research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5,7-di­phenyl-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine-6,6,8-tricarbo­nitrile methanol mono­solvate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, b"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 21 April 2021; accepted 2 May 2021; online 11 May 2021)

In the title compound, C22H17N5·CH4O, the imidazolidine ring of the 1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine ring system is a twisted envelope, while the 1,2,3,4-tetra­hydro­pyridine ring adopts a twisted boat conformation. In the crystal, pairs of mol­ecules are linked by O—H⋯N and N—H⋯O hydrogen bonds via two methanol mol­ecules, forming a centrosymmetric R44(16) ring motif. These motifs are connected to each other by C—H⋯N hydrogen bonds and form columns along the a axis. The columns form a stable mol­ecular packing, being connected to each other by van der Waals inter­actions. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (43.8%), N⋯H/H⋯N (31.7%) and C⋯H/H⋯C (18.4%) contacts.

1. Chemical context

Having a great methodological diversity, C—C and C—X (where X is a heteroatom) bond-forming reactions lie at the heart of synthetic organic chemistry (Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. NCS 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Maharramov et al., 2019[Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441-4447.]; Cheng & Mankad, 2020[Cheng, L.-J. & Mankad, N. P. (2020). Chem. Soc. Rev. 49, 8036-8064.]). They allow the construction of complex mol­ecular structures and the introduction of various substituents. Nowadays, researchers are constantly trying to develop new methods in these directions for the syntheses of structurally diverse valuable mol­ecular entities. These approaches have successfully found application in the building of carbo- and heterocyclic ring systems (Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]; Mamedov et al., 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]). In heterocyclic ring systems, the use of nitro­gen as a bridgehead atom is being assessed widely. Bridgehead nitro­gen heterocycles incorporating an imidazole ring are widespread structural motifs in a diverse range of compounds having application in medicinal chemistry, coordination chemistry, catalysis and materials science (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145-153.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.], 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.], 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmoudi et al., 2017[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192-205.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]). Various synthetic drugs, such as soraprazan, alpidem, olprinone, saripidem, necopidem, minodronic acid, zolimidine and zolpidem containing the imidazo[1,2-a]pyridine moiety (Fig. 1[link]) have already been used in medical practice (Hosseini & Bayat, 2018[Hosseini, H. & Bayat, M. (2018). RSC Adv. 8, 41218-41225.]).

[Figure 1]
Figure 1
Drugs containing the imidazo[1,2-a]pyridine motif.

In the framework of our ongoing structural studies (Naghiyev et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), herein we report the crystal structure and Hirshfeld surface analysis of the title compound, 5,7-diphenyl-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine-6,6,8-tricarbo­nitrile methanol monosolvate.

[Scheme 1]

2. Structural commentary

In the title compound, (Fig. 2[link]), the imidazolidine ring (N1/N2/C1–C3) of the 1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine ring system (N1/N2/C1–C7) is a twisted envelope [with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q(2) = 0.2844 (16) Å and φ(2) = 226.3 (3)°], while the 1,2,3,4-tetra­hydro­pyridine ring (N1/C3–C7) adopts a twisted boat conformation with QT = 0.5368 (14) Å, θ = 135.38 (15)°, φ = 82.6 (2)°. The C9–C14 and C17–C22 phenyl rings, which are attached to C5 and C7, respectively, are in equatorial positions (Fig. 2[link]) and make dihedral angles of 64.00 (7) and 65.90 (7)°, respectively, with the mean plane of the 1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine ring system. The dihedral angle between the phenyl rings is 61.43 (8)°. The mol­ecular conformation of the title compound is stabilized by an N2—H2N⋯O1 hydrogen bond (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯N3i 0.92 (3) 2.02 (3) 2.907 (2) 161 (2)
N2—H2N⋯O1 0.887 (18) 2.004 (18) 2.870 (2) 165.0 (16)
C7—H7⋯N3ii 0.98 2.52 3.3742 (19) 146
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a N—H⋯O hydrogen bond.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are linked by O—H⋯N, C—H⋯N and N—H⋯O hydrogen bonds via two methanol mol­ecules, forming a centrosymmetric R44(16) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]; Fig. 3[link]). These motifs are connected to each other by C—H⋯N hydrogen bonds and form columns along the a-axis direction (Figs. 4[link] and 5[link]). The columns form a stable mol­ecular packing, being connected to each other by van der Waals inter­actions.

[Figure 3]
Figure 3
Details of the O—H⋯N, C—H⋯N and N—H⋯O hydrogen bonds (dashed lines) in the unit cell of the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.]
[Figure 4]
Figure 4
A view along the a axis of the columns that are formed by the O—H⋯N, C—H⋯N and N—H⋯O hydrogen bonds (dashed lines) in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 5]
Figure 5
A part of view along the b axis of the columns shown in Fig. 4[link]. H atoms not involved in hydrogen bonding have been omitted for clarity. Dashed lines indicate hydrogen bonds.

To further investigate and visualize the inter­molecular inter­actions of the title compound, the CrystalExplorer program (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]) was used. The inter­actions between the corresponding donor and acceptor atoms are visualized as bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 6[link]), corresponding to O1—HO1⋯N3, C7—H7⋯N3 and N2—H2N⋯O1 hydrogen bonds. The other red spots correspond to weaker van der Waals inter­actions, of which the details are listed in Table 2[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H2N⋯O1 2.00 x, y, z
H7⋯N3 2.52 1 − x, 1 − y, 1 − z
N3⋯H18 2.75 −1 + x, y, z
N3⋯HO1 2.02 x, 1 − y, 1 − z
N5⋯H1B 2.75 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
N5⋯H23B 2.77 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H12⋯H12 2.54 x, 1 − y, −z
C20⋯H2B 3.02 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H5⋯O1 2.79 1 − x, 1 − y, 1 − z
H12⋯C23 3.07 x, y, −1 + z
[Figure 6]
Figure 6
The three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.5585 to +1.5646 a.u. The O—H⋯N, C—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines.

The overall two-dimensional fingerprint plot of the title structure and H⋯H, N⋯H/H⋯N and C⋯H/H⋯C contacts are illustrated in Fig. 7[link]ad). The greatest contribution to the overall Hirshfeld surface results from H⋯H contacts with a 43.8% contribution (Fig. 7[link]b). The relative contributions of the other inter­actions in descending order are: N⋯H/H⋯N (31.7%), C⋯H/H⋯C (18.4%), O⋯H/H⋯O (2.6%), C⋯C (2.4%), N⋯O/O⋯N (0.1%) and C⋯O/O⋯C (0.1%). The large contributions of H⋯H, N⋯H/H⋯N and C⋯H/H⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 7]
Figure 7
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, and (d) C⋯H/H⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals two related compounds having the 1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine ring system of the title compound: ethyl 8-benzoyl-5-oxo-7-phenyl-1,2,3,5,6,7-hexa­hydro­imid­azo[1,2-a]pyridine-6-carboxyl­ate (refcode ADETUZ; Yu et al., 2006[Yu, C.-Y., Yan, S.-J. & Huang, Z.-T. (2006). Acta Cryst. E62, o2731-o2733.]) and 1-[(6-chloro­pyridin-3-yl)meth­yl]-5-eth­oxy-8-nitro-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine (BUDZAC; Tian et al., 2009[Tian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.]).

In ADETUZ, the six-membered ring adopts a twist-boat conformation. The mol­ecules form dimeric associations via inversion-generated pairs of N—H⋯O hydrogen bonds. In BUDZAC, the fused pyridine ring adopts a twisted sofa conformation. The mol­ecular structure features close intra­molecular C—H⋯N and C—H⋯O hydrogen bonding.

5. Synthesis and crystallization

To a solution of benzyl­idenemalono­nitrile (0.78 g; 5.1 mmol) in ethanol (30 mL), ethyl­enedi­amine (0.31 g; 5.2 mmol) was added and the mixture was refluxed for 7 h. Then 25 mL of ethanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from methanol (yield 47%; m.p. 443–444 K).

1H NMR (300 MHz, DMSO-d6): 3.18 (t, 2H, NCH2); 3.42 (t, 2H, NCH2); 4.79 (s, 1H, CH-Ar); 5.19 (s, 1H, CH-Ar); 7.41–7.58 (m, 10H, 10Ar-H); 7.70 (s, 1H, NH).13C NMR (75 MHz, DMSO-d6): 42.04 (NCH2), 47.67 (CH-Ar), 48.41 (Cquart), 48.64 (=Cquart), 49.05 (NCH2), 63.46 (CH-Ar), 112.91 (CN), 113.69 (CN), 121.24 (CN), 129.03 (4CHarom), 129.42 (2CHarom), 129.72 (CHarom), 129.96 (2CHarom), 130.85 (CHarom), 133.25 (Carom),135.90 (Car.), 162.08 (=Cquart).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the amine and hydroxyl groups were located in a difference map [N2—H2N = 0.887 (18) Å and O1—HO1 = 0.92 (3) Å] and were refined with the constraint Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula C22H17N5·CH4O
Mr 383.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.5517 (10), 18.781 (2), 13.1925 (14)
β (°) 99.757 (4)
V3) 2088.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.28 × 0.26 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 33652, 4239, 3656
Rint 0.033
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.03
No. of reflections 4239
No. of parameters 269
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.23
Computer programs: APEX2 (Bruker, 2018[Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

5,7-Diphenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-6,6,8-tricarbonitrile methanol monosolvate top
Crystal data top
C22H17N5·CH4OF(000) = 808
Mr = 383.45Dx = 1.220 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9885 reflections
a = 8.5517 (10) Åθ = 3.1–26.4°
b = 18.781 (2) ŵ = 0.08 mm1
c = 13.1925 (14) ÅT = 296 K
β = 99.757 (4)°Block, colourless
V = 2088.2 (4) Å30.28 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.033
φ and ω scansθmax = 26.4°, θmin = 2.7°
33652 measured reflectionsh = 1010
4239 independent reflectionsk = 2323
3656 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.5899P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4239 reflectionsΔρmax = 0.31 e Å3
269 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.60712 (14)0.34477 (6)0.50461 (8)0.0455 (3)
N20.42807 (17)0.38674 (7)0.59278 (9)0.0554 (4)
N30.16518 (16)0.50048 (7)0.42172 (10)0.0564 (4)
N40.77545 (19)0.37704 (11)0.17841 (12)0.0818 (7)
N50.43619 (17)0.24442 (8)0.29156 (13)0.0687 (5)
C10.6680 (2)0.32722 (10)0.61313 (11)0.0610 (5)
O10.15621 (16)0.45171 (9)0.65565 (10)0.0796 (5)
C20.5187 (2)0.33436 (11)0.66018 (13)0.0728 (6)
C30.47744 (16)0.38817 (7)0.50125 (10)0.0416 (4)
C40.41241 (15)0.42550 (7)0.41462 (9)0.0400 (4)
C50.49374 (15)0.42867 (7)0.32123 (9)0.0400 (3)
C60.60291 (14)0.36144 (7)0.32248 (9)0.0396 (4)
C70.71275 (15)0.35675 (7)0.43062 (10)0.0406 (3)
C80.27705 (16)0.46706 (7)0.41791 (10)0.0430 (4)
C90.38002 (16)0.43787 (7)0.22050 (10)0.0435 (4)
C100.24007 (17)0.39947 (9)0.19806 (11)0.0529 (5)
C110.14001 (19)0.40923 (12)0.10485 (13)0.0698 (6)
C120.1790 (2)0.45789 (13)0.03484 (12)0.0768 (7)
C130.3160 (3)0.49685 (11)0.05680 (13)0.0726 (7)
C140.4164 (2)0.48700 (9)0.14907 (12)0.0567 (5)
C150.70149 (17)0.36934 (9)0.24146 (11)0.0519 (4)
C160.50897 (16)0.29533 (7)0.30346 (11)0.0456 (4)
C170.84126 (15)0.30107 (7)0.43683 (10)0.0422 (4)
C180.99408 (17)0.32313 (8)0.43065 (13)0.0555 (5)
C191.11587 (18)0.27445 (10)0.43609 (15)0.0650 (6)
C201.08799 (19)0.20309 (9)0.44872 (14)0.0622 (6)
C210.93680 (19)0.18065 (8)0.45511 (14)0.0615 (5)
C220.81374 (17)0.22886 (8)0.44866 (12)0.0519 (4)
C230.1184 (3)0.4273 (2)0.74675 (18)0.1210 (12)
H1A0.749200.360560.643510.0730*
H1B0.710180.279200.620330.0730*
H2A0.462450.289430.658780.0870*
H2B0.542700.351440.730490.0870*
H2N0.334 (2)0.4024 (10)0.6028 (14)0.0660*
H50.563370.470450.329560.0480*
H70.763860.403170.445500.0490*
H100.213230.367090.245620.0640*
H110.046730.383020.089520.0840*
H120.111750.464280.027700.0920*
H130.341100.529880.009550.0870*
H140.509470.513450.163720.0680*
H181.014630.371260.422750.0670*
H191.217610.289950.431190.0780*
H201.170470.170380.452890.0750*
H210.917350.132510.463870.0740*
H220.711840.212950.452240.0620*
HO10.061 (3)0.4657 (15)0.617 (2)0.1190*
H23A0.212540.425490.797960.1810*
H23B0.073360.380480.736740.1810*
H23C0.042820.458900.769150.1810*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0484 (6)0.0509 (6)0.0359 (6)0.0044 (5)0.0037 (5)0.0042 (5)
N20.0646 (8)0.0647 (8)0.0388 (6)0.0088 (6)0.0142 (6)0.0043 (5)
N30.0557 (7)0.0551 (7)0.0591 (8)0.0089 (6)0.0120 (6)0.0015 (6)
N40.0656 (9)0.1250 (15)0.0605 (9)0.0014 (9)0.0267 (8)0.0042 (9)
N50.0602 (8)0.0552 (8)0.0845 (10)0.0080 (7)0.0053 (7)0.0160 (7)
C10.0707 (10)0.0703 (10)0.0390 (7)0.0103 (8)0.0004 (7)0.0099 (7)
O10.0639 (7)0.1204 (12)0.0577 (7)0.0139 (8)0.0191 (6)0.0105 (7)
C20.0933 (13)0.0838 (12)0.0428 (8)0.0176 (10)0.0161 (8)0.0159 (8)
C30.0469 (7)0.0407 (6)0.0369 (6)0.0037 (5)0.0067 (5)0.0032 (5)
C40.0432 (7)0.0391 (6)0.0373 (6)0.0009 (5)0.0057 (5)0.0018 (5)
C50.0414 (6)0.0390 (6)0.0396 (6)0.0032 (5)0.0067 (5)0.0017 (5)
C60.0377 (6)0.0438 (7)0.0370 (6)0.0019 (5)0.0051 (5)0.0007 (5)
C70.0397 (6)0.0399 (6)0.0400 (6)0.0044 (5)0.0009 (5)0.0008 (5)
C80.0499 (7)0.0397 (7)0.0393 (6)0.0026 (6)0.0076 (5)0.0017 (5)
C90.0451 (7)0.0480 (7)0.0381 (6)0.0099 (6)0.0095 (5)0.0036 (5)
C100.0431 (7)0.0721 (10)0.0434 (7)0.0063 (7)0.0067 (6)0.0015 (7)
C110.0436 (8)0.1130 (15)0.0509 (9)0.0185 (9)0.0027 (7)0.0113 (9)
C120.0699 (11)0.1208 (16)0.0386 (8)0.0531 (12)0.0064 (7)0.0081 (9)
C130.0874 (13)0.0836 (12)0.0502 (9)0.0394 (11)0.0218 (9)0.0238 (8)
C140.0666 (9)0.0564 (9)0.0501 (8)0.0135 (7)0.0182 (7)0.0125 (7)
C150.0445 (7)0.0657 (9)0.0455 (7)0.0031 (6)0.0076 (6)0.0017 (6)
C160.0407 (7)0.0467 (7)0.0466 (7)0.0017 (6)0.0004 (5)0.0075 (6)
C170.0387 (6)0.0444 (7)0.0412 (7)0.0035 (5)0.0002 (5)0.0002 (5)
C180.0436 (7)0.0490 (8)0.0716 (10)0.0085 (6)0.0034 (7)0.0044 (7)
C190.0385 (7)0.0712 (11)0.0841 (12)0.0037 (7)0.0074 (7)0.0060 (9)
C200.0488 (8)0.0629 (10)0.0731 (11)0.0106 (7)0.0052 (7)0.0055 (8)
C210.0582 (9)0.0453 (8)0.0798 (11)0.0022 (7)0.0080 (8)0.0084 (7)
C220.0418 (7)0.0462 (7)0.0663 (9)0.0052 (6)0.0053 (6)0.0051 (6)
C230.0825 (15)0.205 (3)0.0758 (14)0.0012 (18)0.0142 (12)0.0563 (18)
Geometric parameters (Å, º) top
N1—C11.4754 (18)C17—C221.390 (2)
N1—C31.3710 (18)C17—C181.387 (2)
N1—C71.4554 (17)C18—C191.379 (2)
N2—C21.458 (2)C19—C201.376 (3)
N2—C31.3453 (18)C20—C211.376 (2)
N3—C81.1524 (19)C21—C221.380 (2)
N4—C151.136 (2)C1—H1A0.9700
N5—C161.137 (2)O1—HO10.92 (3)
C1—C21.517 (2)C1—H1B0.9700
O1—C231.375 (3)C2—H2A0.9700
N2—H2N0.887 (18)C2—H2B0.9700
C3—C41.3753 (18)C5—H50.9800
C4—C81.4029 (19)C7—H70.9800
C4—C51.5151 (17)C10—H100.9300
C5—C61.5687 (18)C11—H110.9300
C5—C91.5177 (18)C12—H120.9300
C6—C71.5720 (18)C13—H130.9300
C6—C161.4770 (19)C14—H140.9300
C6—C151.4767 (19)C18—H180.9300
C7—C171.5091 (19)C19—H190.9300
C9—C141.391 (2)C20—H200.9300
C9—C101.386 (2)C21—H210.9300
C10—C111.386 (2)C22—H220.9300
C11—C121.380 (3)C23—H23A0.9600
C12—C131.370 (3)C23—H23B0.9600
C13—C141.378 (3)C23—H23C0.9600
C1—N1—C3108.34 (11)C17—C22—C21120.35 (14)
C1—N1—C7121.89 (12)N1—C1—H1A112.00
C3—N1—C7118.49 (11)N1—C1—H1B112.00
C2—N2—C3110.22 (13)C2—C1—H1A112.00
N1—C1—C2101.20 (13)C2—C1—H1B112.00
N2—C2—C1101.97 (14)H1A—C1—H1B109.00
C3—N2—H2N123.9 (12)C23—O1—HO1105.2 (17)
C2—N2—H2N122.3 (12)N2—C2—H2B111.00
N1—C3—C4122.75 (12)C1—C2—H2A111.00
N2—C3—C4127.72 (13)C1—C2—H2B111.00
N1—C3—N2109.53 (12)H2A—C2—H2B109.00
C5—C4—C8119.88 (11)N2—C2—H2A111.00
C3—C4—C5121.27 (12)C4—C5—H5107.00
C3—C4—C8118.52 (12)C9—C5—H5107.00
C6—C5—C9113.12 (10)C6—C5—H5107.00
C4—C5—C9113.71 (11)N1—C7—H7108.00
C4—C5—C6108.31 (10)C17—C7—H7108.00
C5—C6—C15108.86 (11)C6—C7—H7108.00
C5—C6—C16111.67 (10)C9—C10—H10120.00
C7—C6—C16109.34 (11)C11—C10—H10120.00
C15—C6—C16108.80 (11)C12—C11—H11120.00
C7—C6—C15109.63 (11)C10—C11—H11120.00
C5—C6—C7108.52 (10)C11—C12—H12120.00
C6—C7—C17113.94 (11)C13—C12—H12120.00
N1—C7—C6105.90 (10)C14—C13—H13120.00
N1—C7—C17112.68 (11)C12—C13—H13120.00
N3—C8—C4178.94 (14)C9—C14—H14120.00
C10—C9—C14118.99 (13)C13—C14—H14120.00
C5—C9—C10122.00 (12)C19—C18—H18120.00
C5—C9—C14119.01 (13)C17—C18—H18120.00
C9—C10—C11120.11 (15)C18—C19—H19120.00
C10—C11—C12119.91 (16)C20—C19—H19120.00
C11—C12—C13120.48 (16)C21—C20—H20120.00
C12—C13—C14119.84 (18)C19—C20—H20120.00
C9—C14—C13120.66 (17)C20—C21—H21120.00
N4—C15—C6178.24 (18)C22—C21—H21120.00
N5—C16—C6178.13 (16)C17—C22—H22120.00
C7—C17—C18118.34 (12)C21—C22—H22120.00
C18—C17—C22118.52 (13)O1—C23—H23A109.00
C7—C17—C22123.14 (12)O1—C23—H23B109.00
C17—C18—C19120.67 (14)O1—C23—H23C109.00
C18—C19—C20120.48 (15)H23A—C23—H23B109.00
C19—C20—C21119.31 (15)H23A—C23—H23C109.00
C20—C21—C22120.66 (14)H23B—C23—H23C109.00
C3—N1—C1—C226.59 (16)C9—C5—C6—C7179.03 (10)
C7—N1—C1—C2169.55 (13)C9—C5—C6—C1561.71 (14)
C7—N1—C3—N2158.46 (12)C4—C5—C6—C15171.28 (11)
C1—N1—C7—C6171.10 (12)C16—C6—C7—N157.45 (13)
C1—N1—C3—N214.05 (16)C16—C6—C7—C1766.96 (14)
C3—N1—C7—C17174.68 (11)C15—C6—C7—C1752.24 (15)
C1—N1—C3—C4166.57 (13)C5—C6—C7—N164.58 (12)
C7—N1—C3—C422.16 (19)C5—C6—C7—C17171.02 (10)
C1—N1—C7—C1745.91 (17)C15—C6—C7—N1176.64 (11)
C3—N1—C7—C649.49 (14)N1—C7—C17—C18137.73 (13)
C3—N2—C2—C122.03 (17)N1—C7—C17—C2242.12 (18)
C2—N2—C3—C4173.60 (14)C6—C7—C17—C18101.58 (15)
C2—N2—C3—N15.74 (17)C6—C7—C17—C2278.57 (16)
N1—C1—C2—N228.10 (16)C5—C9—C10—C11179.63 (15)
N1—C3—C4—C58.3 (2)C14—C9—C10—C111.2 (2)
N1—C3—C4—C8178.32 (12)C5—C9—C14—C13179.97 (16)
N2—C3—C4—C5172.44 (13)C10—C9—C14—C130.8 (2)
N2—C3—C4—C80.9 (2)C9—C10—C11—C120.8 (3)
C3—C4—C5—C624.53 (16)C10—C11—C12—C130.1 (3)
C8—C4—C5—C6162.18 (11)C11—C12—C13—C140.6 (3)
C8—C4—C5—C935.51 (17)C12—C13—C14—C90.1 (3)
C3—C4—C5—C9151.19 (12)C7—C17—C18—C19179.89 (15)
C4—C5—C6—C752.02 (13)C22—C17—C18—C190.0 (2)
C9—C5—C6—C1658.43 (14)C7—C17—C22—C21179.19 (14)
C4—C5—C9—C1043.99 (18)C18—C17—C22—C210.7 (2)
C4—C5—C9—C14135.18 (14)C17—C18—C19—C200.6 (3)
C6—C5—C9—C1080.12 (16)C18—C19—C20—C210.5 (3)
C6—C5—C9—C14100.71 (15)C19—C20—C21—C220.2 (3)
C4—C5—C6—C1668.57 (13)C20—C21—C22—C170.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N3i0.92 (3)2.02 (3)2.907 (2)161 (2)
N2—H2N···O10.887 (18)2.004 (18)2.870 (2)165.0 (16)
C7—H7···N3ii0.982.523.3742 (19)146
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H2N···O12.00x, y, z
H7···N32.521 - x, 1 - y, 1 - z
N3···H182.75-1 + x, y, z
N3···HO12.02-x, 1 - y, 1 - z
N5···H1B2.75-1/2 + x, 1/2 - y, -1/2 + z
N5···H23B2.771/2 + x, 1/2 - y, -1/2 + z
H12···H122.54-x, 1 - y, -z
C20···H2B3.021/2 + x, 1/2 - y, -1/2 + z
H5···O12.791 - x, 1 - y, 1 - z
H12···C233.07x, y, -1 + z
 

Acknowledgements

Author contributions are as follows. Conceptualization, FNN and IGM; methodology, GZM, MA and FNN; investigation, ZA, AAA and FNN; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA, IGM and ANK; visualization, MA and ANK; funding acquisition, IGM, and FNN; resources, GZM, AAA, MA and FNN; supervision, MA, IGM and ANK.

Funding information

This work was supported by Baku State University and UNEC Research Program.

References

First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, L.-J. & Mankad, N. P. (2020). Chem. Soc. Rev. 49, 8036–8064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHosseini, H. & Bayat, M. (2018). RSC Adv. 8, 41218–41225.  Web of Science CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. NCS 233, 1019–1020.  CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationYu, C.-Y., Yan, S.-J. & Huang, Z.-T. (2006). Acta Cryst. E62, o2731–o2733.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds