.0600 (17) | 0.0013 (12) | 0.0132 (13) | −0.0118 (13) |
K41 | 0.0229 (5) | 0.0337 (5) | 0.0827 (7) | 0.0078 (4) | −0.0027 (4) | −0.0122 (5) |
S21 | 0.1230 (14) | 0.1059 (13) | 0.0789 (11) | 0.0321 (11) | −0.0247 (10) | −0.0399 (10) |
C22 | 0.087 (4) | 0.082 (4) | 0.067 (3) | 0.017 (3) | −0.003 (3) | −0.030 (3) |
C23 | 0.076 (3) | 0.053 (3) | 0.050 (3) | 0.021 (3) | −0.006 (3) | −0.014 (2) |
C24 | 0.086 (4) | 0.081 (4) | 0.061 (3) | 0.011 (3) | 0.000 (3) | −0.021 (3) |
C25 | 0.062 (3) | 0.068 (3) | 0.089 (4) | 0.006 (3) | −0.003 (3) | −0.024 (3) |
C26 | 0.073 (3) | 0.057 (3) | 0.056 (3) | 0.024 (3) | −0.002 (3) | −0.010 (2) |
C27 | 0.067 (3) | 0.053 (3) | 0.043 (2) | 0.018 (2) | −0.002 (2) | −0.011 (2) |
C28 | 0.066 (3) | 0.043 (2) | 0.043 (2) | 0.017 (2) | 0.001 (2) | −0.002 (2) |
O29 | 0.068 (2) | 0.078 (2) | 0.071 (2) | 0.0307 (19) | 0.0031 (18) | −0.0287 (18) |
C30 | 0.053 (3) | 0.038 (2) | 0.036 (2) | 0.018 (2) | 0.0015 (19) | −0.0054 (18) |
C31 | 0.045 (2) | 0.048 (2) | 0.055 (3) | 0.007 (2) | −0.009 (2) | −0.020 (2) |
C32 | 0.039 (2) | 0.044 (2) | 0.054 (3) | 0.0077 (19) | 0.000 (2) | −0.016 (2) |
C33 | 0.040 (2) | 0.0291 (19) | 0.041 (2) | 0.0136 (17) | 0.0015 (18) | −0.0043 (17) |
C34 | 0.042 (2) | 0.031 (2) | 0.048 (2) | 0.0050 (17) | 0.0015 (19) | −0.0088 (19) |
C35 | 0.042 (2) | 0.046 (2) | 0.043 (2) | 0.0130 (19) | 0.0056 (19) | 0.000 (2) |
O36 | 0.0343 (14) | 0.0296 (13) | 0.0467 (15) | 0.0042 (11) | 0.0040 (12) | −0.0128 (12) |
C37 | 0.0314 (19) | 0.0255 (18) | 0.043 (2) | 0.0070 (16) | 0.0019 (17) | −0.0045 (17) |
C38 | 0.030 (2) | 0.0262 (18) | 0.034 (2) | 0.0111 (16) | −0.0027 (17) | −0.0014 (16) |
O39 | 0.0256 (13) | 0.0333 (13) | 0.0511 (16) | 0.0053 (11) | −0.0033 (12) | −0.0141 (12) |
O40 | 0.0317 (15) | 0.0330 (14) | 0.0632 (18) | 0.0042 (12) | 0.0130 (13) | −0.0073 (13) |
S1—C2 | 1.682 (5) | K41—K41iv | 4.8084 (15) |
S1—C5 | 1.680 (5) | K41—K41v | 4.8353 (14) |
C2—H2 | 0.9300 | K41—O36iv | 3.347 (3) |
C2—C3 | 1.375 (6) | K41—O39iii | 2.685 (2) |
C3—C4 | 1.419 (6) | K41—O40iv | 2.885 (3) |
C3—C6 | 1.455 (6) | K41—O40 | 2.785 (2) |
C4—H4 | 0.9300 | S21—C22 | 1.703 (5) |
C4—C5 | 1.415 (6) | S21—C25 | 1.631 (5) |
C5—H5 | 0.9300 | C22—H22 | 0.9300 |
C6—H6 | 0.9300 | C22—C23 | 1.390 (6) |
C6—C7 | 1.318 (5) | C23—C24 | 1.400 (7) |
C7—H7 | 0.9300 | C23—C26 | 1.451 (6) |
C7—C8 | 1.481 (6) | C24—H24 | 0.9300 |
C8—O9 | 1.223 (5) | C24—C25 | 1.413 (6) |
C8—C10 | 1.489 (5) | C25—H25 | 0.9300 |
C10—C11 | 1.391 (5) | C26—H26 | 0.9300 |
C10—C15 | 1.399 (5) | C26—C27 | 1.314 (5) |
C11—H11 | 0.9300 | C27—H27 | 0.9300 |
C11—C12 | 1.372 (5) | C27—C28 | 1.469 (6) |
C12—H12 | 0.9300 | C28—O29 | 1.220 (5) |
C12—C13 | 1.394 (5) | C28—C30 | 1.490 (5) |
C13—C14 | 1.378 (5) | C30—C31 | 1.400 (6) |
C13—O16 | 1.372 (4) | C30—C35 | 1.388 (5) |
C14—H14 | 0.9300 | C31—H31 | 0.9300 |
C14—C15 | 1.380 (5) | C31—C32 | 1.372 (5) |
C15—H15 | 0.9300 | C32—H32 | 0.9300 |
O16—C17 | 1.417 (4) | C32—C33 | 1.387 (5) |
O16—K41i | 3.245 (3) | C33—C34 | 1.377 (5) |
C17—H17A | 0.9700 | C33—O36 | 1.372 (4) |
C17—H17B | 0.9700 | C34—H34 | 0.9300 |
C17—C18 | 1.514 (5) | C34—C35 | 1.398 (5) |
C18—O19 | 1.292 (4) | C35—H35 | 0.9300 |
C18—O20 | 1.212 (4) | O36—K41iv | 3.347 (3) |
O19—H19 | 1.19 (3) | O36—C37 | 1.420 (4) |
O19—K41 | 2.672 (2) | C37—H37A | 0.9700 |
O20—K41ii | 2.760 (2) | C37—H37B | 0.9700 |
O20—K41i | 2.906 (3) | C37—C38 | 1.512 (5) |
K41—O16i | 3.245 (3) | C38—O39 | 1.288 (4) |
K41—O19 | 2.672 (2) | C38—O40 | 1.215 (4) |
K41—H19 | 2.95 (3) | O39—H19 | 1.27 (3) |
K41—O20i | 2.906 (3) | O39—K41ii | 2.685 (2) |
K41—O20iii | 2.760 (2) | O40—K41iv | 2.885 (3) |
C5—S1—C2 | 94.1 (2) | K41iv—K41—H19 | 73.6 (6) |
S1—C2—H2 | 123.6 | K41iv—K41—K41v | 178.88 (4) |
C3—C2—S1 | 112.8 (4) | O36iv—K41—H19 | 116.2 (6) |
C3—C2—H2 | 123.6 | O36iv—K41—K41v | 99.62 (4) |
C2—C3—C4 | 110.3 (4) | O36iv—K41—K41iv | 79.38 (5) |
C2—C3—C6 | 123.5 (4) | O39iii—K41—O16i | 103.47 (7) |
C4—C3—C6 | 126.2 (4) | O39iii—K41—H19 | 156.1 (7) |
C3—C4—H4 | 123.2 | O39iii—K41—O20i | 105.57 (8) |
C5—C4—C3 | 113.5 (4) | O39iii—K41—O20iii | 73.16 (7) |
C5—C4—H4 | 123.2 | O39iii—K41—K41v | 89.77 (5) |
S1—C5—H5 | 125.3 | O39iii—K41—K41iv | 90.48 (5) |
C4—C5—S1 | 109.3 (4) | O39iii—K41—O36iv | 76.94 (7) |
C4—C5—H5 | 125.3 | O39iii—K41—O40 | 106.49 (8) |
C3—C6—H6 | 116.7 | O39iii—K41—O40iv | 74.93 (7) |
C7—C6—C3 | 126.6 (4) | O40—K41—O16i | 70.70 (7) |
C7—C6—H6 | 116.7 | O40iv—K41—O16i | 131.58 (7) |
C6—C7—H7 | 119.1 | O40iv—K41—H19 | 97.8 (6) |
C6—C7—C8 | 121.7 (4) | O40—K41—H19 | 51.1 (6) |
C8—C7—H7 | 119.1 | O40iv—K41—O20i | 177.80 (7) |
C7—C8—C10 | 118.2 (4) | O40—K41—O20i | 117.64 (8) |
O9—C8—C7 | 121.6 (4) | O40iv—K41—K41v | 147.81 (6) |
O9—C8—C10 | 120.2 (4) | O40—K41—K41v | 148.16 (6) |
C11—C10—C8 | 123.3 (4) | O40—K41—K41iv | 32.63 (6) |
C11—C10—C15 | 118.1 (3) | O40iv—K41—K41iv | 31.38 (5) |
C15—C10—C8 | 118.5 (4) | O40iv—K41—O36iv | 49.80 (6) |
C10—C11—H11 | 119.5 | O40—K41—O36iv | 110.51 (7) |
C12—C11—C10 | 121.0 (4) | O40—K41—O40iv | 64.01 (9) |
C12—C11—H11 | 119.5 | C25—S21—C22 | 94.4 (2) |
C11—C12—H12 | 120.0 | S21—C22—H22 | 124.5 |
C11—C12—C13 | 120.0 (4) | C23—C22—S21 | 111.1 (4) |
C13—C12—H12 | 120.0 | C23—C22—H22 | 124.5 |
C14—C13—C12 | 120.0 (3) | C22—C23—C24 | 110.5 (4) |
O16—C13—C12 | 114.8 (3) | C22—C23—C26 | 123.7 (5) |
O16—C13—C14 | 125.2 (3) | C24—C23—C26 | 125.8 (4) |
C13—C14—H14 | 120.2 | C23—C24—H24 | 123.3 |
C13—C14—C15 | 119.6 (3) | C23—C24—C25 | 113.4 (5) |
C15—C14—H14 | 120.2 | C25—C24—H24 | 123.3 |
C10—C15—H15 | 119.4 | S21—C25—H25 | 124.6 |
C14—C15—C10 | 121.2 (3) | C24—C25—S21 | 110.7 (4) |
C14—C15—H15 | 119.4 | C24—C25—H25 | 124.6 |
C13—O16—C17 | 116.7 (3) | C23—C26—H26 | 116.4 |
C13—O16—K41i | 127.8 (2) | C27—C26—C23 | 127.1 (5) |
C17—O16—K41i | 106.87 (18) | C27—C26—H26 | 116.4 |
O16—C17—H17A | 110.0 | C26—C27—H27 | 118.6 |
O16—C17—H17B | 110.0 | C26—C27—C28 | 122.8 (4) |
O16—C17—C18 | 108.7 (3) | C28—C27—H27 | 118.6 |
H17A—C17—H17B | 108.3 | C27—C28—C30 | 118.8 (4) |
C18—C17—H17A | 110.0 | O29—C28—C27 | 121.1 (4) |
C18—C17—H17B | 110.0 | O29—C28—C30 | 120.1 (4) |
O19—C18—C17 | 112.2 (3) | C31—C30—C28 | 123.8 (4) |
O20—C18—C17 | 122.6 (3) | C35—C30—C28 | 118.7 (4) |
O20—C18—O19 | 125.2 (3) | C35—C30—C31 | 117.5 (3) |
C18—O19—H19 | 116.3 (15) | C30—C31—H31 | 119.3 |
C18—O19—K41 | 142.1 (2) | C32—C31—C30 | 121.5 (4) |
K41—O19—H19 | 91.2 (14) | C32—C31—H31 | 119.3 |
C18—O20—K41ii | 122.3 (2) | C31—C32—H32 | 120.0 |
C18—O20—K41i | 115.7 (2) | C31—C32—C33 | 120.0 (4) |
K41ii—O20—K41i | 117.15 (9) | C33—C32—H32 | 120.0 |
O16i—K41—H19 | 63.9 (6) | C34—C33—C32 | 120.2 (3) |
O16i—K41—K41v | 79.07 (5) | O36—C33—C32 | 115.1 (3) |
O16i—K41—K41iv | 101.93 (5) | O36—C33—C34 | 124.7 (3) |
O16i—K41—O36iv | 178.61 (5) | C33—C34—H34 | 120.4 |
O19—K41—O16i | 76.94 (7) | C33—C34—C35 | 119.3 (3) |
O19—K41—H19 | 23.9 (6) | C35—C34—H34 | 120.4 |
O19—K41—O20i | 74.97 (7) | C30—C35—C34 | 121.6 (4) |
O19—K41—O20iii | 107.07 (8) | C30—C35—H35 | 119.2 |
O19—K41—K41v | 90.67 (5) | C34—C35—H35 | 119.2 |
O19—K41—K41iv | 89.07 (5) | C33—O36—K41iv | 129.6 (2) |
O19—K41—O36iv | 102.66 (7) | C33—O36—C37 | 117.0 (3) |
O19—K41—O39iii | 179.45 (8) | C37—O36—K41iv | 104.73 (18) |
O19—K41—O40 | 73.28 (7) | O36—C37—H37A | 109.9 |
O19—K41—O40iv | 104.52 (8) | O36—C37—H37B | 109.9 |
O20i—K41—O16i | 50.51 (6) | O36—C37—C38 | 109.1 (3) |
O20iii—K41—O16i | 109.72 (7) | H37A—C37—H37B | 108.3 |
O20i—K41—H19 | 82.6 (6) | C38—C37—H37A | 109.9 |
O20iii—K41—H19 | 129.3 (6) | C38—C37—H37B | 109.9 |
O20iii—K41—O20i | 62.85 (9) | O39—C38—C37 | 112.1 (3) |
O20i—K41—K41iv | 150.25 (6) | O40—C38—C37 | 122.9 (3) |
O20i—K41—K41v | 30.52 (5) | O40—C38—O39 | 125.0 (3) |
O20iii—K41—K41v | 32.32 (6) | K41ii—O39—H19 | 94.4 (13) |
O20iii—K41—K41iv | 146.88 (7) | C38—O39—H19 | 112.4 (14) |
O20iii—K41—O36iv | 69.08 (7) | C38—O39—K41ii | 142.1 (2) |
O20i—K41—O36iv | 128.11 (6) | K41—O40—K41iv | 115.99 (9) |
O20iii—K41—O40iv | 115.51 (8) | C38—O40—K41iv | 116.9 (2) |
O20iii—K41—O40 | 179.49 (8) | C38—O40—K41 | 121.3 (2) |
K41v—K41—H19 | 106.5 (6) | ||
S1—C2—C3—C4 | 1.2 (6) | K41iv—O36—C37—C38 | 39.0 (3) |
S1—C2—C3—C6 | −178.9 (4) | S21—C22—C23—C24 | 0.6 (6) |
C2—S1—C5—C4 | 0.4 (5) | S21—C22—C23—C26 | 178.8 (4) |
C2—C3—C4—C5 | −0.9 (7) | C22—S21—C25—C24 | 0.0 (4) |
C2—C3—C6—C7 | −172.8 (5) | C22—C23—C24—C25 | −0.6 (7) |
C3—C4—C5—S1 | 0.3 (6) | C22—C23—C26—C27 | −161.5 (5) |
C3—C6—C7—C8 | −177.2 (4) | C23—C24—C25—S21 | 0.3 (6) |
C4—C3—C6—C7 | 7.1 (9) | C23—C26—C27—C28 | 176.8 (4) |
C5—S1—C2—C3 | −0.9 (4) | C24—C23—C26—C27 | 16.4 (8) |
C6—C3—C4—C5 | 179.2 (5) | C25—S21—C22—C23 | −0.4 (4) |
C6—C7—C8—O9 | 16.3 (7) | C26—C23—C24—C25 | −178.8 (4) |
C6—C7—C8—C10 | −163.9 (4) | C26—C27—C28—O29 | 7.8 (7) |
C7—C8—C10—C11 | 23.2 (6) | C26—C27—C28—C30 | −170.8 (4) |
C7—C8—C10—C15 | −158.0 (4) | C27—C28—C30—C31 | −19.3 (6) |
C8—C10—C11—C12 | 176.3 (4) | C27—C28—C30—C35 | 162.1 (4) |
C8—C10—C15—C14 | −177.6 (4) | C28—C30—C31—C32 | −177.4 (4) |
O9—C8—C10—C11 | −157.1 (4) | C28—C30—C35—C34 | 178.3 (4) |
O9—C8—C10—C15 | 21.7 (6) | O29—C28—C30—C31 | 162.1 (4) |
C10—C11—C12—C13 | 2.6 (6) | O29—C28—C30—C35 | −16.5 (6) |
C11—C10—C15—C14 | 1.2 (6) | C30—C31—C32—C33 | −1.7 (7) |
C11—C12—C13—C14 | −1.5 (6) | C31—C30—C35—C34 | −0.5 (6) |
C11—C12—C13—O16 | 179.5 (3) | C31—C32—C33—C34 | 1.3 (6) |
C12—C13—C14—C15 | 0.3 (6) | C31—C32—C33—O36 | 179.4 (4) |
C12—C13—O16—C17 | −171.3 (3) | C32—C33—C34—C35 | −0.5 (6) |
C12—C13—O16—K41i | 45.4 (4) | C32—C33—O36—K41iv | −44.3 (4) |
C13—C14—C15—C10 | −0.2 (6) | C32—C33—O36—C37 | 173.4 (3) |
C13—O16—C17—C18 | 169.6 (3) | C33—C34—C35—C30 | 0.1 (6) |
C14—C13—O16—C17 | 9.7 (5) | C33—O36—C37—C38 | −170.2 (3) |
C14—C13—O16—K41i | −133.6 (3) | C34—C33—O36—K41iv | 133.7 (3) |
C15—C10—C11—C12 | −2.4 (6) | C34—C33—O36—C37 | −8.6 (5) |
O16—C13—C14—C15 | 179.2 (3) | C35—C30—C31—C32 | 1.3 (6) |
O16—C17—C18—O19 | 178.9 (3) | O36—C33—C34—C35 | −178.4 (3) |
O16—C17—C18—O20 | −1.5 (5) | O36—C37—C38—O39 | −179.0 (3) |
C17—C18—O19—K41 | −46.1 (5) | O36—C37—C38—O40 | 1.2 (5) |
C17—C18—O20—K41i | 52.3 (4) | C37—C38—O39—K41ii | 44.9 (5) |
C17—C18—O20—K41ii | −153.2 (2) | C37—C38—O40—K41 | 153.2 (3) |
O19—C18—O20—K41ii | 26.3 (5) | C37—C38—O40—K41iv | −54.7 (4) |
O19—C18—O20—K41i | −128.2 (3) | O39—C38—O40—K41 | −26.5 (5) |
O20—C18—O19—K41 | 134.3 (3) | O39—C38—O40—K41iv | 125.6 (3) |
K41i—O16—C17—C18 | −40.0 (3) | O40—C38—O39—K41ii | −135.4 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+2, −y+2, −z+1; (v) −x+2, −y+1, −z+1. |
Cg3 and Cg4 are the centroids of rings C10–C15 and C30–C35, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O19—H19···O39 | 1.19 (4) | 1.27 (4) | 2.463 (3) | 174 (4) |
O19—H19···O40 | 1.19 (4) | 2.47 (4) | 3.259 (3) | 122 (2) |
C6—H6···O9 | 0.93 | 2.52 | 2.834 (6) | 100 |
C26—H26···O29 | 0.93 | 2.49 | 2.814 (6) | 100 |
C17—H17A···Cg4vi | 0.97 | 2.76 | 3.509 (4) | 134 |
C37—H37B···Cg3i | 0.97 | 2.82 | 3.535 (4) | 131 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (vi) −x+1, −y+2, −z+1. |
Molecule A includes atoms S1–O20, molecule B atoms S21–O40. |
Contact | Molecule A | Molecule B |
H···H | 31.6 | 31.9 |
C···H/H···C | 21.1 | 20.0 |
O···H/H···O | 17.4 | 17.3 |
S···H/H···S | 8.8 | 9.9 |
O···C/C···O | 5.8 | 5.5 |
K···O/O···K | 4.8 | 4.7 |
C···C | 4.9 | 4.8 |
S···C/C···S | 2.0 | 2.3 |
S···S | 0.9 | 1.0 |
K···H/H···K | 0.7 | 0.6 |
Acknowledgements
Author contributions are as follows. Conceptualization, LNN and TVQ; synthesis, LPT, DDB and DTTT; IR, NMR spectra measurements and analysis, LDK, HHM and KLV; writing (review and editing of the manuscript), CNT, HT and LVM; crystal-structure determination and validation, LVM.
Funding information
LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035. This study is funded by Vietnam Ministry of Education and Training under grant No. B.2019-SPH-562–05.
References
Abdul Ajees, A., Shubhalaxmi, Manjunatha, B. S., Kumar, S. M., Byrappa, K. & Subrahmanya Bhat, K. (2017). Chem. Data Collect. 9–10, 61–67. Google Scholar
Chayer, M., Faïd, K. & Leclerc, M. (1997). Chem. Mater. 9, 2902–2905. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ewbank, P. C., Loewe, R. S., Zhai, L., Reddinger, J., Sauvé, G. & McCullough, R. D. (2004). Tetrahedron, 60, 11269–11275. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Janáky, C., Endrődi, B., Kovács, K., Timko, M., Sápi, A. & Visy, C. (2010). Synth. Met. 160, 65–71. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McCullough, R. D., Ewbank, P. C. & Loewe, R. S. (1997). J. Am. Chem. Soc. 119, 633–634. CrossRef CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Trung, V. Q., Linh, N. N., Duong, T. T. T., Chinh, N. T., Linh, D. K., Hung, H. M. & Oanh, D. T. Y. (2019a). Vietnam. J. Chem. 57, 770–776. Web of Science CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Vu Quoc, T., Tran, T. D., Nguyen, T. C., Nguyen, T. V., Nguyen, H., Vinh, P. V., Nguyen-Trong, D., Dinh Duc, N. & Nguyen-Tri, P. (2020). Polymers, 12, 1207. Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Tran Thi Thuy, D., Vu Quoc, M., Vuong Nguyen, T., Oanh Doan Thi, Y. & Van Meervelt, L. (2019b). Acta Cryst. E75, 1090–1095. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019c). Acta Cryst. E75, 957–963. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, F., Li, M., Wang, B., Zhang, J., Cheng, Y., Liu, L., Ly, F. & Wang, S. (2015). Sci. Rep. 5, 1–8. Google Scholar
Wang, L., Zhang, G., Pei, M., Hu, L., Li, E. & Li, H. (2013). J. Appl. Polym. Sci. 130, 939–943. Web of Science CrossRef CAS Google Scholar
Wu, T., Wang, L., Zhang, Y., Du, S., Guo, W. & Pei, M. (2015). RSC Adv. 5, 16684–16690. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.