research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of 3,6-di­hy­droxy­picolinic acid and its labile inter­mediate dipotassium 3-hy­dr­oxy-6-(sulfonato­­oxy)pyridine-2-carboxyl­ate monohydrate

crossmark logo

aDepartment of Chemistry & Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio, 43210, USA, and bDepartment of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky, 40506, USA
*Correspondence e-mail: behrman.1@osu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 May 2021; accepted 10 May 2021; online 14 May 2021)

A simplified two-step synthesis of 3,6-di­hydroxy­picolinic acid (3-hy­droxy-6-oxo-1,6-di­hydro­pyridine-2-carb­oxy­lic acid), C6H5NO4 (II), an inter­mediate in the metabolism of picolinic acid, is described. The crystal structure of II, along with that of a labile inter­mediate, dipotassium 3-hy­droxy-6-(sulfonato­oxy)pyridine-2-carboxyl­ate monohydrate, 2K+·C6H3NO7S2−·H2O (I), is also described. Compound I comprises a pyridine ring with carboxyl­ate, hydroxyl (connected by an intra­molecular O—H⋯O hydrogen bond), and sulfate groups at the 2-, 3-, and 6-positions, respectively, along with two potassium cations for charge balance and one water mol­ecule of crystallization. These components are connected into a three-dimensional network by O—H⋯O hydrogen bonds arising from the water mol­ecule, C—H⋯O inter­actions and ππ stacking of pyridine rings. In II, the ring nitro­gen atom is protonated, with charge balance provided by the carboxyl­ate group (i.e., a zwitterion). The intra­molecular O—H⋯O hydrogen bond observed in I is preserved in II. Crystals of II have unusual space-group symmetry of type Abm2 in which extended planar networks of O—H⋯O and N—H⋯O hydrogen-bonded mol­ecules form sheets lying parallel to the ac plane, constrained to b = 0.25 (and 0.75). The structure was refined as a 50:50 inversion twin. A minor disorder component was modeled by reflection of the major component across a mirror plane perpendicular to c.

1. Chemical context

3,6-Di­hydroxy­picolinic acid (3-hy­droxy-6-pyridone-2-carb­oxy­lic acid), C6H5NO4, is an inter­mediate in the metabolism of picolinic acid by several microorganisms (Shukla & Kaul, 1973[Shukla, O. P. & Kaul, S. M. (1973). Indian J. Biochem. Biophys. 10, 176-178.]; Shukla et al., 1977[Shukla, O. P., Kaul, S. M. & Khanna, M. (1977). Indian J. Biochem. Biophys. 14, 292-295.]; Qiu et al., 2019[Qiu, J., Zhang, Y., Yao, S., Ren, H., Qian, M., Hong, Q., Lu, Z. & He, J. (2019). J. Bact. 201, e00665-18.]). It was isolated from culture media and partially characterized by Shukla & Kaul (1973[Shukla, O. P. & Kaul, S. M. (1973). Indian J. Biochem. Biophys. 10, 176-178.]; Shukla et al., 1977[Shukla, O. P., Kaul, S. M. & Khanna, M. (1977). Indian J. Biochem. Biophys. 14, 292-295.]) whose work is misrepresented by Qiu et al. (2019[Qiu, J., Zhang, Y., Yao, S., Ren, H., Qian, M., Hong, Q., Lu, Z. & He, J. (2019). J. Bact. 201, e00665-18.]) by stating that their work was only theoret­ical. It was synthesized by a six-step procedure from 3-hy­droxy­picolinic acid and characterized by mass spectrometry and NMR data (Qiu et al., 2019[Qiu, J., Zhang, Y., Yao, S., Ren, H., Qian, M., Hong, Q., Lu, Z. & He, J. (2019). J. Bact. 201, e00665-18.], with C. Shen).

We report here a two-step synthesis also starting with 3-hy­droxy­picolinic acid by an Elbs oxidation (Behrman, 1988[Behrman, E. J. (1988). Org. React. 35, 421-511.]; 2021[Behrman, E. J. (2021). Mini-Rev. Org. Chem. 18, 621-625.]) and crystal structures of both the inter­mediate sulfate ester (I) and of 3,6-di­hydroxy­picolinic acid (II). We considered two routes, as shown in Fig. 1[link]. Both give the desired product but we chose the pathway from 3-hy­droxy­picolinic acid because in the first step, the dipotassium salt of the 6-sulfate ester precipitates from the mixture in an almost pure state.

[Scheme 1]
[Figure 1]
Figure 1
Two synthetic routes to 3,6-di­hydroxy­picolinic acid (II), showing tautomerism of the product.

This sulfate ester is extraordinarily sensitive to acid-catal­yzed hydrolysis; acidification at room temperature (RT) gives complete hydrolysis in a few minutes. The isomeric 6-oxo-picolinic acid-3-sulfate is much more stable although subject to anchimeric assistance (Benkovic, 1966[Benkovic, S. J. (1966). J. Am. Chem. Soc. 88, 5511-5515.]); it is not completely hydrolyzed after 22 h, RT, pH 2. Nantka-Namirski & Rykowski (1972a[Nantka-Namirski, P. & Rykowski, A. (1972a). Acta Pol. Pharm. 29, 129-134 [Eng. Trans.].],b[Nantka-Namirski, P. & Rykowski, A. (1972b). Acta Pol. Pharm. 29, 233-238. [Eng. Trans.].]) used boiling 20% sulfuric acid for four hours to effect the hydrolyses of the 5-sulfate esters of two di­hydroxy­nicotinic acids. For the rapid hydrolysis of pyridyl-4-sulfate see Jerfy & Roy (1970[Jerfy, A. & Roy, A. B. (1970). Aust. J. Chem. 23, 847-852.]) and Goren & Kochansky (1973[Goren, M. B. & Kochansky, M. E. (1973). J. Org. Chem. 38, 3510-3513.]) for the effects of impurities. A reasonable representation of the mechanism of the hydrolysis for the 4-sulfate is shown in Fig. 2[link]a. The 2-sulfate should behave similarly (Fig. 2[link]b). Jerfy & Roy (1970[Jerfy, A. & Roy, A. B. (1970). Aust. J. Chem. 23, 847-852.]) also showed that sulfation of 2-pyridone gives the sulfamate, so that it has not yet been possible to prepare the pyridyl-2-sulfate for comparative purposes. However, a route to 5-hy­droxy­pyridine-2-sulfate together with the isomeric 4- and 6-sulfate esters is known (Behrman & Pitt, 1958[Behrman, E. J. & Pitt, B. M. (1958). J. Am. Chem. Soc. 80, 3717-3718.]). Examination of these mixed esters by electrophoresis shows that all three are rapidly hydrolyzed under acid catalysis, as predicted by the model. The reaction between potassium per­oxydi­sulfate and 3-hy­droxy­picolinic acid was carried out as usual in KOH solution except that if there is excess per­oxy-di­sulfate, the sulfate ester and the peroxide precipitate from the reaction mixture together: to avoid this the persulfate was used as the limiting reagent. The ester was crystallized from water and 3,6-di­hydroxy­picolinic acid obtained by hydrolysis.

[Figure 2]
Figure 2
(a) A reasonable representation for the mechanism of hydrolysis for the 4-sulfate. (b) The o-sulfate analog ought to behave similarly.

2. Structural commentary

The asymmetric unit in I (Fig. 3[link]) contains a single pyridine ring with a carboxyl­ate group at the 2-position, a hydroxyl group at the 3-position, and a sulfate group attached to the 6-position. Charge balance is provided by a pair of K+ cations. There is also a single water mol­ecule of crystallization present. The carboxyl­ate C—O distances are 1.2510 (16) and 1.2758 (16) Å for C7—O3 and C7—O4, respectively. The longer of these is part of an S(6) intra­molecular hydrogen-bonded ring with the hydroxyl group. In the sulfate group, the oxygen atom bound at the 6-position [C6—O2 = 1.3968 (14) Å] is longer [S1—O2 = 1.6343 (9) Å] than the other three S=O bonds [range 1.4361 (9) to 1.4486 (9) Å], as would be expected for this bonding arrangement.

[Figure 3]
Figure 3
An ellipsoid (50% probability) plot of the asymmetric unit of I. The intra­molecular hydrogen bond is shown by the thick dashed line. Dotted lines indicate close contacts of the K+ cations.

In II (Fig. 4[link]), the nitro­gen atom of the ring is protonated. Charge balance is provided by the deprotonated 2-carboxyl­ate group [C7—O3 = 1.262 (3), C7—O4 = 1.259 (3) Å], leading to a zwitterionic mol­ecule. The intra­molecular S(6) hydrogen-bonded ring from I is preserved in II. The 6-position of the ring is occupied by a second hydroxyl group. As discussed in more detail in section 6 (Refinement), there is a small minor disorder component [refined occupancy 4.7 (3)%] and probable inversion twinning.

[Figure 4]
Figure 4
An ellipsoid (50% probability) plot of the asymmetric unit of II with the intra­molecular hydrogen bond shown as a thick dashed line.

3. Supra­molecular features

In the packing of I, strong Ow—H⋯O (w = water) hydrogen bonds exist in which the water mol­ecule acts as a linker between c-glide-related anions. The water oxygen is also coordinated to the K+ cations, both of which are seven coord­inate. Around K1, coordination distances range from 2.7376 (9)–2.9102 (10) Å (for K⋯O) and 2.7869 (11) Å (K1⋯N). For K2, coordination distances range from 2.6769 (9) to 2.9525 (10) Å (all K⋯O). The coordination geometry about each K+ cation is very roughly penta­gonal bipyramidal, with K1 much more distorted than K2. As each K+ cation is coordinated to the water mol­ecule, the KO6N and KO7 polyhedra augment the extended chains that propagate parallel to c (Fig. 5[link], Table 1[link]). In addition, there are weaker C—H⋯O contacts: pairs of C5—H5⋯O6ii inter­actions form R22(12) inversion-related dimers and C4—H4⋯O5i contacts link mol­ecules via c-glide symmetry (symmetry codes as per Table 1[link]). This in turn joins c-glide-related pyridine rings into an extended ππ stack along the c-axis direction. Adjacent rings within the stacks are almost parallel; the dihedral angle being 0.38 (4)° with a centroid–centroid distance of 3.698 (1) Å. These columns of hydrogen-bonded and π-stacked mol­ecules are inter­linked by the aforementioned chains of K+ cations and water mol­ecules into a three-dimensional network (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.843 (19) 1.760 (19) 2.5429 (13) 153.6 (17)
C4—H4⋯O5i 0.95 2.64 3.3682 (16) 133
C5—H5⋯O6ii 0.95 2.35 3.2943 (15) 175
O1W—H1W⋯O3iii 0.83 (2) 1.97 (2) 2.7852 (13) 165 (2)
O1W—H2W⋯O4iv 0.83 (2) 2.09 (2) 2.8910 (14) 161 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) x+1, y, z; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
A view of the packing in I, viewed down the c axis. Intra­molecular hydrogen bonds are shown as thick dashed lines, open dashed lines indicate strong inter­molecular hydrogen bonds, and thin dashed lines denote weaker C—H⋯O inter­actions. Dangling hydrogen bonds extend beyond the depth of the view.

The most remarkable feature of the packing in II are extended di-periodic hydrogen-bonded networks lying parallel to the ac plane (Fig. 6[link], Table 2[link]) that are constrained to b = 0.25 (and 0.75) as a consequence of the unusual space-group symmetry of type Abm2. Strong O2—H2O⋯O3i and N1—H1N⋯O4i hydrogen bonds link pairs of 21 screw-related mol­ecules into R22(8) motifs that extend to form ribbons parallel to c. Weaker C4—H4⋯O2iii and C5—H5⋯O1ii (symmetry codes as per Table 2[link]) inter­actions join 21 screw-related ribbons to form the aforementioned networks. Contacts between these planar networks are limited to weak van der Waals inter­actions.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

The DA distance for C4—H4⋯O2iii is rather long, but within the bounds noted by Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p49. Oxford University Press.]).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.99 1.77 2.755 (3) 169
O1—H1O⋯O4 0.89 1.76 2.535 (3) 145
C5—H5⋯O1ii 0.95 2.34 3.269 (3) 166
C4—H4⋯O2iii 0.95 2.76 3.712 (4) 180
O2—H2O⋯O3i 0.94 1.57 2.459 (3) 156
O2—H2O⋯O4i 0.94 2.56 3.372 (3) 144
Symmetry codes: (i) [-x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 6]
Figure 6
A view of the planar diperiodic network in crystalline II, viewed normal to the ac plane. Intra­molecular hydrogen bonds are drawn as thick dashed lines, strong inter­molecular hydrogen bonds (O—H⋯O and N—H⋯O) are drawn as double dashed lines. Weaker hydrogen bonds (C—H⋯O) are drawn as thin dashed lines.

4. Database survey

A search of the Cambridge Structure Database (CSD v5.42, Nov. 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) on a fragment composed of 3-picolinic acid with `any non-H' at the 6-position gave only seven hits. None of these have much in common with I or II, but the most similar were AGUMEV (ammonium 2,4,6-tri­carb­oxy­pyridine-3-olate monohydrate; Li et al., 2010[Li, C.-J., Lin, Z., Yun, L., Xie, Y.-L., Leng, J.-D., Ou, Y.-C. & Tong, M.-L. (2010). CrystEngComm, 12, 425-433.]) and MAFTEU (6-chloro-3-tri­fluoro­meth­oxy pyridine-2-carb­oxy­lic acid; Manteau et al., 2010[Manteau, B., Genix, P., Brelot, L., Vors, J.-P., Pazenok, S., Giornal, F., Leuenberger, C. & Leroux, F. R. (2010). Eur. J. Org. Chem. pp. 6043-6066.]) in that their main components consist of a single pyridine ring with a carb­oxy­lic acid group adjacent to the ring nitro­gen and an oxygen (O in AGUMEV; O—CF3 in MAFTEU) at the 3-position.

Space group Abm2 is not common, with only 62 entries listed in v5.42 of the CSD. Excluding polymers, entries flagged with known errors, and those without deposited coordinates left only 47 hits, i.e. <0.005% of known structures. Of these, only 29 have R1 ≤ 5% and none form planar networks in a manner similar to II. By any measure, the crystal structure of II is unusual.

5. Synthesis and crystallization

3-Hy­droxy­pyridine-2-carb­oxy­lic acid-6-sulfate dipotassium salt monohydrate (I): Potassium hydroxide (85%, 1 g, 15 mmol) was dissolved in 10 ml of water and cooled. 3-Hy­droxy­picolinic acid (0.82 g, 6 mmol) followed by potassium per­oxy­disulfate (0.9 g, 3.3 mmol) were added. The reaction mixture was stirred at RT for 24 h. The precipitate was filtered and dried by washing with acetone, yielding 0.46–0.49 g (∼44%) of the dipotassium salt of 3-hy­droxy­pyridine-2-carb­oxy­lic acid-6-sulfate monohydrate (I). Compound I migrates on paper electrophoresis at pH 7.5 with Rp = 2 as a fluorescent spot. Rp is the migration distance relative to picric acid at Rp = 1 (the starting material has Rp = 1.1). Crystals of I grow from aqueous solution when treated as follows: 0.16 g were suspended in 2.0 ml of water, dissolved by heating carefully to about 313 K, and then cooled slowly to RT. Further cooling to 278 K overnight gave 0.12 g of needles. Analysis (%) calculated for C6H5NO8K2S: C, 2l.88; H, 1.53; N, 4.25. Found: C, 21.97; H, 1.44; N, 4.25. IR(Nujol): 3485, 3310, 3096, 1701, 1684, 1624, 1574, 1250, 1059, 957, 860, 833, 768, 716, 638 cm−1. NMR(D2O, 600 MHz) δ 7.27 (d, J = 8.82 Hz), 7.45 (d, J = 8.82 Hz). UV (in water): λmax, (nm), ɛ (l mol−1 cm−1): 307, 1120; 230, 1200; 205, 4180. Heating behavior: I begins to discolor at about 448 K and then gets darker without melting up to 523 K.

3,6-Di­hydroxy­picolinic acid (II): The crude sulfate (I, 150 mg), was suspended in 2 ml of water and then heated to about 313 K to dissolve it. HCl was then added to about pH 2. A heavy precipitate formed immediately. After cooling, the colorless solid was filtered and washed with cold water to yield 50–60 mg of the product (yield 67–80%), Rp = 1. The proton NMR spectrum of II agreed with that reported by Qiu et al. (2019[Qiu, J., Zhang, Y., Yao, S., Ren, H., Qian, M., Hong, Q., Lu, Z. & He, J. (2019). J. Bact. 201, e00665-18.]) except that our spectrum was taken in D2O, 600 MHz, δ 6.69 (d, J = 9.65 Hz) and 7.45 (d, J = 9.65 Hz). These are shifted because of the solvent difference from Qiu et al. (2019[Qiu, J., Zhang, Y., Yao, S., Ren, H., Qian, M., Hong, Q., Lu, Z. & He, J. (2019). J. Bact. 201, e00665-18.]), but the couplings are the same, as is the difference between the two resonances (δ 0.76). 50 mg of II was crystallized from 11 ml of hot water under argon to form 35 mg of crystals. Analytical results show that the precipitate is very nearly as clean as the crystals. Analysis (%): calculated for C6H5NO4: C, 46.46; H, 3.25; N, 9.03. Found (crystals), C, 46.22; H, 3.20; N, 9.07. (precipitate), C, 45.65; H, 3.16; N, 9.10. IR: Nujol, 3120, 1614, 1540, 1360, 1269, 1100, 845, 810, 760, 621 cm−1. Later, larger crystals were obtained using 88% formic acid as solvent. Upon heating, II carbonizes above 473 K without melting. UV (in water): λmax, (nm), ɛ (l mol−1 cm−1) at pH 7: 346, 5970; 243, 4350; 221.5, 9450. Shukla & Kaul (1973[Shukla, O. P. & Kaul, S. M. (1973). Indian J. Biochem. Biophys. 10, 176-178.]) reported the pH-dependence of the spectrum. [See also Qiu et al. (2019[Qiu, J., Zhang, Y., Yao, S., Ren, H., Qian, M., Hong, Q., Lu, Z. & He, J. (2019). J. Bact. 201, e00665-18.]), but on p. S2, line 3, read `240' for `360'.]

6. Data collection, structure solution and refinement

The crystals were mounted using polyisobutene oil on the tip of fine glass fibers, which were fastened in copper mounting pins with electrical solder. Crystals of I were placed directly into the cold gas stream of a liquid-N2 based cryostat, while crystals of II were handled using methods developed for macromolecular cryocrystallography (Parkin & Hope, 1998b[Parkin, S. & Hope, H. (1998b). J. Appl. Cryst. 31, 945-953.]). Diffraction data were collected with the crystals at 90 K. Crystal data, data collection and refinement details are summarized in Table 3[link]. In II, a small minor disorder component was apparent in a difference map. It was modeled by reflection of the major component across a mirror plane perpendicular to its c axis, with coordinates related by the mirror plane and constrained by mapping its coordinates to the major component via SHELXL FVAR parameters. A test for twinning by inversion using the Flack parameter [x = 0.5 (3); Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]] was indeterminate. The Hooft (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) and Parsons (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) parameters [y = 0.63 (7); z = 0.62 (10), respectively], however, each gave a much stronger suggestion of twinning by inversion. Since the space group itself has a twofold parallel to its c axis, this results in a mirror operation (i.e. a twofold rotation combined with inversion). Thus, the twinning and disorder in II may effectively be treated by the same operation, not unlike that in uric acid dihydrate (Parkin & Hope, 1998a[Parkin, S. & Hope, H. (1998a). Acta Cryst. B54, 339-344.]; Parkin, 2000[Parkin, S. (2000). Acta Cryst. A56, 157-162.]). To ensure satisfactory refinement of disorder, constraints (SHELXL command EADP) were used to equalize displacement parameters of superimposed groups. Full occupancy (and major component for II) hydrogen atoms were found in difference-Fourier maps. Carbon-bound hydrogen atoms were included using riding models with constrained distances set to 0.95 Å (Csp2H). In I, the water H atoms were refined but subject to distance and angle–distance restraints, while the hydroxyl H atom was refined freely. In II, for O—H and N—H groups, riding models that allowed the bond distance to refine were used. Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (OH only) of the attached atom. The structures were validated using PLATON and checkCIF (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 3
Experimental details

  I II
Crystal data
Chemical formula 2K+·C6H3NO7S2−·H2O C6H5NO4
Mr 329.37 155.11
Crystal system, space group Monoclinic, P21/c Orthorhombic, Abm2
Temperature (K) 90 90
a, b, c (Å) 13.3366 (4), 11.5467 (3), 7.3078 (2) 10.2045 (6), 6.1282 (4), 9.7293 (6)
α, β, γ (°) 90, 103.553 (1), 90 90, 90, 90
V3) 1094.02 (5) 608.42 (7)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 1.09 1.27
Crystal size (mm) 0.18 × 0.16 × 0.13 0.14 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.793, 0.862 0.799, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 22347, 2505, 2423 4025, 700, 690
Rint 0.036 0.025
(sin θ/λ)max−1) 0.650 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.056, 1.08 0.024, 0.068, 1.11
No. of reflections 2505 700
No. of parameters 174 74
No. of restraints 3 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.44 0.20, −0.25
Absolute structure Refined as a perfect inversion twin
Absolute structure parameter 0.5
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX. https://xray.uky.edu/Resources/scripts/ciffix]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and CIFFIX (Parkin, 2013).

Dipotassium 3-hydroxy-6-(sulfonatooxy)pyridine-2-carboxylate monohydrate (I) top
Crystal data top
2K+·C6H3NO7S2·H2OF(000) = 664
Mr = 329.37Dx = 2.000 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.3366 (4) ÅCell parameters from 9459 reflections
b = 11.5467 (3) Åθ = 3.1–27.5°
c = 7.3078 (2) ŵ = 1.09 mm1
β = 103.553 (1)°T = 90 K
V = 1094.02 (5) Å3Block, colourless
Z = 40.18 × 0.16 × 0.13 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
2505 independent reflections
Radiation source: microsource2423 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.036
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.793, Tmax = 0.862k = 1414
22347 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.7213P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2505 reflectionsΔρmax = 0.40 e Å3
174 parametersΔρmin = 0.44 e Å3
3 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (12)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.11303 (2)0.44196 (2)0.29817 (4)0.01068 (9)
K20.65851 (2)0.37254 (2)0.80722 (4)0.01048 (9)
S10.39446 (2)0.56402 (3)0.68497 (4)0.00841 (9)
O10.18689 (8)0.05598 (7)0.56350 (13)0.01168 (19)
H1O0.1278 (15)0.0662 (15)0.584 (3)0.018*
O20.32641 (7)0.49448 (8)0.50302 (12)0.00997 (18)
O30.01000 (7)0.34563 (8)0.61547 (13)0.01185 (19)
O40.02411 (7)0.15242 (8)0.61413 (13)0.01227 (19)
O50.32663 (7)0.58023 (8)0.81136 (13)0.01295 (19)
O60.41500 (7)0.66929 (8)0.59303 (13)0.01295 (19)
O70.48251 (7)0.49241 (8)0.76027 (14)0.0149 (2)
N10.20276 (8)0.37108 (9)0.55903 (14)0.0088 (2)
C20.16613 (9)0.26318 (11)0.57169 (17)0.0088 (2)
C30.22393 (10)0.16468 (11)0.55284 (17)0.0093 (2)
C40.32289 (10)0.17884 (11)0.52150 (17)0.0105 (2)
H40.3638740.1133280.5090290.013*
C50.35984 (9)0.28931 (11)0.50905 (17)0.0104 (2)
H50.4265680.3022830.4879550.013*
C60.29543 (10)0.38126 (10)0.52862 (17)0.0089 (2)
C70.05895 (9)0.25453 (11)0.60404 (17)0.0096 (2)
O1W0.85262 (7)0.30218 (9)0.79832 (14)0.0151 (2)
H1W0.8909 (13)0.3167 (17)0.726 (2)0.023*
H2W0.8914 (13)0.3145 (17)0.903 (2)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.00957 (14)0.00968 (14)0.01288 (14)0.00117 (9)0.00285 (10)0.00086 (9)
K20.00967 (14)0.01126 (14)0.01074 (14)0.00044 (9)0.00281 (10)0.00146 (9)
S10.00738 (15)0.00825 (15)0.00966 (15)0.00042 (10)0.00215 (11)0.00085 (10)
O10.0117 (5)0.0075 (4)0.0169 (5)0.0005 (3)0.0054 (4)0.0000 (3)
O20.0121 (4)0.0089 (4)0.0087 (4)0.0027 (3)0.0019 (3)0.0002 (3)
O30.0096 (4)0.0123 (4)0.0142 (4)0.0010 (3)0.0038 (3)0.0002 (3)
O40.0109 (4)0.0112 (4)0.0154 (4)0.0017 (3)0.0044 (3)0.0009 (3)
O50.0123 (4)0.0164 (5)0.0111 (4)0.0004 (4)0.0048 (3)0.0019 (4)
O60.0147 (5)0.0093 (4)0.0160 (4)0.0028 (3)0.0059 (4)0.0002 (3)
O70.0108 (4)0.0139 (4)0.0180 (5)0.0033 (3)0.0005 (4)0.0017 (4)
N10.0096 (5)0.0093 (5)0.0072 (5)0.0002 (4)0.0015 (4)0.0006 (4)
C20.0086 (5)0.0101 (6)0.0076 (5)0.0008 (4)0.0018 (4)0.0005 (4)
C30.0112 (6)0.0082 (6)0.0078 (5)0.0010 (4)0.0008 (4)0.0000 (4)
C40.0104 (6)0.0109 (6)0.0101 (6)0.0021 (4)0.0023 (4)0.0014 (4)
C50.0087 (5)0.0132 (6)0.0096 (5)0.0002 (5)0.0026 (4)0.0014 (4)
C60.0108 (6)0.0082 (5)0.0070 (5)0.0021 (4)0.0010 (4)0.0001 (4)
C70.0091 (6)0.0129 (6)0.0065 (5)0.0007 (4)0.0011 (4)0.0002 (4)
O1W0.0113 (5)0.0165 (5)0.0181 (5)0.0005 (4)0.0044 (4)0.0003 (4)
Geometric parameters (Å, º) top
K1—O4i2.7376 (9)K2—K2x4.6216 (3)
K1—O32.7428 (10)S1—O71.4361 (9)
K1—O5ii2.7843 (10)S1—O61.4457 (9)
K1—N1ii2.7869 (11)S1—O51.4486 (9)
K1—O3ii2.8099 (10)S1—O21.6343 (9)
K1—O1Wiii2.856 (1)O1—C31.3577 (15)
K1—O1iv2.9102 (10)O1—H1O0.843 (19)
K1—S1ii3.7848 (4)O2—C61.3968 (14)
K1—K1ii3.9268 (5)O3—C71.2510 (16)
K1—K2v4.2041 (4)O4—C71.2758 (16)
K1—K2iii4.7508 (4)N1—C61.3112 (16)
K2—O72.6769 (9)N1—C21.3492 (16)
K2—O6vi2.7084 (10)C2—C31.3988 (17)
K2—O1W2.7286 (10)C2—C71.5057 (17)
K2—O2vii2.7842 (9)C3—C41.4010 (17)
K2—O5viii2.8012 (9)C4—C51.3781 (18)
K2—O6vii2.8993 (10)C4—H40.9500
K2—O1ix2.9525 (10)C5—C61.3940 (17)
K2—S1vii3.5751 (4)C5—H50.9500
K2—S1vi3.6348 (4)O1W—H1W0.832 (15)
K2—K2i4.6216 (3)O1W—H2W0.831 (15)
O4i—K1—O385.28 (3)O5viii—K2—K1xi41.02 (2)
O4i—K1—O5ii125.34 (3)O6vii—K2—K1xi154.00 (2)
O3—K1—O5ii125.08 (3)O1ix—K2—K1xi43.784 (19)
O4i—K1—N1ii152.53 (3)S1vii—K2—K1xi138.793 (10)
O3—K1—N1ii102.82 (3)S1vi—K2—K1xi106.147 (8)
O5ii—K1—N1ii71.26 (3)O7—K2—K2i112.19 (2)
O4i—K1—O3ii96.31 (3)O6vi—K2—K2i75.48 (2)
O3—K1—O3ii90.00 (3)O1W—K2—K2i67.86 (2)
O5ii—K1—O3ii123.94 (3)O2vii—K2—K2i71.370 (18)
N1ii—K1—O3ii58.00 (3)O5viii—K2—K2i153.22 (2)
O4i—K1—O1Wiii74.51 (3)O6vii—K2—K2i33.178 (19)
O3—K1—O1Wiii70.34 (3)O1ix—K2—K2i124.254 (19)
O5ii—K1—O1Wiii75.87 (3)S1vii—K2—K2i50.703 (5)
N1ii—K1—O1Wiii132.96 (3)S1vi—K2—K2i56.517 (8)
O3ii—K1—O1Wiii158.67 (3)K1xi—K2—K2i131.084 (6)
O4i—K1—O1iv81.77 (3)O7—K2—K2x104.80 (2)
O3—K1—O1iv163.61 (3)O6vi—K2—K2x35.86 (2)
O5ii—K1—O1iv71.02 (3)O1W—K2—K2x90.71 (2)
N1ii—K1—O1iv84.60 (3)O2vii—K2—K2x174.19 (2)
O3ii—K1—O1iv81.53 (3)O5viii—K2—K2x49.13 (2)
O1Wiii—K1—O1iv115.26 (3)O6vii—K2—K2x129.27 (2)
O4i—K1—S1ii142.24 (2)O1ix—K2—K2x108.403 (19)
O3—K1—S1ii111.50 (2)S1vii—K2—K2x152.157 (10)
O5ii—K1—S1ii18.571 (19)S1vi—K2—K2x49.568 (8)
N1ii—K1—S1ii59.06 (2)K1xi—K2—K2x64.932 (5)
O3ii—K1—S1ii116.43 (2)K2i—K2—K2x104.485 (11)
O1Wiii—K1—S1ii79.72 (2)O7—S1—O6115.80 (6)
O1iv—K1—S1ii84.87 (2)O7—S1—O5114.01 (6)
O4i—K1—K1ii91.22 (2)O6—S1—O5113.72 (6)
O3—K1—K1ii45.69 (2)O7—S1—O2106.09 (5)
O5ii—K1—K1ii143.23 (2)O6—S1—O299.47 (5)
N1ii—K1—K1ii77.04 (2)O5—S1—O2105.75 (5)
O3ii—K1—K1ii44.305 (19)O7—S1—K2vii117.03 (4)
O1Wiii—K1—K1ii115.57 (2)O6—S1—K2vii51.28 (4)
O1iv—K1—K1ii124.38 (2)O5—S1—K2vii127.54 (4)
S1ii—K1—K1ii125.061 (11)O2—S1—K2vii48.78 (3)
O4i—K1—K2v86.50 (2)O7—S1—K2ix134.65 (4)
O3—K1—K2v144.54 (2)O6—S1—K2ix40.71 (4)
O5ii—K1—K2v41.328 (19)O5—S1—K2ix73.18 (4)
N1ii—K1—K2v100.27 (2)O2—S1—K2ix114.92 (3)
O3ii—K1—K2v125.21 (2)K2vii—S1—K2ix79.729 (8)
O1Wiii—K1—K2v74.21 (2)O7—S1—K1ii134.83 (4)
O1iv—K1—K2v44.587 (19)O6—S1—K1ii109.13 (4)
S1ii—K1—K2v59.892 (7)O5—S1—K1ii37.75 (4)
K1ii—K1—K2v168.952 (12)O2—S1—K1ii69.61 (3)
O4i—K1—K2iii101.95 (2)K2vii—S1—K1ii94.176 (9)
O3—K1—K2iii86.38 (2)K2ix—S1—K1ii79.600 (8)
O5ii—K1—K2iii46.95 (2)C3—O1—K1xii114.60 (7)
N1ii—K1—K2iii104.70 (2)C3—O1—K2vi116.45 (7)
O3ii—K1—K2iii161.00 (2)K1xii—O1—K2vi91.63 (3)
O1Wiii—K1—K2iii30.91 (2)C3—O1—H1O104.4 (12)
O1iv—K1—K2iii106.07 (2)K1xii—O1—H1O95.2 (12)
S1ii—K1—K2iii48.809 (6)K2vi—O1—H1O131.0 (12)
K1ii—K1—K2iii129.234 (11)C6—O2—S1118.44 (7)
K2v—K1—K2iii61.786 (6)C6—O2—K2vii134.86 (7)
O7—K2—O6vi96.93 (3)S1—O2—K2vii105.02 (4)
O7—K2—O1W163.59 (3)C7—O3—K1120.18 (8)
O6vi—K2—O1W98.84 (3)C7—O3—K1ii120.90 (8)
O7—K2—O2vii80.73 (3)K1—O3—K1ii90.00 (3)
O6vi—K2—O2vii142.83 (3)C7—O4—K1x133.68 (8)
O1W—K2—O2vii83.96 (3)S1—O5—K1ii123.68 (5)
O7—K2—O5viii83.24 (3)S1—O5—K2viii138.63 (5)
O6vi—K2—O5viii81.17 (3)K1ii—O5—K2viii97.65 (3)
O1W—K2—O5viii103.61 (3)S1—O6—K2ix118.92 (5)
O2vii—K2—O5viii134.52 (3)S1—O6—K2vii105.82 (5)
O7—K2—O6vii82.98 (3)K2ix—O6—K2vii110.96 (3)
O6vi—K2—O6vii93.96 (2)S1—O7—K2163.84 (6)
O1W—K2—O6vii91.42 (3)C6—N1—C2117.72 (11)
O2vii—K2—O6vii48.87 (3)C6—N1—K1ii119.90 (8)
O5viii—K2—O6vii164.72 (3)C2—N1—K1ii119.70 (8)
O7—K2—O1ix101.29 (3)N1—C2—C3121.82 (11)
O6vi—K2—O1ix143.63 (3)N1—C2—C7116.38 (11)
O1W—K2—O1ix68.03 (3)C3—C2—C7121.79 (11)
O2vii—K2—O1ix71.74 (3)O1—C3—C2121.99 (11)
O5viii—K2—O1ix70.16 (3)O1—C3—C4119.11 (11)
O6vii—K2—O1ix119.21 (3)C2—C3—C4118.90 (11)
O7—K2—S1vii78.73 (2)C5—C4—C3118.94 (11)
O6vi—K2—S1vii116.72 (2)C5—C4—H4120.5
O1W—K2—S1vii90.11 (2)C3—C4—H4120.5
O2vii—K2—S1vii26.201 (18)C4—C5—C6117.37 (11)
O5viii—K2—S1vii155.84 (2)C4—C5—H5121.3
O6vii—K2—S1vii22.895 (18)C6—C5—H5121.3
O1ix—K2—S1vii97.67 (2)N1—C6—C5125.24 (11)
O7—K2—S1vi109.94 (2)N1—C6—O2115.26 (11)
O6vi—K2—S1vi20.38 (2)C5—C6—O2119.36 (11)
O1W—K2—S1vi84.12 (2)O3—C7—O4124.78 (11)
O2vii—K2—S1vi127.21 (2)O3—C7—C2118.96 (11)
O5viii—K2—S1vi98.27 (2)O4—C7—C2116.25 (11)
O6vii—K2—S1vi80.302 (19)K2—O1W—K1xiii116.56 (4)
O1ix—K2—S1vi145.27 (2)K2—O1W—H1W132.9 (13)
S1vii—K2—S1vi102.902 (10)K1xiii—O1W—H1W94.4 (14)
O7—K2—K1xi116.69 (2)K2—O1W—H2W108.4 (13)
O6vi—K2—K1xi99.86 (2)K1xiii—O1W—H2W96.0 (14)
O1W—K2—K1xi64.86 (2)H1W—O1W—H2W102.0 (15)
O2vii—K2—K1xi114.43 (2)
O7—S1—O2—C655.28 (10)K1ii—S1—O7—K2142.06 (18)
O6—S1—O2—C6175.77 (9)C6—N1—C2—C30.18 (17)
O5—S1—O2—C666.14 (10)K1ii—N1—C2—C3161.62 (9)
K2vii—S1—O2—C6167.38 (11)C6—N1—C2—C7179.2 (1)
K2ix—S1—O2—C6144.57 (8)K1ii—N1—C2—C719.36 (14)
K1ii—S1—O2—C677.22 (8)K1xii—O1—C3—C2101.95 (11)
O7—S1—O2—K2vii112.10 (5)K2vi—O1—C3—C2152.82 (9)
O6—S1—O2—K2vii8.39 (5)K1xii—O1—C3—C477.87 (12)
O5—S1—O2—K2vii126.48 (5)K2vi—O1—C3—C427.36 (14)
K2ix—S1—O2—K2vii48.05 (4)N1—C2—C3—O1179.28 (11)
K1ii—S1—O2—K2vii115.40 (3)C7—C2—C3—O10.31 (18)
O7—S1—O5—K1ii133.28 (6)N1—C2—C3—C40.54 (18)
O6—S1—O5—K1ii90.99 (7)C7—C2—C3—C4179.51 (11)
O2—S1—O5—K1ii17.12 (7)O1—C3—C4—C5179.41 (11)
K2vii—S1—O5—K1ii32.58 (8)C2—C3—C4—C50.41 (18)
K2ix—S1—O5—K1ii94.73 (5)C3—C4—C5—C60.03 (18)
O7—S1—O5—K2viii43.85 (10)C2—N1—C6—C50.32 (18)
O6—S1—O5—K2viii91.88 (9)K1ii—N1—C6—C5161.09 (9)
O2—S1—O5—K2viii160.01 (7)C2—N1—C6—O2175.49 (10)
K2vii—S1—O5—K2viii150.29 (5)K1ii—N1—C6—O223.10 (13)
K2ix—S1—O5—K2viii88.14 (7)C4—C5—C6—N10.42 (19)
K1ii—S1—O5—K2viii177.13 (12)C4—C5—C6—O2175.23 (11)
O7—S1—O6—K2ix129.41 (6)S1—O2—C6—N194.96 (11)
O5—S1—O6—K2ix5.50 (8)K2vii—O2—C6—N1102.36 (12)
O2—S1—O6—K2ix117.46 (5)S1—O2—C6—C588.96 (12)
K2vii—S1—O6—K2ix125.55 (7)K2vii—O2—C6—C573.72 (14)
K1ii—S1—O6—K2ix45.88 (6)K1—O3—C7—O488.64 (13)
O7—S1—O6—K2vii105.04 (6)K1ii—O3—C7—O4160.99 (9)
O5—S1—O6—K2vii120.05 (5)K1—O3—C7—C289.91 (11)
O2—S1—O6—K2vii8.09 (5)K1ii—O3—C7—C220.46 (14)
K2ix—S1—O6—K2vii125.55 (7)K1x—O4—C7—O330.63 (18)
K1ii—S1—O6—K2vii79.67 (4)K1x—O4—C7—C2150.78 (8)
O6—S1—O7—K244.2 (2)N1—C2—C7—O30.67 (17)
O5—S1—O7—K2179.00 (19)C3—C2—C7—O3178.36 (11)
O2—S1—O7—K265.0 (2)N1—C2—C7—O4179.34 (10)
K2vii—S1—O7—K213.6 (2)C3—C2—C7—O40.31 (17)
K2ix—S1—O7—K289.3 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x1, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x1, y, z1; (vi) x+1, y1/2, z+3/2; (vii) x+1, y+1, z+1; (viii) x+1, y+1, z+2; (ix) x+1, y+1/2, z+3/2; (x) x, y+1/2, z+1/2; (xi) x+1, y, z+1; (xii) x, y1/2, z+1/2; (xiii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.843 (19)1.760 (19)2.5429 (13)153.6 (17)
C4—H4···O5i0.952.643.3682 (16)133
C5—H5···O6vii0.952.353.2943 (15)175
O1W—H1W···O3xiv0.83 (2)1.97 (2)2.7852 (13)165 (2)
O1W—H2W···O4xiii0.83 (2)2.09 (2)2.8910 (14)161 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (vii) x+1, y+1, z+1; (xiii) x+1, y+1/2, z+1/2; (xiv) x+1, y, z.
3-Hydroxy-6-oxo-1,6-dihydropyridine-2-carboxylic acid (II) top
Crystal data top
C6H5NO4Dx = 1.693 Mg m3
Mr = 155.11Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Abm2Cell parameters from 3820 reflections
a = 10.2045 (6) Åθ = 4.3–78.5°
b = 6.1282 (4) ŵ = 1.27 mm1
c = 9.7293 (6) ÅT = 90 K
V = 608.42 (7) Å3Plate, colourless
Z = 40.14 × 0.10 × 0.02 mm
F(000) = 320
Data collection top
Bruker D8 Venture dual source
diffractometer
700 independent reflections
Radiation source: microsource690 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.025
φ and ω scansθmax = 77.8°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1112
Tmin = 0.799, Tmax = 0.971k = 77
4025 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.050P)2 + 0.0512P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.024
700 reflectionsΔρmax = 0.20 e Å3
74 parametersΔρmin = 0.25 e Å3
4 restraintsAbsolute structure: Refined as a perfect inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3327 (2)0.2500000.44103 (19)0.0146 (4)0.953 (3)
H1N0.421 (3)0.25000 (2)0.3976 (15)0.017*0.953 (3)
C20.3260 (2)0.2500000.5827 (2)0.0131 (5)0.953 (3)
C30.2033 (3)0.2500000.6458 (3)0.0148 (5)0.953 (3)
O10.19022 (19)0.2500000.7831 (2)0.0188 (4)0.953 (3)
H1O0.269 (4)0.25000 (2)0.8219 (19)0.028*0.953 (3)
C40.0919 (3)0.2500000.5626 (3)0.0194 (6)0.953 (3)
H40.0077690.2500000.6043430.023*0.953 (3)
C50.1011 (2)0.2500000.4226 (3)0.0191 (5)0.953 (3)
H50.0241660.2500000.3677110.023*0.953 (3)
C60.2280 (2)0.2500000.3592 (3)0.0154 (5)0.953 (3)
O20.2369 (2)0.2500000.22580 (18)0.0186 (4)0.953 (3)
H2O0.326 (3)0.25000 (2)0.200 (1)0.028*0.953 (3)
C70.4488 (2)0.2500000.6616 (2)0.0158 (5)0.953 (3)
O30.55590 (18)0.2500000.59684 (19)0.0182 (4)0.953 (3)
O40.43850 (17)0.2500000.7906 (2)0.0224 (5)0.953 (3)
N1'0.3327 (2)0.2500000.55897 (19)0.0131 (5)0.047 (3)
H1'N0.421 (3)0.25000 (2)0.6024 (16)0.016*0.047 (3)
C2'0.3260 (2)0.2500000.4173 (2)0.0146 (4)0.047 (3)
C3'0.2033 (3)0.2500000.3542 (3)0.0154 (5)0.047 (3)
O1'0.19022 (19)0.2500000.2169 (2)0.0186 (4)0.047 (3)
H1'O0.269 (4)0.25000 (2)0.178 (2)0.028*0.047 (3)
C4'0.0919 (3)0.2500000.4374 (3)0.0191 (5)0.047 (3)
H4'0.0077690.2500000.3956570.023*0.047 (3)
C5'0.1011 (2)0.2500000.5774 (3)0.0194 (6)0.047 (3)
H5'0.0241660.2500000.6322890.023*0.047 (3)
C6'0.2280 (2)0.2500000.6408 (3)0.0148 (5)0.047 (3)
O2'0.2369 (2)0.2500000.77420 (18)0.0188 (4)0.047 (3)
H2'O0.326 (4)0.25000 (2)0.8001 (11)0.028*0.047 (3)
C7'0.4488 (2)0.2500000.3384 (2)0.0158 (5)0.047 (3)
O3'0.55590 (18)0.2500000.40316 (19)0.0182 (4)0.047 (3)
O4'0.43850 (17)0.2500000.2094 (2)0.0224 (5)0.047 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0142 (9)0.0190 (8)0.0105 (11)0.0000.0000 (9)0.000
C20.0127 (12)0.0155 (9)0.0112 (10)0.0000.0016 (9)0.000
C30.0151 (10)0.0180 (11)0.0113 (11)0.0000.0040 (8)0.000
O10.0167 (9)0.0274 (9)0.0123 (8)0.0000.0041 (7)0.000
C40.0159 (12)0.0222 (10)0.0202 (13)0.0000.0025 (10)0.000
C50.0150 (11)0.0259 (10)0.0166 (10)0.0000.0017 (9)0.000
C60.0150 (12)0.017 (1)0.0141 (12)0.0000.0031 (9)0.000
O20.0163 (9)0.0295 (8)0.0101 (8)0.0000.0003 (6)0.000
C70.0167 (10)0.0196 (12)0.0112 (14)0.0000.0002 (9)0.000
O30.0141 (8)0.0268 (7)0.0137 (8)0.0000.0008 (6)0.000
O40.0148 (12)0.0368 (11)0.0157 (9)0.0000.0014 (7)0.000
N1'0.0127 (12)0.0155 (9)0.0112 (10)0.0000.0016 (9)0.000
C2'0.0142 (9)0.0190 (8)0.0105 (11)0.0000.0000 (9)0.000
C3'0.0150 (12)0.017 (1)0.0141 (12)0.0000.0031 (9)0.000
O1'0.0163 (9)0.0295 (8)0.0101 (8)0.0000.0003 (6)0.000
C4'0.0150 (11)0.0259 (10)0.0166 (10)0.0000.0017 (9)0.000
C5'0.0159 (12)0.0222 (10)0.0202 (13)0.0000.0025 (10)0.000
C6'0.0151 (10)0.0180 (11)0.0113 (11)0.0000.0040 (8)0.000
O2'0.0167 (9)0.0274 (9)0.0123 (8)0.0000.0041 (7)0.000
C7'0.0167 (10)0.0196 (12)0.0112 (14)0.0000.0002 (9)0.000
O3'0.0141 (8)0.0268 (7)0.0137 (8)0.0000.0008 (6)0.000
O4'0.0148 (12)0.0368 (11)0.0157 (9)0.0000.0014 (7)0.000
Geometric parameters (Å, º) top
N1—C61.333 (3)N1'—C6'1.333 (3)
N1—C21.381 (3)N1'—C2'1.381 (3)
N1—H1N0.99 (3)N1'—H1'N0.99 (4)
C2—C31.394 (3)C2'—C3'1.394 (3)
C2—C71.470 (3)C2'—C7'1.470 (3)
C3—O11.342 (3)C3'—O1'1.342 (3)
C3—C41.395 (4)C3'—C4'1.395 (4)
O1—H1O0.89 (4)O1'—H1'O0.89 (4)
C4—C51.365 (3)C4'—C5'1.365 (3)
C4—H40.9500C4'—H4'0.9500
C5—C61.434 (3)C5'—C6'1.434 (3)
C5—H50.9500C5'—H5'0.9500
C6—O21.301 (3)C6'—O2'1.301 (3)
O2—H2O0.94 (4)O2'—H2'O0.94 (4)
C7—O41.259 (3)C7'—O4'1.259 (3)
C7—O31.262 (3)C7'—O3'1.262 (3)
C6—N1—C2123.81 (19)C6'—N1'—C2'123.81 (19)
C6—N1—H1N118.1C6'—N1'—H1'N118.1
C2—N1—H1N118.1C2'—N1'—H1'N118.1
N1—C2—C3119.0 (2)N1'—C2'—C3'119.0 (2)
N1—C2—C7118.6 (2)N1'—C2'—C7'118.6 (2)
C3—C2—C7122.41 (19)C3'—C2'—C7'122.41 (19)
O1—C3—C2121.8 (2)O1'—C3'—C2'121.8 (2)
O1—C3—C4119.8 (2)O1'—C3'—C4'119.8 (2)
C2—C3—C4118.4 (2)C2'—C3'—C4'118.4 (2)
C3—O1—H1O109.5C3'—O1'—H1'O109.5
C5—C4—C3121.5 (2)C5'—C4'—C3'121.5 (2)
C5—C4—H4119.2C5'—C4'—H4'119.2
C3—C4—H4119.2C3'—C4'—H4'119.2
C4—C5—C6119.5 (2)C4'—C5'—C6'119.5 (2)
C4—C5—H5120.3C4'—C5'—H5'120.3
C6—C5—H5120.3C6'—C5'—H5'120.3
O2—C6—N1122.7 (2)O2'—C6'—N1'122.7 (2)
O2—C6—C5119.5 (2)O2'—C6'—C5'119.5 (2)
N1—C6—C5117.8 (2)N1'—C6'—C5'117.8 (2)
C6—O2—H2O109.5C6'—O2'—H2'O109.5
O4—C7—O3124.8 (2)O4'—C7'—O3'124.8 (2)
O4—C7—C2116.7 (2)O4'—C7'—C2'116.7 (2)
O3—C7—C2118.53 (19)O3'—C7'—C2'118.53 (19)
C6—N1—C2—C30.000 (1)C6'—N1'—C2'—C3'0.000 (1)
C6—N1—C2—C7180.000 (1)C6'—N1'—C2'—C7'180.000 (1)
N1—C2—C3—O1180.000 (1)N1'—C2'—C3'—O1'180.000 (1)
C7—C2—C3—O10.000 (1)C7'—C2'—C3'—O1'0.000 (1)
N1—C2—C3—C40.000 (1)N1'—C2'—C3'—C4'0.000 (1)
C7—C2—C3—C4180.000 (1)C7'—C2'—C3'—C4'180.000 (1)
O1—C3—C4—C5180.000 (1)O1'—C3'—C4'—C5'180.000 (1)
C2—C3—C4—C50.000 (1)C2'—C3'—C4'—C5'0.000 (1)
C3—C4—C5—C60.000 (1)C3'—C4'—C5'—C6'0.000 (1)
C2—N1—C6—O2180.000 (1)C2'—N1'—C6'—O2'180.000 (1)
C2—N1—C6—C50.000 (1)C2'—N1'—C6'—C5'0.000 (1)
C4—C5—C6—O2180.000 (1)C4'—C5'—C6'—O2'180.000 (1)
C4—C5—C6—N10.000 (1)C4'—C5'—C6'—N1'0.000 (1)
N1—C2—C7—O4180.000 (1)N1'—C2'—C7'—O4'180.000 (1)
C3—C2—C7—O40.000 (1)C3'—C2'—C7'—O4'0.000 (1)
N1—C2—C7—O30.000 (1)N1'—C2'—C7'—O3'0.000 (1)
C3—C2—C7—O3180.000 (1)C3'—C2'—C7'—O3'180.000 (1)
Hydrogen-bond geometry (Å, º) top
The D···A distance for C4—H4···O2iii is rather long, but within the bounds noted by Desiraju & Steiner (1999).
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.991.772.755 (3)169
O1—H1O···O40.891.762.535 (3)145
C5—H5···O1ii0.952.343.269 (3)166
C4—H4···O2iii0.952.763.712 (4)180
O2—H2O···O3i0.941.572.459 (3)156
O2—H2O···O4i0.942.563.372 (3)144
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

Analytical data were provided by Robertson Microlit Laboratories. The D8 Venture diffractometer was funded by the NSF (MRI CHE1625732), and by the University of Kentucky.

Funding information

Funding for this research was provided by: The OSU Emeritus Academy.

References

First citationBehrman, E. J. (1988). Org. React. 35, 421–511.  CAS Google Scholar
First citationBehrman, E. J. (2021). Mini-Rev. Org. Chem. 18, 621–625.  Google Scholar
First citationBehrman, E. J. & Pitt, B. M. (1958). J. Am. Chem. Soc. 80, 3717–3718.  CrossRef CAS Web of Science Google Scholar
First citationBenkovic, S. J. (1966). J. Am. Chem. Soc. 88, 5511–5515.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p49. Oxford University Press.  Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoren, M. B. & Kochansky, M. E. (1973). J. Org. Chem. 38, 3510–3513.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJerfy, A. & Roy, A. B. (1970). Aust. J. Chem. 23, 847–852.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, C.-J., Lin, Z., Yun, L., Xie, Y.-L., Leng, J.-D., Ou, Y.-C. & Tong, M.-L. (2010). CrystEngComm, 12, 425–433.  Web of Science CSD CrossRef CAS Google Scholar
First citationManteau, B., Genix, P., Brelot, L., Vors, J.-P., Pazenok, S., Giornal, F., Leuenberger, C. & Leroux, F. R. (2010). Eur. J. Org. Chem. pp. 6043–6066.  Web of Science CSD CrossRef Google Scholar
First citationNantka-Namirski, P. & Rykowski, A. (1972a). Acta Pol. Pharm. 29, 129–134 [Eng. Trans.].  Google Scholar
First citationNantka-Namirski, P. & Rykowski, A. (1972b). Acta Pol. Pharm. 29, 233–238. [Eng. Trans.].  Google Scholar
First citationParkin, S. (2000). Acta Cryst. A56, 157–162.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. (2013). CIFFIX. https://xray.uky.edu/Resources/scripts/ciffix  Google Scholar
First citationParkin, S. & Hope, H. (1998a). Acta Cryst. B54, 339–344.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. & Hope, H. (1998b). J. Appl. Cryst. 31, 945–953.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQiu, J., Zhang, Y., Yao, S., Ren, H., Qian, M., Hong, Q., Lu, Z. & He, J. (2019). J. Bact. 201, e00665–18.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, O. P. & Kaul, S. M. (1973). Indian J. Biochem. Biophys. 10, 176–178.  CAS PubMed Web of Science Google Scholar
First citationShukla, O. P., Kaul, S. M. & Khanna, M. (1977). Indian J. Biochem. Biophys. 14, 292–295.  CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds