research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­(6,7,8,9-tetra­hydro-11H-pyrido[2,1-b]quinazolin-5-ium) tetra­chlorido­zincate

crossmark logo

aLaboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Durmon yuli str. 33, Tashkent, 100125, Uzbekistan, bS.Yunusov Institute of Chemistry of Plant Substances, Academy of Science of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan, cInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany, dCollege of Chemistry, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Luoyu Road 152, Wuhan, Hubei Province 430079, People's Republic of China, and eTurin Polytechnic University in Tashkent, Kichik Khalka yuli str., 17, 100095 Tashkent, Uzbekistan
*Correspondence e-mail: a_tojiboev@yahoo.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 24 March 2021; accepted 11 May 2021; online 14 May 2021)

The title compound, (C12H15N2)2[ZnCl4], is a salt with two symmetrically independent, essentially planar heterocyclic cations and a slightly distorted tetra­hedral chloro­zincate dianion. N—H⋯Cl hydrogen bonds link these ionic constituents into a discrete aggregate, which comprises one formula unit. The effect of hydrogen bonding is reflected in the minor distortions of the [ZnCl4]2− moiety: distances between the cation and chlorido ligands engaged in classical hydrogen bonds are significantly longer than the others. Secondary inter­actions comprise C—H⋯π hydrogen bonding and weak ππ stacking. A Hirshfeld surface analysis indicates that the most abundant contacts in packing stem from H⋯H (47.8%) and Cl⋯H/H⋯Cl (29.3%) inter­actions.

1. Chemical context

Tricyclic quinazolines are counted among the most exciting quinazoline alkaloids. Specifically, the alkaloid mackinazoline was isolated from Mackinlaya sp. (Johns & Lamberton, 1965[Johns, S. R. & Lamberton, J. A. (1965). J. Chem. Soc. Chem. Commun. p. 267a.]). Tricyclic quinazolines have several different reactive sites and can react with electrophilic and nucleophilic reagents to form various derivatives with potential biological activity (Michael, 2004[Michael, J. P. (2004). Nat. Prod. Rep. 21, 650-668.]). As quinazoline alkaloids are scarcely available from natural sources, multiple methods for their synthesis have been developed (Shakhidoyatov & Elmuradov, 2014[Shakhidoyatov, Kh. M. & Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781-800.]). In the context of these synthetic efforts, reaction inter­mediates similar to the title compound have been studied (Sharma et al., 1993[Sharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115-1121.]; Sargaza­kov et al., 1991[Sargazakov, K. D., Molchanov, L. V., Tashkhodzhaev, B. & Aripova, Kh. N. (1991). Khim. Prir. Soedin. 6, 862-864.]; Tozhiboev et al., 2005[Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950-954.]). We investigated the crystal structure of bis­(6,7,8,9-tetra­hydro-11H-pyrido[2,1-b]quinazolin-5-ium) tetra­chlorido­zincate, an inter­mediate in the synthesis of mackinazolinone, using high-resolution diffraction data and Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the P21/n space group, with two [C12H15N2]+ cations and a [ZnCl4]2− counter-anion in the asymmetric unit (Fig. 1[link]). The benzene and pyrimidine rings in either cation and the attached carbon atoms of the aliphatic ring (C9A and C12A for residue A and C9B and C12B for residue B) are essentially coplanar, with r.m.s. deviations of 0.0437 and 0.0168 Å for mol­ecules A and B, respectively. The remaining atoms of the third ring are significantly displaced above the opposite faces of these planes with deviations of 0.3877 (12) Å for C10A and 0.3831 (11) Å for C11A in residue A and 0.4705 (11) Å for C10B and 0.2495 (11) Å for C11B in residue B. Fig. 2[link] shows that the independent cations are almost superimposable including the conformationally soft aliphatic ring.

[Figure 1]
Figure 1
Asymmetric unit of the title compound with the atom-numbering scheme (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.
[Figure 2]
Figure 2
Overlay (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) of the independent cations in the title compound in the least-squares (top) and most-squares plane (bottom); residue A is depicted in black, residue B in red.

The protonation of the ring occurs at the basic heteroatoms of the pyrimidine rings, N1A and N1B, respectively, and the acquired positive charge is delocalized within the –N–C–N– moiety in the ring, where the N1A—C2A and N1B—C2B bonds are only slightly longer than C2A—N3A and C2B—N3B (Table 1[link]). Similar differences were observed in related reported complexes (Sharma et al., 1993[Sharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115-1121.]; Turgunov et al., 2003[Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379-382.]; Tozhiboev et al., 2005[Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950-954.]).

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl4 2.2484 (3) N1A—C2A 1.3373 (11)
Zn1—Cl3 2.2664 (4) N1B—C2B 1.3317 (10)
Zn1—Cl2 2.2868 (4) C2A—N3A 1.3102 (10)
Zn1—Cl1 2.3019 (3) C2B—N3B 1.3114 (9)
       
Cl4—Zn1—Cl3 111.219 (10) Cl4—Zn1—Cl1 109.994 (13)
Cl4—Zn1—Cl2 115.057 (11) Cl3—Zn1—Cl1 110.340 (12)
Cl3—Zn1—Cl2 106.573 (10) Cl2—Zn1—Cl1 103.331 (11)

However, these C—N bond lengths are shorter than those in the related tricyclic protonated (PYQAZP: Reck et al., 1974[Reck, G., Höhne, E. & Adam, G. (1974). J. Prakt. Chem. 316, 496-502.]) and non-protonated (GUCZUZ: Le Gall et al., 1999[Le Gall, E., Malassene, R., Toupet, L., Hurvois, J.-P. & Moinet, C. (1999). Synlett, pp. 1383-1386.]; LIZMOX: Zhang et al., 2008[Zhang, C., De, C. K., Mal, R. & Seidel, D. (2008). J. Am. Chem. Soc. 130, 416-417.]) quinazoline derivatives. In these three compounds, the sp3 character of the carbon atom between the two nitro­gen atoms and the lack of the C=N double bond within the –N–C–N– moiety hampers the delocal­ization of the positive charge within this unit. It is instead delocalized over the –N=CH—C(phenyl­ene) fragment (see Table S1 in the supporting information).

Analysis of the residual electron density (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) reveals that the covalent bonds in the heterocyclic cations clearly show up as local density maxima (Fig. 3[link]).

[Figure 3]
Figure 3
Residual electron density in the planes through C2A, C4A and C8AA (top) and C2B, C4B and C4AB (bottom); contour lines are drawn at 0.2 e Å−3. Covalent bonds in the heterocyclic cations clearly show up as local density maxima.

The ZnII centre in the dianion adopts a slightly distorted geometry, with τ4 = 0.95 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The high resolution (θmax = 109.6°, sin θ/λ = 1.150 Å−1, d = 0.43 Å) and the very favourable ratio between observations and variables (100:1) in our diffraction data result in small standard uncertainties for atomic coordinates and derived geometric parameters and allow to discuss more subtle details. The most acute angle of 103.33 (11)° within the tetra­chlorido­zincate dianion (Table 1[link]) is subtended by Cl1 and Cl2. These atoms are associated with the longest Zn—Cl distances, which, in turn, are correlated with the most relevant inter­molecular inter­actions in the structure: Cl1 is involved in the shortest and most linear N—H⋯Cl hydrogen bond (see Table 2[link]) and represents the most distant ligand in the anion. Cl2 is significantly closer to Zn1 and is engaged in a longer and presumably weaker hydrogen bond. The remaining chlorido ligands are not associated with any classical short contacts. Similar features have been reported for structurally related compounds (Sharma et al., 1993[Sharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115-1121.]; Sargaza­kov et al., 1991[Sargazakov, K. D., Molchanov, L. V., Tashkhodzhaev, B. & Aripova, Kh. N. (1991). Khim. Prir. Soedin. 6, 862-864.]; Tozhiboev et al., 2005[Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950-954.]; Wang et al., 2017[Wang, A., Wang, R., Kalf, I., Dreier, A., Lehmann, C. W. & Englert, U. (2017). Cryst. Growth Des. 17, 2357-2364.]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 and Cg9 are the centroids of the C5A–C8A/C4AA/C8AA and C5B–C8B/C4AB/C8AB rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯Cl2 0.89 (2) 2.44 (2) 3.2659 (8) 155.9 (19)
N1B—H1B⋯Cl1i 0.83 (2) 2.352 (19) 3.1661 (7) 166.6 (18)
C11A—H11ACg9ii 0.99 2.67 3.5718 (10) 151
C12B—H12DCg3iii 0.99 2.57 3.4002 (10) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y, -z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal structure, the protonated N1A and N1B nitro­gen atoms in the cations inter­act with the chlorido ligands Cl2 and Cl1, respectively, via relatively short N—H⋯Cl bonds and generate a D22(5) graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Table 2[link] and Fig. 4[link]).

[Figure 4]
Figure 4
Crystal packing and short contacts in the title compound. Colour code: N—H⋯Cl inter­actions light-blue dashed lines, inter­molecular C—H⋯π contacts red dashed lines, Zn—Cl⋯π contacts green dashed lines, π-π stacking inter­actions dark-blue dashed lines. Centroid for the pyrimidine (Cg1, Cg7) and benzene rings (Cg3, Cg9) are shown as blue and red spheres, respectively.

The crystal packing is further stabilized by inter­molecular C—H⋯π inter­actions (Table 2[link]) and additional short contacts between Cl3 and the N–C–N segment of the pyrimidine rings. The shortest contact distance occurs between Cl3 and C2B [3.5273 (9) Å] and involves an inter­action between the electron-rich equatorial region of the halogen atom and the ring atom attached to two N-atom neighbours, most probably the most electron-deficient atom in the heterocycle. These contacts link anions and cations into a three-dimensional network. Weak ππ stacking inter­actions occur between pyrimidine (Cg1, Cg7) and benzene (Cg3, Cg9) rings of anti­parallel pairs of cations and involve contact distances of Cg1⋯Cg3 (−x, −y, −z) = 3.6225 (5) Å (slippage 0.857 Å) and of Cg7⋯Cg9 (1 − x, −y, 1 − z) = 3.6246 (7) Å (slippage 0.994 Å).

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) to visualize inter­actions between the constituents of the title compound. The HS mapped with dnorm is represented in Fig. 5[link]. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively. The bright-red spot near Cl1 indicates its role as a hydrogen-bond donor towards N1.

[Figure 5]
Figure 5
Three-dimensional Hirshfeld surface of the title compound mapped with dnorm.

The classical N—H⋯Cl hydrogen bonds correspond to Cl⋯H/H⋯Cl contacts (29.3% contribution) in Fig. 6[link]c and show up as a pair of spikes. The most abundant contributions to the Hirshfeld surface arise from H⋯H contacts at 47.8%. Cl⋯H/H⋯Cl and C⋯H/H⋯C inter­actions follow with contributions of 29.3% and 15.9%, respectively (Fig. 6[link]). Minor contributors are due to C⋯N/N⋯C (2.2%), N⋯H/H⋯N (2.0%), C⋯C (1.9%), C⋯Cl/Cl⋯C (0.4%), N⋯Cl/Cl⋯N (0.3%) and Zn⋯H/H⋯Zn (0.3%) contacts.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and decomposed into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C inter­actions. Values for di and de represent the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.41, including the update of January 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that four related compounds had been structurally characterized in which similar cations inter­act with [ZnCl4]2− anions. They are associated with refcodes PODLUP (Sharma et al., 1993[Sharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115-1121.]), PODLUP01 (Sargaza­kov et al., 1991[Sargazakov, K. D., Molchanov, L. V., Tashkhodzhaev, B. & Aripova, Kh. N. (1991). Khim. Prir. Soedin. 6, 862-864.]) and SECFAI and SECFAI01 (Tozhiboev et al., 2005[Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950-954.]). An additional match for a similar cation inter­acting with a Cl anion was identified: EYUHEL (Turgunov et al., 2003[Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379-382.]) and PYQAZP (Reck et al., 1974[Reck, G., Höhne, E. & Adam, G. (1974). J. Prakt. Chem. 316, 496-502.]).

6. Synthesis and crystallization

3 g (0.015 mol) of 2,3-tetra­methyl­enquinazoline-4-one (Fig. 7[link]) were placed in a 300 mL flat-bottom flask equipped with a magnetic stirrer and a reflux condenser. 72 mL of hydro­chloric acid (15%) were added under stirring. 12 g of Zn powder were added in small portions over a period of 1 h, and the mixture was heated in a water bath for 4 h. The hot reaction mixture was filtered and the filtrate was left to precipitate overnight. The precipitate corresponding to 2,3-tetra­methyl­enquinazoline hydro­chloride was removed by filtration (Fig. 7[link]). Colourless single crystals of the title compound were obtained by slow evaporation of the resulting filtrate at room temperature.

[Figure 7]
Figure 7
Synthesis scheme for 2,3-tetra­methyl­ene-3,4-di­hydro­quinazoline hydro­chloride.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to C were positioned geometrically, with C—H = 0.95 Å (for aromatic) or C—H = 0.99 Å (for methyl­ene H atoms), and were refined with Uiso(H) = 1.2Ueq(C). H atoms bonded to nitro­gen were located in a difference-Fourier map, and their positional and isotropic displacement parameters were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula (C12H15N2)2[ZnCl4]
Mr 581.69
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.2910 (13), 15.682 (2), 17.275 (2)
β (°) 95.642 (2)
V3) 2504.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.30 × 0.25 × 0.23
 
Data collection
Diffractometer Bruker D8 gonimeter with APEX CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.634, 0.751
No. of measured, independent and observed [I > 2σ(I)] reflections 170944, 31478, 21664
Rint 0.071
(sin θ/λ)max−1) 1.150
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.04
No. of reflections 31478
No. of parameters 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.29, −0.54
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-5-ium) tetrachloridozincate top
Crystal data top
(C12H15N2)2[ZnCl4]F(000) = 1200
Mr = 581.69Dx = 1.543 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2910 (13) ÅCell parameters from 9853 reflections
b = 15.682 (2) Åθ = 2.4–53.5°
c = 17.275 (2) ŵ = 1.43 mm1
β = 95.642 (2)°T = 100 K
V = 2504.7 (6) Å3Block, colourless
Z = 40.30 × 0.25 × 0.23 mm
Data collection top
Bruker D8 gonimeter with APEX CCD detector
diffractometer
31478 independent reflections
Radiation source: Incoatec microsource21664 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.071
ω scansθmax = 54.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2120
Tmin = 0.634, Tmax = 0.751k = 3535
170944 measured reflectionsl = 3937
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1208P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
31478 reflectionsΔρmax = 1.29 e Å3
306 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.40341 (2)0.23046 (2)0.17943 (2)0.01331 (2)
Cl10.22695 (2)0.31275 (2)0.22716 (2)0.01745 (3)
N1A0.16789 (8)0.13353 (5)0.01919 (5)0.01731 (11)
H1A0.233 (2)0.1607 (14)0.0126 (12)0.033 (5)*
N1B0.38700 (8)0.02546 (4)0.36997 (4)0.01498 (9)
H1B0.344 (2)0.0665 (13)0.3479 (11)0.027 (5)*
Cl20.40142 (3)0.27504 (2)0.05329 (2)0.01999 (4)
C2A0.20841 (8)0.09703 (5)0.08356 (5)0.01372 (9)
C2B0.31376 (8)0.04719 (5)0.37362 (4)0.01304 (9)
Cl30.33617 (3)0.09149 (2)0.17498 (2)0.01962 (4)
N3A0.11462 (7)0.05870 (4)0.13348 (4)0.01329 (8)
N3B0.37680 (8)0.11694 (4)0.40176 (4)0.01312 (8)
Cl40.61489 (3)0.24837 (2)0.25278 (2)0.02103 (4)
C4A0.04199 (9)0.06077 (6)0.12794 (5)0.01591 (11)
H4AA0.0814660.0025000.1363820.019*
H4AB0.0880350.0977030.1697810.019*
C4B0.53321 (9)0.12358 (5)0.42526 (5)0.01502 (10)
H4BA0.5480310.1454930.4792030.018*
H4BB0.5760810.1652150.3910710.018*
C4AA0.08071 (8)0.09313 (5)0.05096 (4)0.01320 (9)
C4AB0.61022 (8)0.04003 (5)0.42109 (4)0.01289 (9)
C5A0.22295 (9)0.09044 (5)0.03207 (5)0.01629 (11)
H5AA0.2956850.0645100.0668190.020*
C5B0.75850 (9)0.03353 (5)0.44269 (5)0.01662 (11)
H5BA0.8114680.0821250.4620490.020*
C6A0.25917 (10)0.12560 (6)0.03755 (6)0.01813 (12)
H6AA0.3567910.1247950.0495360.022*
C6B0.82907 (10)0.04420 (6)0.43590 (5)0.01798 (12)
H6BA0.9299980.0483200.4508220.022*
C7A0.15242 (10)0.16192 (6)0.08958 (5)0.01727 (11)
H7AA0.1771800.1851340.1373080.021*
C7B0.75264 (10)0.11583 (5)0.40740 (5)0.01668 (11)
H7BA0.8014280.1685350.4026550.020*
C8A0.00940 (10)0.16428 (5)0.07178 (5)0.01643 (11)
H8AA0.0638450.1887500.1071760.020*
C8B0.60526 (9)0.11006 (5)0.38597 (5)0.01506 (10)
H8BA0.5523570.1586810.3665920.018*
C8AA0.02476 (8)0.13018 (5)0.00118 (5)0.01397 (10)
C8AB0.53532 (8)0.03207 (5)0.39314 (4)0.01263 (9)
C9A0.36640 (9)0.09994 (6)0.09460 (6)0.01879 (13)
H9AA0.4174350.0553470.0619050.023*
H9AB0.4060300.1559360.0766870.023*
C9B0.15598 (9)0.04381 (6)0.34654 (5)0.01737 (11)
H9BA0.1040800.0165810.3874000.021*
H9BB0.1419210.0076140.2994520.021*
C10A0.39598 (10)0.08639 (6)0.17905 (6)0.01922 (13)
H10A0.3640500.1368760.2105990.023*
H10B0.5008900.0782550.1822720.023*
C10B0.08950 (10)0.13131 (6)0.32782 (5)0.01831 (12)
H10C0.1204780.1524920.2780850.022*
H10D0.0173220.1269440.3222790.022*
C11A0.31331 (10)0.00783 (6)0.20972 (5)0.01870 (12)
H11A0.3341310.0035450.2638740.022*
H11B0.3449250.0423050.1775970.022*
C11B0.13845 (11)0.19299 (6)0.39317 (6)0.01927 (13)
H11C0.0969320.2500720.3807030.023*
H11D0.1019030.1732790.4420510.023*
C12A0.15251 (10)0.02154 (6)0.20731 (5)0.01692 (11)
H12A0.1168450.0597730.2506070.020*
H12B0.1023400.0338820.2156270.020*
C12B0.30183 (10)0.19950 (5)0.40475 (5)0.01622 (11)
H12C0.3346650.2372910.3640750.019*
H12D0.3301360.2264670.4557990.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01365 (3)0.01277 (3)0.01329 (3)0.00112 (2)0.00014 (2)0.00022 (2)
Cl10.02079 (8)0.01451 (6)0.01701 (7)0.00525 (6)0.00166 (5)0.00210 (5)
N1A0.0117 (2)0.0220 (3)0.0181 (3)0.00204 (19)0.00103 (18)0.0070 (2)
N1B0.0141 (2)0.01106 (19)0.0192 (3)0.00093 (16)0.00121 (18)0.00287 (17)
Cl20.02268 (9)0.02343 (9)0.01374 (7)0.00702 (7)0.00123 (6)0.00172 (6)
C2A0.0117 (2)0.0145 (2)0.0149 (2)0.00067 (18)0.00108 (17)0.00124 (18)
C2B0.0142 (2)0.0115 (2)0.0135 (2)0.00064 (17)0.00143 (17)0.00060 (16)
Cl30.01743 (8)0.01217 (6)0.02897 (10)0.00094 (5)0.00082 (6)0.00157 (6)
N3A0.0132 (2)0.0139 (2)0.0127 (2)0.00007 (16)0.00030 (15)0.00098 (15)
N3B0.0150 (2)0.01093 (18)0.0134 (2)0.00029 (16)0.00118 (16)0.00126 (15)
Cl40.01708 (8)0.02447 (9)0.02043 (8)0.00490 (7)0.00384 (6)0.00143 (6)
C4A0.0116 (2)0.0189 (3)0.0168 (3)0.0002 (2)0.00079 (19)0.0033 (2)
C4B0.0157 (3)0.0120 (2)0.0171 (3)0.00189 (19)0.0005 (2)0.00154 (18)
C4AA0.0116 (2)0.0128 (2)0.0150 (2)0.00039 (17)0.00005 (17)0.00033 (17)
C4AB0.0142 (2)0.0118 (2)0.0128 (2)0.00191 (18)0.00138 (17)0.00057 (16)
C5A0.0123 (2)0.0165 (3)0.0201 (3)0.0004 (2)0.0017 (2)0.0008 (2)
C5B0.0146 (3)0.0158 (3)0.0192 (3)0.0023 (2)0.0005 (2)0.0004 (2)
C6A0.0158 (3)0.0180 (3)0.0212 (3)0.0010 (2)0.0052 (2)0.0023 (2)
C6B0.0142 (3)0.0190 (3)0.0206 (3)0.0000 (2)0.0011 (2)0.0011 (2)
C7A0.0192 (3)0.0164 (3)0.0169 (3)0.0027 (2)0.0048 (2)0.0008 (2)
C7B0.0165 (3)0.0154 (3)0.0182 (3)0.0022 (2)0.0023 (2)0.0003 (2)
C8A0.0177 (3)0.0159 (3)0.0156 (3)0.0021 (2)0.0011 (2)0.0019 (2)
C8B0.0161 (3)0.0125 (2)0.0165 (3)0.00052 (19)0.0011 (2)0.00113 (18)
C8AA0.0123 (2)0.0140 (2)0.0154 (2)0.00074 (18)0.00041 (18)0.00140 (18)
C8AB0.0134 (2)0.0115 (2)0.0130 (2)0.00062 (17)0.00100 (17)0.00091 (16)
C9A0.0123 (3)0.0234 (3)0.0208 (3)0.0012 (2)0.0024 (2)0.0026 (3)
C9B0.0138 (3)0.0171 (3)0.0209 (3)0.0010 (2)0.0007 (2)0.0004 (2)
C10A0.0168 (3)0.0210 (3)0.0207 (3)0.0002 (2)0.0060 (2)0.0014 (2)
C10B0.0165 (3)0.0192 (3)0.0190 (3)0.0028 (2)0.0008 (2)0.0008 (2)
C11A0.0203 (3)0.0198 (3)0.0167 (3)0.0020 (2)0.0057 (2)0.0001 (2)
C11B0.0195 (3)0.0196 (3)0.0190 (3)0.0047 (2)0.0032 (2)0.0025 (2)
C12A0.0190 (3)0.0186 (3)0.0130 (2)0.0003 (2)0.0012 (2)0.0017 (2)
C12B0.0206 (3)0.0122 (2)0.0158 (3)0.0021 (2)0.0009 (2)0.00163 (19)
Geometric parameters (Å, º) top
Zn1—Cl42.2484 (3)C6A—H6AA0.9500
Zn1—Cl32.2664 (4)C6B—C7B1.3928 (13)
Zn1—Cl22.2868 (4)C6B—H6BA0.9500
Zn1—Cl12.3019 (3)C7A—C8A1.3936 (13)
N1A—C2A1.3373 (11)C7A—H7AA0.9500
N1A—C8AA1.4096 (11)C7B—C8B1.3858 (12)
N1A—H1A0.89 (2)C7B—H7BA0.9500
N1B—C2B1.3317 (10)C8A—C8AA1.3965 (11)
N1B—C8AB1.4005 (10)C8A—H8AA0.9500
N1B—H1B0.83 (2)C8B—C8AB1.3962 (11)
C2A—N3A1.3102 (10)C8B—H8BA0.9500
C2A—C9A1.4994 (12)C9A—C10A1.5257 (14)
C2B—N3B1.3114 (9)C9A—H9AA0.9900
C2B—C9B1.4952 (12)C9A—H9AB0.9900
N3A—C4A1.4680 (11)C9B—C10B1.5262 (13)
N3A—C12A1.4759 (11)C9B—H9BA0.9900
N3B—C12B1.4735 (10)C9B—H9BB0.9900
N3B—C4B1.4735 (11)C10A—C11A1.5193 (14)
C4A—C4AA1.4998 (11)C10A—H10A0.9900
C4A—H4AA0.9900C10A—H10B0.9900
C4A—H4AB0.9900C10B—C11B1.5218 (13)
C4B—C4AB1.4981 (11)C10B—H10C0.9900
C4B—H4BA0.9900C10B—H10D0.9900
C4B—H4BB0.9900C11A—C12A1.5140 (13)
C4AA—C8AA1.3912 (11)C11A—H11A0.9900
C4AA—C5A1.3927 (11)C11A—H11B0.9900
C4AB—C8AB1.3891 (10)C11B—C12B1.5149 (14)
C4AB—C5B1.3951 (12)C11B—H11C0.9900
C5A—C6A1.3941 (13)C11B—H11D0.9900
C5A—H5AA0.9500C12A—H12A0.9900
C5B—C6B1.3944 (13)C12A—H12B0.9900
C5B—H5BA0.9500C12B—H12C0.9900
C6A—C7A1.3930 (14)C12B—H12D0.9900
Cl4—Zn1—Cl3111.219 (10)C7A—C8A—C8AA119.08 (8)
Cl4—Zn1—Cl2115.057 (11)C7A—C8A—H8AA120.5
Cl3—Zn1—Cl2106.573 (10)C8AA—C8A—H8AA120.5
Cl4—Zn1—Cl1109.994 (13)C7B—C8B—C8AB119.32 (7)
Cl3—Zn1—Cl1110.340 (12)C7B—C8B—H8BA120.3
Cl2—Zn1—Cl1103.331 (11)C8AB—C8B—H8BA120.3
C2A—N1A—C8AA122.76 (7)C4AA—C8AA—C8A121.28 (7)
C2A—N1A—H1A119.3 (14)C4AA—C8AA—N1A118.41 (7)
C8AA—N1A—H1A117.9 (14)C8A—C8AA—N1A120.31 (7)
C2B—N1B—C8AB122.87 (6)C4AB—C8AB—C8B121.48 (7)
C2B—N1B—H1B117.3 (14)C4AB—C8AB—N1B118.97 (7)
C8AB—N1B—H1B119.4 (14)C8B—C8AB—N1B119.53 (7)
N3A—C2A—N1A121.36 (7)C2A—C9A—C10A112.83 (7)
N3A—C2A—C9A121.75 (7)C2A—C9A—H9AA109.0
N1A—C2A—C9A116.87 (7)C10A—C9A—H9AA109.0
N3B—C2B—N1B121.29 (7)C2A—C9A—H9AB109.0
N3B—C2B—C9B122.27 (7)C10A—C9A—H9AB109.0
N1B—C2B—C9B116.41 (7)H9AA—C9A—H9AB107.8
C2A—N3A—C4A123.12 (7)C2B—C9B—C10B113.48 (7)
C2A—N3A—C12A123.38 (7)C2B—C9B—H9BA108.9
C4A—N3A—C12A112.78 (6)C10B—C9B—H9BA108.9
C2B—N3B—C12B123.39 (7)C2B—C9B—H9BB108.9
C2B—N3B—C4B123.61 (7)C10B—C9B—H9BB108.9
C12B—N3B—C4B112.65 (6)H9BA—C9B—H9BB107.7
N3A—C4A—C4AA113.01 (6)C11A—C10A—C9A108.29 (7)
N3A—C4A—H4AA109.0C11A—C10A—H10A110.0
C4AA—C4A—H4AA109.0C9A—C10A—H10A110.0
N3A—C4A—H4AB109.0C11A—C10A—H10B110.0
C4AA—C4A—H4AB109.0C9A—C10A—H10B110.0
H4AA—C4A—H4AB107.8H10A—C10A—H10B108.4
N3B—C4B—C4AB112.81 (6)C11B—C10B—C9B109.21 (7)
N3B—C4B—H4BA109.0C11B—C10B—H10C109.8
C4AB—C4B—H4BA109.0C9B—C10B—H10C109.8
N3B—C4B—H4BB109.0C11B—C10B—H10D109.8
C4AB—C4B—H4BB109.0C9B—C10B—H10D109.8
H4BA—C4B—H4BB107.8H10C—C10B—H10D108.3
C8AA—C4AA—C5A119.02 (7)C12A—C11A—C10A109.98 (7)
C8AA—C4AA—C4A120.02 (7)C12A—C11A—H11A109.7
C5A—C4AA—C4A120.88 (7)C10A—C11A—H11A109.7
C8AB—C4AB—C5B118.77 (7)C12A—C11A—H11B109.7
C8AB—C4AB—C4B120.22 (7)C10A—C11A—H11B109.7
C5B—C4AB—C4B120.99 (7)H11A—C11A—H11B108.2
C4AA—C5A—C6A120.35 (8)C12B—C11B—C10B111.30 (7)
C4AA—C5A—H5AA119.8C12B—C11B—H11C109.4
C6A—C5A—H5AA119.8C10B—C11B—H11C109.4
C6B—C5B—C4AB120.10 (8)C12B—C11B—H11D109.4
C6B—C5B—H5BA120.0C10B—C11B—H11D109.4
C4AB—C5B—H5BA120.0H11C—C11B—H11D108.0
C7A—C6A—C5A120.09 (8)N3A—C12A—C11A113.56 (7)
C7A—C6A—H6AA120.0N3A—C12A—H12A108.9
C5A—C6A—H6AA120.0C11A—C12A—H12A108.9
C7B—C6B—C5B120.48 (8)N3A—C12A—H12B108.9
C7B—C6B—H6BA119.8C11A—C12A—H12B108.9
C5B—C6B—H6BA119.8H12A—C12A—H12B107.7
C6A—C7A—C8A120.15 (8)N3B—C12B—C11B114.03 (7)
C6A—C7A—H7AA119.9N3B—C12B—H12C108.7
C8A—C7A—H7AA119.9C11B—C12B—H12C108.7
C8B—C7B—C6B119.85 (8)N3B—C12B—H12D108.7
C8B—C7B—H7BA120.1C11B—C12B—H12D108.7
C6B—C7B—H7BA120.1H12C—C12B—H12D107.6
C8AA—N1A—C2A—N3A2.92 (13)C5A—C4AA—C8AA—C8A0.18 (12)
C8AA—N1A—C2A—C9A175.40 (8)C4A—C4AA—C8AA—C8A177.12 (8)
C8AB—N1B—C2B—N3B2.13 (12)C5A—C4AA—C8AA—N1A179.12 (8)
C8AB—N1B—C2B—C9B179.87 (7)C4A—C4AA—C8AA—N1A2.18 (11)
N1A—C2A—N3A—C4A7.04 (12)C7A—C8A—C8AA—C4AA0.81 (12)
C9A—C2A—N3A—C4A174.72 (8)C7A—C8A—C8AA—N1A178.47 (8)
N1A—C2A—N3A—C12A176.62 (8)C2A—N1A—C8AA—C4AA5.18 (13)
C9A—C2A—N3A—C12A5.15 (12)C2A—N1A—C8AA—C8A175.52 (8)
N1B—C2B—N3B—C12B177.97 (7)C5B—C4AB—C8AB—C8B0.34 (12)
C9B—C2B—N3B—C12B4.15 (12)C4B—C4AB—C8AB—C8B177.67 (7)
N1B—C2B—N3B—C4B5.30 (12)C5B—C4AB—C8AB—N1B178.78 (7)
C9B—C2B—N3B—C4B176.82 (7)C4B—C4AB—C8AB—N1B0.77 (11)
C2A—N3A—C4A—C4AA13.21 (11)C7B—C8B—C8AB—C4AB0.19 (12)
C12A—N3A—C4A—C4AA176.22 (7)C7B—C8B—C8AB—N1B178.62 (8)
C2B—N3B—C4B—C4AB5.72 (11)C2B—N1B—C8AB—C4AB0.11 (12)
C12B—N3B—C4B—C4AB179.08 (7)C2B—N1B—C8AB—C8B178.59 (8)
N3A—C4A—C4AA—C8AA10.43 (11)N3A—C2A—C9A—C10A21.96 (12)
N3A—C4A—C4AA—C5A172.68 (7)N1A—C2A—C9A—C10A159.73 (8)
N3B—C4B—C4AB—C8AB3.35 (10)N3B—C2B—C9B—C10B20.32 (12)
N3B—C4B—C4AB—C5B178.68 (7)N1B—C2B—C9B—C10B161.70 (8)
C8AA—C4AA—C5A—C6A0.99 (12)C2A—C9A—C10A—C11A49.37 (10)
C4A—C4AA—C5A—C6A175.93 (8)C2B—C9B—C10B—C11B46.34 (10)
C8AB—C4AB—C5B—C6B0.16 (12)C9A—C10A—C11A—C12A61.61 (10)
C4B—C4AB—C5B—C6B177.84 (8)C9B—C10B—C11B—C12B57.99 (10)
C4AA—C5A—C6A—C7A1.52 (13)C2A—N3A—C12A—C11A17.27 (11)
C4AB—C5B—C6B—C7B0.17 (14)C4A—N3A—C12A—C11A172.19 (7)
C5A—C6A—C7A—C8A0.87 (13)C10A—C11A—C12A—N3A45.61 (10)
C5B—C6B—C7B—C8B0.33 (14)C2B—N3B—C12B—C11B15.61 (11)
C6A—C7A—C8A—C8AA0.29 (13)C4B—N3B—C12B—C11B171.01 (7)
C6B—C7B—C8B—C8AB0.15 (13)C10B—C11B—C12B—N3B42.79 (10)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg9 are the centroids of the C5A–C8A/C4AA/C8AA and C5B–C8B/C4AB/C8AB rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl20.89 (2)2.44 (2)3.2659 (8)155.9 (19)
N1B—H1B···Cl1i0.83 (2)2.352 (19)3.1661 (7)166.6 (18)
C11A—H11A···Cg9ii0.992.673.5718 (10)151
C12B—H12D···Cg3iii0.992.573.4002 (10)142
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Institute of Inorganic Chemistry, RWTH Aachen University for providing laboratory facilities.

Funding information

Funding for this research was provided by: the German Academic Exchange Service (DAAD), Germany.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohns, S. R. & Lamberton, J. A. (1965). J. Chem. Soc. Chem. Commun. p. 267a.  Google Scholar
First citationLe Gall, E., Malassene, R., Toupet, L., Hurvois, J.-P. & Moinet, C. (1999). Synlett, pp. 1383–1386.  CSD CrossRef Google Scholar
First citationMichael, J. P. (2004). Nat. Prod. Rep. 21, 650–668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReck, G., Höhne, E. & Adam, G. (1974). J. Prakt. Chem. 316, 496–502.  CSD CrossRef CAS Web of Science Google Scholar
First citationSargazakov, K. D., Molchanov, L. V., Tashkhodzhaev, B. & Aripova, Kh. N. (1991). Khim. Prir. Soedin. 6, 862–864.  Google Scholar
First citationShakhidoyatov, Kh. M. & Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781–800.  Web of Science CrossRef CAS Google Scholar
First citationSharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115–1121.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950–954.  Web of Science CrossRef CAS Google Scholar
First citationTurgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379–382.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWang, A., Wang, R., Kalf, I., Dreier, A., Lehmann, C. W. & Englert, U. (2017). Cryst. Growth Des. 17, 2357–2364.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, C., De, C. K., Mal, R. & Seidel, D. (2008). J. Am. Chem. Soc. 130, 416–417.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds