research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of N-H, N-phenyl and N-benzyl-2-(4-hexyl­oxyphen­yl)benzimidazoles

crossmark logo

aDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russian Federation, and bN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian, Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: bezzubov@igic.ras.ru

Edited by J. T. Mague, Tulane University, USA (Received 30 April 2021; accepted 8 May 2021; online 14 May 2021)

The title compounds, 2-(4-hexyl­oxyphen­yl)-1H-benzimidazole (C19H22N2O; 1), 2-(4-hexyl­oxyphen­yl)-1-phenyl-1H-benzimidazole (C25H26N2O; 2) and 1-benzyl-2-(4-hexyl­oxyphen­yl)-1H-benzimidazole (C26H28N2O; 3) were synthesized and their structures were determined by single-crystal X-ray analysis. The N-substituent at the imidazole moiety slightly affects the inter­planar angle between the 4-hexyl­oxyphenyl ring and the benzimidazole system. The unsubstituted benzimidazole (1) forms inter­molecular N—H⋯N bonds while in the crystal structures of 2 and 3, the mol­ecules are assembled only through ππ and C—H⋯π inter­actions.

1. Chemical context

2-Aryl­benzimidazoles have attracted considerable attention as biologically active compounds (Vasava et al., 2020[Vasava, M. S., Bhoi, M. N., Rathwa, S. K., Jethava, D. J., Acharya, P. T., Patel, D. B. & Patel, H. D. (2020). Mini Rev. Med. Chem. 20, 532-565.]). They are also used as ligands in constructing cyclo­metalated iridium(III) and ruthenium(II) complexes for organic light-emitting diodes and photosensitizers in dye-sensitized solar cells (Bezzubov et al., 2020[Bezzubov, S. I., Zharinova, I. S., Khusyainova, A. A., Kiselev, Y. M., Taydakov, I. V., Varaksina, E. A., Metlin, M. T., Tobohova, A. S., Korshunov, V. M., Kozyukhin, S. A. & Dolzhenko, V. D. (2020). Eur. J. Inorg. Chem. pp. 3277-3286.]; Lavrova et al., 2020[Lavrova, M. A., Mishurinskiy, S. A., Smirnov, D. E., Kalle, P., Krivogina, E. V., Kozyukhin, S. A., Emets, V. V., Mariasina, S. S., Dolzhenko, V. D. & Bezzubov, S. I. (2020). Dalton Trans. 49, 16935-16945.]). For the latter application, the aryl unit of these ligands should contain π-electron-donating substituents to increase the light-harvesting characteristics of the corresponding organometallic complexes (Aghazada & Nazeeruddin, 2018[Aghazada, S. & Nazeeruddin, M. K. (2018). Inorganics, 6, article No. 52.]; Bezzubov et al., 2014[Bezzubov, S. I., Doljenko, V. D., Troyanov, S. I. & Kiselev, Y. M. (2014). Inorg. Chim. Acta, 415, 22-30.], 2016[Bezzubov, S. I., Kiselev, Y. M., Churakov, A. V., Kozyukhin, S. A., Sadovnikov, A. A., Grinberg, V. A., Emets, V. V. & Doljenko, V. D. (2016). Eur. J. Inorg. Chem. pp. 347-354.]). In addition, long aliphatic chains in the ligands are preferable to diminish aggregation of the complexes on the semiconductor surface (Hagfeldt et al., 2010[Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595-6663.]). In line with this, we synthesized 2-(4-hexyl­oxyphen­yl)-1H-benzimidazole (1) and its N-phenyl and N-benzyl analogues (2 and 3, respectively) and studied their crystal structures.

[Scheme 1]

2. Structural commentary

In all three structures, the organic mol­ecules occupy general positions and contain identical benzimidazole and 4-hexyl­oxyphenyl units and different N-substituents (Figs. 1[link]–3[link][link]). The benzimidazole systems are essentially flat while the alkoxyaryl rings are inclined to them with dihedral angles of 35.02 (17), 31.46 (4) and 38.67 (6)° for 1, 2 and 3, respectively. Although the N-phenyl ring is expected to exert a larger steric pressure in 2 as compared with 3, its rotation by 68.92 (4)° along the N2—C8 bond seems to reduce the steric hindrance in the mol­ecule and results in the smallest inter­planar angle between the aryl and imidazole moieties in the series. In the structures of 1 and 2, the hydro­carbon chains crystallize in the common trans zigzag conformation, while in the structure of 3 the chain adopts a gauche conformation about the C23–C24 bond.

[Figure 1]
Figure 1
The mol­ecular structure of 2-(4-hexyl­oxyphen­yl)-1H-benzim­id­azole (1), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2-(4-hexyl­oxyphen­yl)-1-phenyl-1H-benzimid­azole (2), with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of 1-benzyl-2-(4-hexyl­oxyphen­yl)-1H-benzimid­azole (3), with displacement ellipsoids drawn at the 50% probability level.

In the 1H NMR spectra of 13, a similar set of high-field multiplets assigned to protons of the aliphatic chain was observed. In contrast, the NMR pattern corresponding to the aromatic protons in the substances becomes more complex when going from 1 to 2 and 3. In the aromatic part of 1H NMR spectrum of 1, there are four individual resolved multiplets corresponding to the symmetric benzimidazole part, assuming rapid exchange of the N–H proton on the NMR time scale. Phenyl or benzyl substituents at the nitro­gen atom decrease the symmetry of the benzimidazole moiety, which results in the appearance of additional signals that are highly overlapped and make the spectra of 2 and 3 difficult to inter­pret.

3. Supra­molecular features

In the crystal of 1, mol­ecules related by the b glide plane are assembled through N—H⋯N bonds (Fig. 4[link], Table 1[link]). The resulting chains are grafted together in a herringbone-like manner by C—H⋯π inter­actions between the H3 atom and the N1/C1/C6/N2/C7centroid [3.025 (18) Å, 126.2 (3)°] and between the H10 atom and the C1–C6centroid [3.245 (18) Å, 142.7 (3)°]. Along the c axis, these relatively dense crystal subunits alternate with less dense regions filled by aliphatic chains held together only via van der Waals inter­actions (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 1.99 2.861 (5) 169
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 4]
Figure 4
Hydrogen bonding in the crystal of 2-(4-hexyl­oxyphen­yl)-1H-benzim­id­azole (1). Displacement ellipsoids are shown at the 50% probability level.
[Figure 5]
Figure 5
Fragment of the crystal packing of 2-(4-hexyl­oxyphen­yl)-1H-benzimidazole (1).

In the crystal of 2 (Fig. 6[link]), there are centrosymmetric dimers in which individual mol­ecules are joined by C—H⋯π contacts involving the H20B atom and the C1–C6centroid [2.681 (15) Å, 178.4 (11)°] as well as the H9 atom and the C14–C19centroid [2.809 (15) Å, 144.2 (10)°]. These dimers form the 3-D packing via van der Waals inter­actions between the alk­oxy chains.

[Figure 6]
Figure 6
Fragment of the crystal packing of 2-(4-hexyl­oxyphen­yl)-1-phenyl-1H-benzimidazole (2).

In the crystal of 3 (Fig. 7[link]), mol­ecules related by a twofold screw axis are linked via C—H⋯π contacts between the H8B atom and the centroid of the C1–C6 ring [2.695 (14) Å, 128.89 (10)°], between the H14 atom and the centroid of the N1–C7 imidazole ring [2.904 (14) Å, 137.45 (10)°] and between the H3 atom and the centroid of the C9–C14 ring [2.955 (14) Å, 141.31 (12)°]. In addition, each mol­ecule and its symmetry equivalent through the inversion center are linked by C—H⋯π contacts between the H23B atom and the centroid of the C1–C6 ring [2.847 (14) Å, 165.59 (13)°] and between the H21A atom and the centroid of the N1–C7 imidazole ring [2.973 (16) Å, 157.90 (12)°]. These inter­actions organize the mol­ecules into thick layers parallel to (10[\overline{1}]) with the layers assembled by van der Waals inter­actions between the alk­oxy chains.

[Figure 7]
Figure 7
Fragment of the crystal packing of 1-benzyl-2-(4-hexyl­oxyphen­yl)-1H-benzimidazole (3).

4. Database survey

Although the crystal structures of more than a thousand 2-aryl­benzimidazoles have been published so far (Cambridge Structural Database, version 5.42 updated to November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), fewer than 20 of them (including a few metal complexes) contain eth­oxy groups or longer chains attached to the aryl ring (Geiger et al., 2017[Geiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350-356.]; Wang, Niu et al., 2014[Wang, Z., Niu, J.-L., Zhang, L.-Z., Guo, J.-W., Hao, X.-Q. & Song, M.-P. (2014). Tetrahedron, 70, 7496-7504.]; Rahman et al., 2012[Rahman, M. L., Kwong, H. C., Mohd. Yusoff, M., Hegde, G. & Mohamed Tahir, M. I. (2012). Acta Cryst. E68, o3311-o3312.]; Wadhwa et al., 2016[Wadhwa, N. R., Hughes, N. C., Hachem, J. A. & Mezei, G. (2016). RSC Adv. 6, 11430-11440.]; Yeap et al., 2009[Yeap, C. S., Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o745-o746.]; Ha, 2012[Ha, K. (2012). Acta Cryst. E68, o1914.]; Wang, Sun et al., 2014[Wang, Z., Sun, Z., Hao, X.-Q., Niu, J.-L., Wei, D., Tu, T., Gong, J.-F. & Song, M.-P. (2014). Organometallics, 33, 1563-1573.]). It is inter­esting to note that 5-(2-(p-chloro­phenyl­benzimidazol-1-yl-meth­yl)-4-(2-methyl­phen­yl)-2,4-di­hydro-[1,2,4]-triazole-3-thione is iso­struct­ural with compound 2 (Karayel et al., 2015[Karayel, A., Özbey, S., Ayhan-Kılcıgil, G. & Kuş, C. (2015). Crystallogr. Rep. 60, 1084-1088.]).

5. Synthesis and crystallization

The title compounds were prepared as follows:

2-(4-Hexyl­oxyphen­yl)-1H-benzimidazole (1)

A mixture of 1,2-di­amino­benzene (108 mg, 1 mmol), 4-(hex­yloxy)benzaldehyde (0.208 ml, 1 mmol) and sodium metabisulfite (190 mg, 1 mmol) in ethanol (30 mL) was refluxed under Ar for 3 h. The reaction mixture was evap­orated to dryness, washed with water and di­chloro­methane and the white powder was collected and dried in vacuo. Yield 242 mg (82%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in an acetone/water mixture, m.p. = 472–473 K

1H NMR [(CD3)2CO, ppm, 400 MHz]: δ 8.19–8.11 (m, 2H, HAr), 7.59–7.52 (m, 2H, HAr), 7.22–7.13 (m, 2H, HAr), 7.12–7.04 (m, 2H, HAr), 4.09 (t, J = 6.5 Hz, 2H, HAlk), 1.86–1.75 (m, 2H, HAlk), 1.56–1.44 (m, 2H, HAlk), 1.43–1.31 (m, 4H, HAlk), 0.95–0.87 (m, 3H, HAlk).

2-(4-Hexyl­oxyphen­yl)-1-phenyl-1H-benzimidazole (2)

A mixture of N-phenyl­benzene-1,2-di­amine (1.84 g, 10 mmol), 4-(hex­yloxy)benzaldehyde (1.66 mL, 8 mmol) and sodium metabisulfite (1.9 g, 10 mmol) in ethanol (15 mL) was refluxed under Ar for 5 h. The solvent was removed in vacuo and the crude product was recrystallized from a water/acetone mixture. Yield 2.083 g (70%). Single crystals suitable for X-ray analysis were collected from the recrystallized product, m.p. = 389–390 K.

1H NMR (CDCl3, ppm, 400 MHz): δ 7.87 (d, J = 8.0 Hz, 1H, HAr), 7.55–7.41 (m, 5H, HAr), 7.36–7.28 (m, 3H, HAr), 7.28–7.18 (m, 2H, HAr), 6.85–6.77 (m, 2H, HAr), 3.97–3.89 (t, J = 6.6 Hz, 2H, HAlk), 1.82–1.70 (m, 2H, HAlk), 1.50–1.40 (m, 2H, HAlk), 1.40–1.27 (m, 4H, HAlk), 0.96–0.87 (m, 3H, HAlk).

1-Benzyl-2-(4-hexyl­oxyphen­yl)-1H-benzimidazole (3)

To a suspension of 1 (160 mg, 0.542 mmol) in aceto­nitrile (30 mL), caesium carbonate (265 mg, 0.813 mmol) and benzyl bromide (0.067 mL, 0.569 mmol) were added. The reaction mixture was stirred at room temperature for 12 h and concentrated in vacuo. The residue was dissolved in a mixture of CH2Cl2 and sat. NaHCO3. The aqueous layer was extracted with CH2Cl2, the organic layers were combined and the solvent was removed in vacuo. Recrystallization from CH2Cl2/EtOH gave the product as a white powder. Yield 188 mg (90%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in a CHCl3/EtOH mixture (3/1 v:v), m.p. = 401–402 K.

1H NMR (CDCl3, ppm, 400 MHz): δ 7.86 (d, J = 8.0 Hz, 1H, HAr), 7.66–7.58 (m, 2H, HAr), 7.39–7.27 (m, 4H, HAr), 7.25–7.17 (m, 2H, HAr), 7.15–7.10 (m, 2H, HAr), 7.00–6.92 (m, 2H, HAr), 5.48–5.44 (s, 2H, HAr), 4.00 (t, J = 6.6 Hz, 2H, HAlk), 1.86–1.74 (m, 2H, HAlk), 1.49–1.45 (m, 2H, HAlk), 1.39–1.31 (m, 4H, HAlk), 0.95–0.86 (m, 3H, HAlk).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the structures of 1 and 3, hydrogen atoms were placed in calculated positions and refined using a riding model [C—H = 0.94–0.97 Å with Uiso(H) = 1.2–1.5Ueq(C)]. In the structure of 1, the N—H hydrogen atom was located from a difference electron-density map and refined using a riding model [N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N)]. Hydrogen atoms in the structure of 2 were located from difference electron-density maps and were refined freely.

Table 2
Experimental details

  1 2 3
Crystal data
Chemical formula C19H22N2O C25H26N2O C26H28N2O
Mr 294.38 370.48 384.50
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 150 100 150
a, b, c (Å) 9.3802 (13), 9.4076 (13), 37.235 (5) 9.0089 (3), 16.6539 (5), 13.8400 (5) 14.3057 (13), 9.6392 (7), 16.3024 (13)
α, β, γ (°) 90, 90, 90 90, 101.419 (1), 90 90, 108.977 (3), 90
V3) 3285.8 (8) 2035.36 (12) 2125.8 (3)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.07 0.07 0.07
Crystal size (mm) 0.16 × 0.14 × 0.01 0.23 × 0.22 × 0.16 0.32 × 0.18 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.642, 0.745 0.694, 0.746 0.694, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 26780, 2900, 2171 22388, 6195, 4489 20533, 3813, 2875
Rint 0.097 0.047 0.051
(sin θ/λ)max−1) 0.596 0.714 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.233, 1.17 0.047, 0.119, 1.03 0.045, 0.116, 1.03
No. of reflections 2900 6195 3813
No. of parameters 200 357 263
H-atom treatment H-atom parameters constrained All H-atom parameters refined H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.40 0.27, −0.25 0.52, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(4-Hexyloxyphenyl)-1H-benzimidazole (3) top
Crystal data top
C26H28N2OF(000) = 824
Mr = 384.50Dx = 1.201 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.3057 (13) ÅCell parameters from 5668 reflections
b = 9.6392 (7) Åθ = 2.3–26.1°
c = 16.3024 (13) ŵ = 0.07 mm1
β = 108.977 (3)°T = 150 K
V = 2125.8 (3) Å3Plate, colourless
Z = 40.32 × 0.18 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
3813 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource2875 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.051
Detector resolution: 10.4 pixels mm-1θmax = 25.2°, θmin = 2.3°
ω–scanh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.694, Tmax = 0.745l = 1919
20533 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.8451P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3813 reflectionsΔρmax = 0.52 e Å3
263 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35057 (10)0.68007 (13)0.63440 (8)0.0346 (3)
N20.71150 (11)0.25231 (14)0.65132 (9)0.0245 (3)
N10.57463 (11)0.13503 (15)0.57646 (9)0.0265 (3)
C70.61008 (13)0.25349 (18)0.61454 (11)0.0251 (4)
C90.83510 (13)0.43825 (17)0.65779 (11)0.0239 (4)
C60.74261 (13)0.12185 (17)0.63539 (11)0.0241 (4)
C150.54652 (13)0.37098 (18)0.61908 (11)0.0254 (4)
C10.65666 (13)0.05056 (18)0.58863 (11)0.0251 (4)
C170.50564 (14)0.61502 (19)0.61353 (11)0.0289 (4)
H170.5224540.7087180.6068380.035*
C180.41772 (13)0.58396 (19)0.62720 (11)0.0281 (4)
C80.77685 (13)0.35755 (18)0.70438 (11)0.0265 (4)
H8A0.8237890.3118960.7557470.032*
H8B0.7367040.4235060.7254440.032*
C50.83572 (13)0.06191 (19)0.65827 (11)0.0272 (4)
H50.8934810.1114460.6902520.033*
C190.39190 (14)0.44582 (19)0.63417 (12)0.0307 (4)
H190.3306040.4240050.6420210.037*
C20.66237 (14)0.08558 (18)0.56151 (12)0.0287 (4)
H20.6048180.1348000.5287100.034*
C140.91141 (13)0.52387 (18)0.70620 (12)0.0287 (4)
H140.9257540.5304670.7672050.034*
C100.81481 (14)0.43126 (18)0.56852 (11)0.0278 (4)
H100.7628930.3733640.5345170.033*
C200.45566 (14)0.34143 (19)0.62962 (11)0.0298 (4)
H200.4374510.2475550.6337260.036*
C160.56943 (14)0.50850 (18)0.60961 (11)0.0275 (4)
H160.6299350.5303160.6002560.033*
C40.84007 (14)0.07356 (19)0.63211 (12)0.0303 (4)
H40.9023940.1187160.6469900.036*
C30.75487 (15)0.14613 (19)0.58417 (12)0.0315 (4)
H30.7608610.2389220.5668800.038*
C110.86981 (14)0.50819 (19)0.52880 (12)0.0322 (5)
H110.8549810.5031610.4676860.039*
C130.96659 (14)0.59952 (19)0.66617 (13)0.0327 (5)
H131.0189670.6569440.6999220.039*
C120.94587 (14)0.59196 (19)0.57721 (13)0.0337 (5)
H120.9837280.6440250.5497800.040*
C210.37783 (15)0.82380 (19)0.63491 (13)0.0363 (5)
H21A0.3809860.8510370.5773130.044*
H21B0.4435180.8397720.6787040.044*
C240.12096 (16)0.9823 (2)0.61640 (14)0.0414 (5)
H24A0.0544750.9596530.5758680.050*
H24B0.1218490.9576980.6756060.050*
C260.05543 (16)1.2226 (2)0.62688 (14)0.0416 (5)
H26A0.0073031.1992540.5822820.062*
H26B0.0693791.3215450.6231090.062*
H26C0.0508571.2022490.6843420.062*
C250.13774 (16)1.1376 (2)0.61283 (15)0.0445 (6)
H25A0.2009291.1623090.6577970.053*
H25B0.1435811.1613140.5556100.053*
C230.19767 (16)0.8929 (2)0.59333 (14)0.0448 (5)
H23A0.1776020.7942880.5911450.054*
H23B0.1985340.9191800.5348750.054*
C220.29974 (16)0.9082 (2)0.65685 (14)0.0466 (6)
H22A0.2987280.8801290.7149690.056*
H22B0.3186871.0073480.6600470.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0335 (8)0.0275 (7)0.0420 (8)0.0087 (6)0.0113 (6)0.0028 (6)
N20.0262 (9)0.0221 (8)0.0247 (8)0.0010 (6)0.0075 (7)0.0020 (6)
N10.0269 (8)0.0252 (8)0.0264 (8)0.0023 (7)0.0073 (7)0.0011 (6)
C70.0275 (10)0.0271 (10)0.0208 (9)0.0028 (8)0.0079 (8)0.0027 (7)
C90.0249 (10)0.0198 (9)0.0266 (9)0.0057 (7)0.0079 (8)0.0014 (7)
C60.0305 (10)0.0218 (9)0.0221 (9)0.0025 (8)0.0112 (8)0.0019 (7)
C150.0277 (10)0.0270 (10)0.0199 (9)0.0044 (8)0.0056 (8)0.0006 (7)
C10.0289 (10)0.0247 (9)0.0223 (9)0.0021 (8)0.0093 (8)0.0018 (7)
C170.0356 (11)0.0243 (10)0.0252 (9)0.0028 (8)0.0078 (8)0.0011 (7)
C180.0299 (10)0.0283 (10)0.0229 (9)0.0086 (8)0.0042 (8)0.0004 (7)
C80.0280 (10)0.0260 (9)0.0240 (9)0.0004 (8)0.0061 (8)0.0030 (7)
C50.0276 (10)0.0300 (10)0.0239 (9)0.0008 (8)0.0083 (8)0.0027 (8)
C190.0264 (10)0.0311 (11)0.0347 (11)0.0019 (8)0.0100 (9)0.0017 (8)
C20.0344 (11)0.0248 (10)0.0285 (10)0.0013 (8)0.0125 (8)0.0002 (8)
C140.0306 (11)0.0245 (9)0.0285 (10)0.0041 (8)0.0064 (8)0.0024 (8)
C100.0277 (10)0.0269 (10)0.0274 (10)0.0049 (8)0.0069 (8)0.0009 (8)
C200.0325 (11)0.0253 (10)0.0294 (10)0.0008 (8)0.0068 (8)0.0002 (8)
C160.0290 (10)0.0291 (10)0.0248 (10)0.0025 (8)0.0093 (8)0.0007 (8)
C40.0321 (11)0.0305 (10)0.0309 (10)0.0076 (9)0.0138 (9)0.0047 (8)
C30.0418 (12)0.0234 (10)0.0339 (10)0.0039 (9)0.0186 (9)0.0010 (8)
C110.0376 (12)0.0318 (11)0.0303 (10)0.0088 (9)0.0153 (9)0.0039 (8)
C130.0282 (11)0.0243 (10)0.0439 (12)0.0001 (8)0.0093 (9)0.0020 (8)
C120.0333 (11)0.0259 (10)0.0463 (12)0.0049 (9)0.0190 (10)0.0068 (9)
C210.0405 (13)0.0259 (11)0.0420 (12)0.0063 (9)0.0126 (10)0.0006 (8)
C240.0395 (13)0.0363 (12)0.0483 (13)0.0073 (10)0.0144 (10)0.0030 (10)
C260.0441 (13)0.0420 (12)0.0421 (12)0.0102 (10)0.0188 (10)0.0014 (10)
C250.0457 (14)0.0375 (12)0.0573 (14)0.0106 (10)0.0263 (12)0.0054 (10)
C230.0521 (14)0.0381 (12)0.0375 (12)0.0097 (11)0.0052 (11)0.0017 (9)
C220.0511 (14)0.0340 (12)0.0488 (13)0.0105 (11)0.0083 (11)0.0044 (10)
Geometric parameters (Å, º) top
O1—C181.367 (2)C10—H100.9500
O1—C211.439 (2)C10—C111.385 (3)
N2—C71.378 (2)C20—H200.9500
N2—C61.386 (2)C16—H160.9500
N2—C81.458 (2)C4—H40.9500
N1—C71.320 (2)C4—C31.402 (3)
N1—C11.389 (2)C3—H30.9500
C7—C151.469 (2)C11—H110.9500
C9—C81.513 (2)C11—C121.379 (3)
C9—C141.391 (2)C13—H130.9500
C9—C101.390 (2)C13—C121.385 (3)
C6—C11.398 (2)C12—H120.9500
C6—C51.387 (2)C21—H21A0.9900
C15—C201.395 (3)C21—H21B0.9900
C15—C161.386 (3)C21—C221.516 (3)
C1—C21.396 (2)C24—H24A0.9900
C17—H170.9500C24—H24B0.9900
C17—C181.380 (3)C24—C251.520 (3)
C17—C161.389 (2)C24—C231.535 (3)
C18—C191.396 (3)C26—H26A0.9800
C8—H8A0.9900C26—H26B0.9800
C8—H8B0.9900C26—H26C0.9800
C5—H50.9500C26—C251.512 (3)
C5—C41.381 (3)C25—H25A0.9900
C19—H190.9500C25—H25B0.9900
C19—C201.376 (3)C23—H23A0.9900
C2—H20.9500C23—H23B0.9900
C2—C31.382 (3)C23—C221.498 (3)
C14—H140.9500C22—H22A0.9900
C14—C131.384 (3)C22—H22B0.9900
C18—O1—C21117.15 (15)C17—C16—H16119.4
C7—N2—C6106.42 (14)C5—C4—H4119.2
C7—N2—C8129.33 (14)C5—C4—C3121.69 (17)
C6—N2—C8124.01 (15)C3—C4—H4119.2
C7—N1—C1105.21 (15)C2—C3—C4121.43 (17)
N2—C7—C15124.45 (16)C2—C3—H3119.3
N1—C7—N2112.75 (15)C4—C3—H3119.3
N1—C7—C15122.76 (16)C10—C11—H11119.7
C14—C9—C8118.62 (15)C12—C11—C10120.56 (18)
C10—C9—C8122.63 (16)C12—C11—H11119.7
C10—C9—C14118.74 (16)C14—C13—H13119.8
N2—C6—C1105.60 (15)C14—C13—C12120.37 (18)
N2—C6—C5131.77 (17)C12—C13—H13119.8
C5—C6—C1122.63 (16)C11—C12—C13119.39 (17)
C20—C15—C7117.75 (16)C11—C12—H12120.3
C16—C15—C7123.98 (16)C13—C12—H12120.3
C16—C15—C20118.20 (16)O1—C21—H21A110.2
N1—C1—C6110.01 (15)O1—C21—H21B110.2
N1—C1—C2129.78 (17)O1—C21—C22107.40 (16)
C2—C1—C6120.21 (16)H21A—C21—H21B108.5
C18—C17—H17120.2C22—C21—H21A110.2
C18—C17—C16119.61 (17)C22—C21—H21B110.2
C16—C17—H17120.2H24A—C24—H24B107.6
O1—C18—C17124.75 (17)C25—C24—H24A108.7
O1—C18—C19115.30 (16)C25—C24—H24B108.7
C17—C18—C19119.95 (17)C25—C24—C23114.15 (18)
N2—C8—C9114.30 (14)C23—C24—H24A108.7
N2—C8—H8A108.7C23—C24—H24B108.7
N2—C8—H8B108.7H26A—C26—H26B109.5
C9—C8—H8A108.7H26A—C26—H26C109.5
C9—C8—H8B108.7H26B—C26—H26C109.5
H8A—C8—H8B107.6C25—C26—H26A109.5
C6—C5—H5121.7C25—C26—H26B109.5
C4—C5—C6116.52 (17)C25—C26—H26C109.5
C4—C5—H5121.7C24—C25—H25A109.0
C18—C19—H19120.2C24—C25—H25B109.0
C20—C19—C18119.69 (17)C26—C25—C24112.80 (18)
C20—C19—H19120.2C26—C25—H25A109.0
C1—C2—H2121.2C26—C25—H25B109.0
C3—C2—C1117.51 (18)H25A—C25—H25B107.8
C3—C2—H2121.2C24—C23—H23A109.0
C9—C14—H14119.7C24—C23—H23B109.0
C13—C14—C9120.51 (17)H23A—C23—H23B107.8
C13—C14—H14119.7C22—C23—C24112.89 (17)
C9—C10—H10119.8C22—C23—H23A109.0
C11—C10—C9120.42 (18)C22—C23—H23B109.0
C11—C10—H10119.8C21—C22—H22A108.7
C15—C20—H20119.4C21—C22—H22B108.7
C19—C20—C15121.19 (17)C23—C22—C21114.30 (18)
C19—C20—H20119.4C23—C22—H22A108.7
C15—C16—C17121.28 (17)C23—C22—H22B108.7
C15—C16—H16119.4H22A—C22—H22B107.6
O1—C18—C19—C20178.63 (16)C17—C18—C19—C201.7 (3)
O1—C21—C22—C2360.9 (2)C18—O1—C21—C22171.66 (15)
N2—C7—C15—C20141.71 (17)C18—C17—C16—C150.1 (3)
N2—C7—C15—C1641.3 (3)C18—C19—C20—C150.7 (3)
N2—C6—C1—N10.27 (18)C8—N2—C7—N1174.66 (15)
N2—C6—C1—C2179.56 (15)C8—N2—C7—C153.3 (3)
N2—C6—C5—C4179.23 (16)C8—N2—C6—C1175.08 (14)
N1—C7—C15—C2036.1 (2)C8—N2—C6—C54.0 (3)
N1—C7—C15—C16140.91 (18)C8—C9—C14—C13179.99 (16)
N1—C1—C2—C3178.94 (16)C8—C9—C10—C11179.44 (16)
C7—N2—C6—C10.31 (17)C5—C6—C1—N1178.94 (15)
C7—N2—C6—C5178.80 (17)C5—C6—C1—C21.2 (2)
C7—N2—C8—C9105.68 (19)C5—C4—C3—C20.6 (3)
C7—N1—C1—C60.12 (18)C14—C9—C8—N2169.16 (15)
C7—N1—C1—C2179.70 (17)C14—C9—C10—C110.1 (3)
C7—C15—C20—C19179.81 (16)C14—C13—C12—C110.1 (3)
C7—C15—C16—C17179.22 (16)C10—C9—C8—N211.5 (2)
C9—C14—C13—C120.6 (3)C10—C9—C14—C130.6 (3)
C9—C10—C11—C120.5 (3)C10—C11—C12—C130.5 (3)
C6—N2—C7—N10.26 (18)C20—C15—C16—C172.3 (3)
C6—N2—C7—C15177.70 (15)C16—C15—C20—C192.7 (3)
C6—N2—C8—C980.8 (2)C16—C17—C18—O1178.27 (16)
C6—C1—C2—C31.3 (2)C16—C17—C18—C192.1 (3)
C6—C5—C4—C30.6 (2)C21—O1—C18—C175.4 (2)
C1—N1—C7—N20.09 (18)C21—O1—C18—C19174.93 (16)
C1—N1—C7—C15177.91 (15)C24—C23—C22—C21178.67 (18)
C1—C6—C5—C40.2 (2)C25—C24—C23—C2264.6 (3)
C1—C2—C3—C40.4 (3)C23—C24—C25—C26174.14 (18)
2-(4-Hexyloxyphenyl)-1-phenyl-1H-benzimidazole (2) top
Crystal data top
C25H26N2OF(000) = 792
Mr = 370.48Dx = 1.209 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0089 (3) ÅCell parameters from 6945 reflections
b = 16.6539 (5) Åθ = 2.5–30.0°
c = 13.8400 (5) ŵ = 0.07 mm1
β = 101.419 (1)°T = 100 K
V = 2035.36 (12) Å3Block, colourless
Z = 40.23 × 0.22 × 0.16 mm
Data collection top
Bruker D8 Venture
diffractometer
6195 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource4489 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.047
Detector resolution: 10.4 pixels mm-1θmax = 30.5°, θmin = 1.9°
ω–scanh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2223
Tmin = 0.694, Tmax = 0.746l = 1919
22388 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2708P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6195 reflectionsΔρmax = 0.27 e Å3
357 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41962 (10)0.79543 (5)0.47354 (6)0.02038 (19)
N20.36688 (10)0.42504 (6)0.31526 (7)0.0158 (2)
N10.59290 (11)0.46364 (6)0.28508 (7)0.0175 (2)
C10.56463 (13)0.38438 (7)0.25505 (8)0.0163 (2)
C70.47394 (12)0.48562 (7)0.32094 (8)0.0153 (2)
C180.36776 (13)0.65236 (7)0.48047 (8)0.0168 (2)
C140.45784 (12)0.56503 (7)0.36379 (8)0.0158 (2)
C170.43040 (13)0.71868 (7)0.44203 (9)0.0166 (2)
C150.52509 (13)0.63193 (7)0.32834 (9)0.0177 (2)
C80.22065 (12)0.42800 (7)0.34137 (8)0.0155 (2)
C60.42416 (13)0.35920 (7)0.27312 (8)0.0162 (2)
C190.38161 (13)0.57656 (7)0.44118 (8)0.0160 (2)
C160.51118 (13)0.70773 (7)0.36634 (9)0.0180 (2)
C90.19533 (13)0.38329 (7)0.42090 (9)0.0192 (2)
C50.36509 (14)0.28298 (7)0.24870 (9)0.0201 (2)
C110.05825 (14)0.43579 (7)0.39489 (9)0.0215 (3)
C20.65337 (14)0.33068 (7)0.21309 (9)0.0201 (2)
C130.10770 (13)0.47566 (7)0.28723 (9)0.0200 (2)
C40.45431 (14)0.23105 (8)0.20649 (9)0.0218 (3)
C30.59663 (14)0.25456 (8)0.18966 (9)0.0216 (3)
C100.05474 (14)0.38751 (8)0.44755 (9)0.0224 (3)
C120.03216 (14)0.47956 (8)0.31463 (9)0.0224 (3)
C200.32560 (15)0.80774 (7)0.54534 (9)0.0211 (2)
C230.23511 (16)1.03530 (7)0.50281 (9)0.0234 (3)
C210.32315 (16)0.89670 (8)0.56663 (9)0.0237 (3)
C220.24677 (16)0.94655 (8)0.47849 (9)0.0244 (3)
C240.15475 (17)1.08422 (8)0.41511 (10)0.0268 (3)
C250.1401 (2)1.17278 (8)0.43819 (11)0.0314 (3)
H150.5791 (15)0.6253 (8)0.2753 (10)0.020 (3)*
H20A0.2200 (16)0.7877 (8)0.5168 (10)0.020 (3)*
H180.3139 (15)0.6582 (8)0.5347 (10)0.017 (3)*
H100.0330 (17)0.3558 (9)0.5043 (12)0.033 (4)*
H190.3366 (14)0.5308 (8)0.4683 (10)0.016 (3)*
H20B0.3691 (16)0.7754 (8)0.6061 (11)0.025 (4)*
H21A0.2665 (18)0.9038 (9)0.6220 (12)0.032 (4)*
H22A0.3029 (18)0.9409 (9)0.4231 (13)0.039 (4)*
H23A0.3409 (17)1.0592 (8)0.5256 (11)0.024 (4)*
H90.2784 (16)0.3505 (8)0.4602 (11)0.025 (4)*
H120.1128 (17)0.5134 (9)0.2784 (12)0.030 (4)*
H40.4210 (16)0.1761 (9)0.1892 (11)0.028 (4)*
H130.1299 (15)0.5066 (8)0.2297 (11)0.025 (4)*
H22B0.1433 (19)0.9249 (9)0.4523 (12)0.034 (4)*
H23B0.1808 (17)1.0410 (9)0.5594 (12)0.031 (4)*
H20.7493 (17)0.3472 (9)0.1987 (11)0.029 (4)*
H21B0.4285 (17)0.9151 (8)0.5899 (11)0.029 (4)*
H50.2680 (16)0.2683 (8)0.2613 (10)0.018 (3)*
H24A0.0477 (19)1.0608 (9)0.3914 (12)0.040 (5)*
H24B0.209 (2)1.0783 (9)0.3595 (14)0.044 (5)*
H30.6594 (16)0.2171 (8)0.1605 (11)0.023 (4)*
H110.1567 (16)0.4405 (8)0.4156 (10)0.023 (4)*
H160.5570 (16)0.7553 (9)0.3410 (11)0.026 (4)*
H25A0.0885 (17)1.2038 (9)0.3793 (12)0.032 (4)*
H25B0.0814 (19)1.1804 (10)0.4929 (13)0.045 (5)*
H25C0.243 (2)1.1968 (11)0.4611 (14)0.054 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0227 (4)0.0154 (4)0.0239 (4)0.0001 (3)0.0067 (3)0.0025 (3)
N20.0119 (4)0.0160 (5)0.0196 (5)0.0006 (4)0.0032 (4)0.0006 (4)
N10.0150 (5)0.0185 (5)0.0191 (5)0.0017 (4)0.0040 (4)0.0006 (4)
C10.0153 (5)0.0174 (5)0.0157 (5)0.0021 (4)0.0020 (4)0.0011 (4)
C70.0130 (5)0.0167 (5)0.0159 (5)0.0007 (4)0.0019 (4)0.0026 (4)
C180.0150 (5)0.0190 (6)0.0164 (5)0.0014 (4)0.0030 (4)0.0004 (4)
C140.0116 (5)0.0176 (5)0.0175 (5)0.0018 (4)0.0010 (4)0.0009 (4)
C170.0143 (5)0.0154 (5)0.0189 (5)0.0015 (4)0.0003 (4)0.0001 (4)
C150.0138 (5)0.0213 (6)0.0183 (5)0.0005 (4)0.0044 (4)0.0012 (4)
C80.0118 (5)0.0162 (5)0.0191 (5)0.0011 (4)0.0044 (4)0.0017 (4)
C60.0142 (5)0.0179 (5)0.0159 (5)0.0026 (4)0.0019 (4)0.0000 (4)
C190.0136 (5)0.0169 (5)0.0170 (5)0.0005 (4)0.0019 (4)0.0023 (4)
C160.0151 (5)0.0180 (6)0.0209 (6)0.0026 (4)0.0033 (4)0.0018 (4)
C90.0160 (5)0.0183 (6)0.0225 (6)0.0013 (5)0.0022 (4)0.0037 (4)
C50.0177 (6)0.0218 (6)0.0199 (6)0.0017 (5)0.0015 (5)0.0015 (4)
C110.0143 (5)0.0252 (6)0.0264 (6)0.0009 (5)0.0076 (5)0.0007 (5)
C20.0173 (6)0.0244 (6)0.0191 (6)0.0032 (5)0.0051 (4)0.0007 (5)
C130.0165 (5)0.0241 (6)0.0197 (6)0.0010 (5)0.0043 (4)0.0048 (5)
C40.0242 (6)0.0196 (6)0.0199 (6)0.0000 (5)0.0004 (5)0.0034 (5)
C30.0237 (6)0.0220 (6)0.0188 (6)0.0057 (5)0.0037 (5)0.0033 (5)
C100.0208 (6)0.0236 (6)0.0241 (6)0.0017 (5)0.0080 (5)0.0054 (5)
C120.0148 (5)0.0260 (6)0.0259 (6)0.0045 (5)0.0029 (5)0.0052 (5)
C200.0261 (6)0.0192 (6)0.0183 (6)0.0028 (5)0.0051 (5)0.0007 (5)
C230.0310 (7)0.0183 (6)0.0207 (6)0.0017 (5)0.0048 (5)0.0027 (5)
C210.0318 (7)0.0201 (6)0.0182 (6)0.0025 (5)0.0028 (5)0.0034 (5)
C220.0336 (7)0.0192 (6)0.0193 (6)0.0038 (5)0.0029 (5)0.0027 (5)
C240.0387 (8)0.0204 (6)0.0212 (6)0.0044 (6)0.0055 (6)0.0018 (5)
C250.0467 (9)0.0193 (6)0.0274 (7)0.0037 (6)0.0048 (6)0.0001 (5)
Geometric parameters (Å, º) top
O1—C171.3602 (13)C11—H110.988 (14)
O1—C201.4423 (14)C2—C31.3812 (18)
N2—C71.3872 (14)C2—H20.964 (15)
N2—C81.4342 (14)C13—C121.3874 (16)
N2—C61.3884 (14)C13—H131.002 (15)
N1—C11.3921 (15)C4—C31.4034 (18)
N1—C71.3189 (14)C4—H40.978 (14)
C1—C61.4019 (16)C3—H30.981 (14)
C1—C21.4000 (16)C10—H100.997 (15)
C7—C141.4683 (15)C12—H120.976 (15)
C18—C171.3930 (16)C20—C211.5115 (17)
C18—C191.3899 (16)C20—H20A1.011 (14)
C18—H180.976 (13)C20—H20B1.010 (14)
C14—C151.4025 (16)C23—C221.5241 (17)
C14—C191.3954 (16)C23—C241.5209 (18)
C17—C161.4007 (16)C23—H23A1.023 (15)
C15—C161.3826 (16)C23—H23B1.007 (16)
C15—H150.964 (14)C21—C221.5226 (18)
C8—C91.3847 (16)C21—H21A1.008 (16)
C8—C131.3874 (16)C21—H21B0.989 (15)
C6—C51.3920 (17)C22—H22A1.002 (17)
C19—H190.972 (13)C22—H22B0.999 (17)
C16—H160.989 (15)C24—C251.5204 (18)
C9—C101.3893 (17)C24—H24A1.032 (17)
C9—H90.996 (14)C24—H24B0.998 (18)
C5—C41.3861 (17)C25—H25A0.999 (16)
C5—H50.957 (14)C25—H25B1.014 (18)
C11—C101.3857 (17)C25—H25C1.000 (19)
C11—C121.3869 (17)
C17—O1—C20116.33 (9)C12—C13—H13121.9 (8)
C7—N2—C8128.59 (9)C5—C4—C3121.40 (12)
C7—N2—C6106.62 (9)C5—C4—H4120.8 (8)
C6—N2—C8124.70 (9)C3—C4—H4117.8 (8)
C7—N1—C1105.14 (9)C2—C3—C4121.66 (11)
N1—C1—C6110.40 (9)C2—C3—H3117.6 (8)
N1—C1—C2130.08 (11)C4—C3—H3120.7 (8)
C2—C1—C6119.52 (11)C9—C10—H10120.9 (9)
N2—C7—C14123.70 (10)C11—C10—C9120.20 (11)
N1—C7—N2112.61 (10)C11—C10—H10118.9 (9)
N1—C7—C14123.69 (10)C11—C12—C13120.09 (11)
C17—C18—H18121.0 (8)C11—C12—H12119.2 (9)
C19—C18—C17119.75 (10)C13—C12—H12120.7 (9)
C19—C18—H18119.2 (8)O1—C20—C21107.87 (10)
C15—C14—C7119.35 (10)O1—C20—H20A108.6 (8)
C19—C14—C7122.48 (10)O1—C20—H20B108.3 (8)
C19—C14—C15118.14 (10)C21—C20—H20A110.5 (8)
O1—C17—C18124.23 (10)C21—C20—H20B112.2 (8)
O1—C17—C16116.29 (10)H20A—C20—H20B109.2 (11)
C18—C17—C16119.48 (10)C22—C23—H23A110.2 (8)
C14—C15—H15119.5 (8)C22—C23—H23B109.2 (8)
C16—C15—C14120.95 (11)C24—C23—C22112.71 (11)
C16—C15—H15119.5 (8)C24—C23—H23A107.7 (8)
C9—C8—N2119.07 (10)C24—C23—H23B110.0 (9)
C9—C8—C13121.22 (10)H23A—C23—H23B106.8 (12)
C13—C8—N2119.71 (10)C20—C21—C22113.57 (11)
N2—C6—C1105.22 (9)C20—C21—H21A107.0 (8)
N2—C6—C5131.77 (11)C20—C21—H21B108.5 (8)
C5—C6—C1123.00 (10)C22—C21—H21A109.2 (9)
C18—C19—C14121.42 (11)C22—C21—H21B110.2 (9)
C18—C19—H19119.0 (8)H21A—C21—H21B108.3 (12)
C14—C19—H19119.6 (8)C23—C22—H22A109.1 (9)
C17—C16—H16118.4 (8)C23—C22—H22B109.3 (9)
C15—C16—C17120.20 (11)C21—C22—C23113.07 (11)
C15—C16—H16121.4 (8)C21—C22—H22A110.2 (9)
C8—C9—C10119.09 (11)C21—C22—H22B109.6 (9)
C8—C9—H9120.3 (8)H22A—C22—H22B105.3 (13)
C10—C9—H9120.6 (8)C23—C24—H24A108.6 (9)
C6—C5—H5120.6 (8)C23—C24—H24B109.5 (10)
C4—C5—C6116.46 (11)C25—C24—C23113.54 (11)
C4—C5—H5123.0 (8)C25—C24—H24A108.6 (9)
C10—C11—C12120.19 (11)C25—C24—H24B109.5 (9)
C10—C11—H11120.1 (8)H24A—C24—H24B106.9 (13)
C12—C11—H11119.7 (8)C24—C25—H25A112.1 (9)
C1—C2—H2120.8 (9)C24—C25—H25B111.0 (9)
C3—C2—C1117.94 (11)C24—C25—H25C110.0 (10)
C3—C2—H2121.2 (9)H25A—C25—H25B108.5 (13)
C8—C13—H13118.9 (8)H25A—C25—H25C107.6 (13)
C12—C13—C8119.19 (11)H25B—C25—H25C107.5 (14)
O1—C17—C16—C15178.63 (10)C15—C14—C19—C182.07 (17)
O1—C20—C21—C2265.39 (14)C8—N2—C7—N1176.10 (10)
N2—C7—C14—C15150.27 (11)C8—N2—C7—C144.92 (18)
N2—C7—C14—C1931.78 (17)C8—N2—C6—C1176.60 (10)
N2—C8—C9—C10178.61 (11)C8—N2—C6—C52.10 (19)
N2—C8—C13—C12178.46 (11)C8—C9—C10—C110.10 (19)
N2—C6—C5—C4179.78 (12)C8—C13—C12—C110.39 (19)
N1—C1—C6—N20.11 (12)C6—N2—C7—N10.61 (13)
N1—C1—C6—C5178.73 (11)C6—N2—C7—C14178.37 (10)
N1—C1—C2—C3179.72 (12)C6—N2—C8—C971.01 (15)
N1—C7—C14—C1530.87 (16)C6—N2—C8—C13109.35 (13)
N1—C7—C14—C19147.09 (11)C6—C1—C2—C30.98 (17)
C1—N1—C7—N20.66 (13)C6—C5—C4—C30.08 (18)
C1—N1—C7—C14178.32 (10)C19—C18—C17—O1178.21 (10)
C1—C6—C5—C41.28 (18)C19—C18—C17—C162.17 (17)
C1—C2—C3—C40.32 (18)C19—C14—C15—C162.51 (17)
C7—N2—C8—C9112.83 (13)C9—C8—C13—C121.17 (18)
C7—N2—C8—C1366.81 (16)C5—C4—C3—C20.88 (19)
C7—N2—C6—C10.28 (12)C2—C1—C6—N2179.31 (10)
C7—N2—C6—C5178.97 (12)C2—C1—C6—C51.85 (18)
C7—N1—C1—C60.47 (13)C13—C8—C9—C101.03 (18)
C7—N1—C1—C2178.88 (12)C10—C11—C12—C130.5 (2)
C7—C14—C15—C16179.44 (11)C12—C11—C10—C90.7 (2)
C7—C14—C19—C18179.95 (10)C20—O1—C17—C185.57 (16)
C18—C17—C16—C151.73 (17)C20—O1—C17—C16174.80 (10)
C14—C15—C16—C170.65 (18)C20—C21—C22—C23175.95 (12)
C17—O1—C20—C21177.40 (10)C22—C23—C24—C25179.25 (13)
C17—C18—C19—C140.26 (17)C24—C23—C22—C21178.39 (12)
1-Benzyl-2-(4-hexyloxyphenyl)-1H-benzimidazole (1) top
Crystal data top
C19H22N2ODx = 1.190 Mg m3
Mr = 294.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3935 reflections
a = 9.3802 (13) Åθ = 2.2–22.2°
b = 9.4076 (13) ŵ = 0.07 mm1
c = 37.235 (5) ÅT = 150 K
V = 3285.8 (8) Å3Plate, colourless
Z = 80.16 × 0.14 × 0.01 mm
F(000) = 1264
Data collection top
Bruker D8 Venture
diffractometer
2900 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource2171 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.097
Detector resolution: 10.4 pixels mm-1θmax = 25.1°, θmin = 2.2°
ω–scanh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.642, Tmax = 0.745l = 4444
26780 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.099H-atom parameters constrained
wR(F2) = 0.233 w = 1/[σ2(Fo2) + (0.0273P)2 + 15.0864P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
2900 reflectionsΔρmax = 0.32 e Å3
200 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7545 (4)0.5030 (4)0.59420 (9)0.0414 (9)
N20.2163 (4)0.2653 (4)0.68379 (10)0.0248 (9)
H20.2681600.1875740.6822900.030*
N10.1515 (4)0.4926 (4)0.67692 (10)0.0272 (9)
C70.2513 (5)0.3952 (5)0.67041 (11)0.0244 (10)
C60.0860 (5)0.2772 (5)0.69998 (12)0.0229 (10)
C10.0453 (5)0.4199 (5)0.69573 (12)0.0244 (10)
C80.3840 (5)0.4218 (5)0.65126 (12)0.0237 (10)
C110.6376 (5)0.4715 (5)0.61439 (13)0.0311 (11)
C20.0840 (5)0.4681 (5)0.70942 (12)0.0298 (11)
H2A0.1133290.5640310.7064170.036*
C40.1271 (5)0.2283 (5)0.73179 (12)0.0299 (11)
H40.1877660.1644850.7443260.036*
C90.5082 (5)0.3519 (5)0.66103 (13)0.0300 (11)
H90.5062350.2855280.6802520.036*
C50.0007 (5)0.1807 (5)0.71803 (12)0.0292 (11)
H50.0272840.0842130.7207240.035*
C130.3884 (5)0.5194 (5)0.62292 (12)0.0300 (11)
H130.3044500.5693820.6162700.036*
C30.1679 (5)0.3716 (5)0.72747 (12)0.0306 (11)
H30.2560490.4024230.7373350.037*
C120.5135 (5)0.5432 (5)0.60466 (13)0.0318 (11)
H120.5153270.6089550.5852930.038*
C100.6359 (5)0.3777 (5)0.64308 (13)0.0334 (12)
H100.7209870.3313080.6504330.040*
C161.0202 (6)0.6351 (6)0.57073 (14)0.0403 (13)
H16A1.0647980.6752920.5925880.048*
H16B0.9271450.6828570.5672650.048*
C150.9959 (6)0.4787 (6)0.57613 (15)0.0423 (13)
H15A1.0879360.4336020.5824300.051*
H15B0.9636610.4369410.5531100.051*
C140.8880 (5)0.4424 (7)0.60488 (15)0.0448 (14)
H14A0.8790590.3379540.6073150.054*
H14B0.9183890.4820040.6282920.054*
C171.1158 (6)0.6661 (6)0.53834 (16)0.0497 (15)
H17A1.2136830.6335570.5439280.060*
H17B1.0812040.6096930.5176560.060*
C181.1219 (7)0.8192 (7)0.52750 (17)0.0563 (17)
H18A1.1617930.8754890.5475970.068*
H18B1.0238460.8536480.5229540.068*
C191.2111 (8)0.8441 (8)0.49442 (17)0.072 (2)
H19A1.1761040.7840130.4748150.108*
H19B1.3106990.8203350.4995810.108*
H19C1.2043770.9442610.4873560.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0270 (18)0.055 (2)0.0419 (19)0.0024 (17)0.0043 (16)0.0105 (18)
N20.021 (2)0.0145 (18)0.039 (2)0.0004 (15)0.0016 (16)0.0028 (16)
N10.025 (2)0.0174 (19)0.040 (2)0.0004 (16)0.0001 (18)0.0023 (17)
C70.025 (2)0.016 (2)0.033 (2)0.0009 (18)0.003 (2)0.0003 (18)
C60.018 (2)0.019 (2)0.031 (2)0.0008 (18)0.0023 (19)0.0022 (19)
C10.022 (2)0.018 (2)0.033 (2)0.0010 (19)0.000 (2)0.0018 (19)
C80.022 (2)0.016 (2)0.033 (2)0.0036 (18)0.0011 (19)0.0003 (19)
C110.024 (2)0.033 (3)0.036 (3)0.003 (2)0.001 (2)0.001 (2)
C20.027 (2)0.020 (2)0.042 (3)0.003 (2)0.003 (2)0.001 (2)
C40.031 (3)0.023 (2)0.036 (3)0.006 (2)0.004 (2)0.000 (2)
C90.028 (3)0.023 (2)0.038 (3)0.000 (2)0.000 (2)0.006 (2)
C50.030 (3)0.019 (2)0.039 (3)0.004 (2)0.002 (2)0.002 (2)
C130.025 (3)0.027 (3)0.038 (3)0.002 (2)0.004 (2)0.002 (2)
C30.019 (2)0.032 (3)0.041 (3)0.002 (2)0.005 (2)0.003 (2)
C120.030 (3)0.026 (3)0.039 (3)0.004 (2)0.003 (2)0.008 (2)
C100.025 (3)0.035 (3)0.041 (3)0.000 (2)0.000 (2)0.003 (2)
C160.028 (3)0.043 (3)0.050 (3)0.001 (2)0.008 (2)0.001 (3)
C150.033 (3)0.043 (3)0.051 (3)0.000 (3)0.013 (3)0.003 (3)
C140.025 (3)0.053 (4)0.056 (3)0.002 (3)0.007 (2)0.011 (3)
C170.046 (4)0.048 (4)0.055 (3)0.001 (3)0.013 (3)0.002 (3)
C180.053 (4)0.047 (4)0.068 (4)0.011 (3)0.016 (3)0.007 (3)
C190.083 (5)0.072 (5)0.061 (4)0.030 (4)0.016 (4)0.003 (4)
Geometric parameters (Å, º) top
O1—C111.362 (6)C13—H130.9500
O1—C141.433 (6)C13—C121.375 (7)
N2—H20.8800C3—H30.9500
N2—C71.360 (6)C12—H120.9500
N2—C61.368 (5)C10—H100.9500
N1—C71.333 (6)C16—H16A0.9900
N1—C11.397 (6)C16—H16B0.9900
C7—C81.456 (6)C16—C151.503 (8)
C6—C11.405 (6)C16—C171.531 (7)
C6—C51.392 (6)C15—H15A0.9900
C1—C21.392 (6)C15—H15B0.9900
C8—C91.387 (6)C15—C141.512 (7)
C8—C131.399 (6)C14—H14A0.9900
C11—C121.394 (7)C14—H14B0.9900
C11—C101.386 (7)C17—H17A0.9900
C2—H2A0.9500C17—H17B0.9900
C2—C31.377 (6)C17—C181.497 (8)
C4—H40.9500C18—H18A0.9900
C4—C51.367 (7)C18—H18B0.9900
C4—C31.410 (7)C18—C191.507 (8)
C9—H90.9500C19—H19A0.9800
C9—C101.392 (7)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C11—O1—C14117.7 (4)C13—C12—H12119.8
C7—N2—H2126.1C11—C10—C9119.4 (5)
C7—N2—C6107.7 (4)C11—C10—H10120.3
C6—N2—H2126.1C9—C10—H10120.3
C7—N1—C1104.8 (4)H16A—C16—H16B107.9
N2—C7—C8122.7 (4)C15—C16—H16A109.1
N1—C7—N2112.4 (4)C15—C16—H16B109.1
N1—C7—C8124.9 (4)C15—C16—C17112.4 (5)
N2—C6—C1105.7 (4)C17—C16—H16A109.1
N2—C6—C5133.0 (4)C17—C16—H16B109.1
C5—C6—C1121.3 (4)C16—C15—H15A108.6
N1—C1—C6109.3 (4)C16—C15—H15B108.6
C2—C1—N1130.2 (4)C16—C15—C14114.7 (5)
C2—C1—C6120.5 (4)H15A—C15—H15B107.6
C9—C8—C7120.5 (4)C14—C15—H15A108.6
C9—C8—C13119.0 (4)C14—C15—H15B108.6
C13—C8—C7120.5 (4)O1—C14—C15107.4 (4)
O1—C11—C12115.1 (4)O1—C14—H14A110.2
O1—C11—C10125.0 (4)O1—C14—H14B110.2
C10—C11—C12119.9 (4)C15—C14—H14A110.2
C1—C2—H2A121.2C15—C14—H14B110.2
C3—C2—C1117.5 (4)H14A—C14—H14B108.5
C3—C2—H2A121.2C16—C17—H17A108.6
C5—C4—H4119.8C16—C17—H17B108.6
C5—C4—C3120.4 (4)H17A—C17—H17B107.6
C3—C4—H4119.8C18—C17—C16114.7 (5)
C8—C9—H9119.5C18—C17—H17A108.6
C8—C9—C10120.9 (4)C18—C17—H17B108.6
C10—C9—H9119.5C17—C18—H18A109.0
C6—C5—H5120.9C17—C18—H18B109.0
C4—C5—C6118.3 (4)C17—C18—C19113.0 (5)
C4—C5—H5120.9H18A—C18—H18B107.8
C8—C13—H13119.8C19—C18—H18A109.0
C12—C13—C8120.3 (4)C19—C18—H18B109.0
C12—C13—H13119.8C18—C19—H19A109.5
C2—C3—C4122.0 (4)C18—C19—H19B109.5
C2—C3—H3119.0C18—C19—H19C109.5
C4—C3—H3119.0H19A—C19—H19B109.5
C11—C12—H12119.8H19A—C19—H19C109.5
C13—C12—C11120.4 (4)H19B—C19—H19C109.5
O1—C11—C12—C13179.5 (4)C1—N1—C7—C8180.0 (4)
O1—C11—C10—C9178.4 (5)C1—C6—C5—C40.3 (7)
N2—C7—C8—C935.0 (7)C1—C2—C3—C40.9 (7)
N2—C7—C8—C13145.6 (4)C8—C9—C10—C111.8 (7)
N2—C6—C1—N10.1 (5)C8—C13—C12—C110.6 (7)
N2—C6—C1—C2179.9 (4)C11—O1—C14—C15173.5 (4)
N2—C6—C5—C4179.1 (5)C9—C8—C13—C121.3 (7)
N1—C7—C8—C9145.0 (5)C5—C6—C1—N1179.7 (4)
N1—C7—C8—C1334.4 (7)C5—C6—C1—C20.4 (7)
N1—C1—C2—C3179.2 (4)C5—C4—C3—C20.2 (7)
C7—N2—C6—C10.2 (5)C13—C8—C9—C100.0 (7)
C7—N2—C6—C5179.6 (5)C3—C4—C5—C60.3 (7)
C7—N1—C1—C60.1 (5)C12—C11—C10—C92.5 (7)
C7—N1—C1—C2180.0 (5)C10—C11—C12—C131.3 (8)
C7—C8—C9—C10179.4 (4)C16—C15—C14—O161.1 (6)
C7—C8—C13—C12179.4 (4)C16—C17—C18—C19177.1 (5)
C6—N2—C7—N10.1 (5)C15—C16—C17—C18169.2 (5)
C6—N2—C7—C8179.9 (4)C14—O1—C11—C12174.6 (5)
C6—C1—C2—C30.9 (7)C14—O1—C11—C104.6 (7)
C1—N1—C7—N20.0 (5)C17—C16—C15—C14172.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.881.992.861 (5)169
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS. Dr I. M. Vatsouro is acknowledged for assistance with NMR measurements.

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 19-73-00351).

References

First citationAghazada, S. & Nazeeruddin, M. K. (2018). Inorganics, 6, article No. 52.  Web of Science CrossRef Google Scholar
First citationBezzubov, S. I., Doljenko, V. D., Troyanov, S. I. & Kiselev, Y. M. (2014). Inorg. Chim. Acta, 415, 22–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationBezzubov, S. I., Kiselev, Y. M., Churakov, A. V., Kozyukhin, S. A., Sadovnikov, A. A., Grinberg, V. A., Emets, V. V. & Doljenko, V. D. (2016). Eur. J. Inorg. Chem. pp. 347–354.  Web of Science CSD CrossRef Google Scholar
First citationBezzubov, S. I., Zharinova, I. S., Khusyainova, A. A., Kiselev, Y. M., Taydakov, I. V., Varaksina, E. A., Metlin, M. T., Tobohova, A. S., Korshunov, V. M., Kozyukhin, S. A. & Dolzhenko, V. D. (2020). Eur. J. Inorg. Chem. pp. 3277–3286.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350–356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, o1914.  CSD CrossRef IUCr Journals Google Scholar
First citationHagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarayel, A., Özbey, S., Ayhan-Kılcıgil, G. & Kuş, C. (2015). Crystallogr. Rep. 60, 1084–1088.  Web of Science CSD CrossRef CAS Google Scholar
First citationLavrova, M. A., Mishurinskiy, S. A., Smirnov, D. E., Kalle, P., Krivogina, E. V., Kozyukhin, S. A., Emets, V. V., Mariasina, S. S., Dolzhenko, V. D. & Bezzubov, S. I. (2020). Dalton Trans. 49, 16935–16945.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRahman, M. L., Kwong, H. C., Mohd. Yusoff, M., Hegde, G. & Mohamed Tahir, M. I. (2012). Acta Cryst. E68, o3311–o3312.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVasava, M. S., Bhoi, M. N., Rathwa, S. K., Jethava, D. J., Acharya, P. T., Patel, D. B. & Patel, H. D. (2020). Mini Rev. Med. Chem. 20, 532–565.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWadhwa, N. R., Hughes, N. C., Hachem, J. A. & Mezei, G. (2016). RSC Adv. 6, 11430–11440.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Z., Niu, J.-L., Zhang, L.-Z., Guo, J.-W., Hao, X.-Q. & Song, M.-P. (2014). Tetrahedron, 70, 7496–7504.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Z., Sun, Z., Hao, X.-Q., Niu, J.-L., Wei, D., Tu, T., Gong, J.-F. & Song, M.-P. (2014). Organometallics, 33, 1563–1573.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeap, C. S., Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o745–o746.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds