research communications
a]pyridine-6,6,8-tricarbonitrile methanol monosolvate
and Hirshfeld surface analysis of 5,7-diphenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, b"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
In the title compound, C22H17N5·CH4O, the imidazolidine ring of the 1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine ring system is a twisted envelope, while the 1,2,3,4-tetrahydropyridine ring adopts a twisted boat conformation. In the crystal, pairs of molecules are linked by O—H⋯N and N—H⋯O hydrogen bonds via two methanol molecules, forming a centrosymmetric R44(16) ring motif. These motifs are connected to each other by C—H⋯N hydrogen bonds and form columns along the a axis. The columns form a stable molecular packing, being connected to each other by van der Waals interactions. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (43.8%), N⋯H/H⋯N (31.7%) and C⋯H/H⋯C (18.4%) contacts.
Keywords: crystal structure; imidazolidine ring; pyridine ring; hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 2081515
1. Chemical context
Having a great methodological diversity, C—C and C—X (where X is a heteroatom) bond-forming reactions lie at the heart of synthetic organic chemistry (Khalilov et al., 2018a,b; Maharramov et al., 2019; Cheng & Mankad, 2020). They allow the construction of complex molecular structures and the introduction of various substituents. Nowadays, researchers are constantly trying to develop new methods in these directions for the syntheses of structurally diverse valuable molecular entities. These approaches have successfully found application in the building of carbo- and heterocyclic ring systems (Naghiyev et al., 2020; Mamedov et al., 2019). In heterocyclic ring systems, the use of nitrogen as a bridgehead atom is being assessed widely. Bridgehead nitrogen heterocycles incorporating an imidazole ring are widespread structural motifs in a diverse range of compounds having application in medicinal chemistry, coordination chemistry, catalysis and materials science (Asadov et al., 2016; Ma et al., 2017a,b, 2020, 2021; Maharramov et al., 2010, 2018; Mahmoudi et al., 2017, 2019; Mahmudov et al., 2019, 2020). Various synthetic drugs, such as soraprazan, alpidem, olprinone, saripidem, necopidem, minodronic acid, zolimidine and zolpidem containing the imidazo[1,2-a]pyridine moiety (Fig. 1) have already been used in medical practice (Hosseini & Bayat, 2018).
In the framework of our ongoing structural studies (Naghiyev et al., 2021), herein we report the and Hirshfeld surface analysis of the title compound, 5,7-diphenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-6,6,8-tricarbonitrile methanol monosolvate.
2. Structural commentary
In the title compound, (Fig. 2), the imidazolidine ring (N1/N2/C1–C3) of the 1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine ring system (N1/N2/C1–C7) is a twisted envelope [with puckering parameters (Cremer & Pople, 1975) Q(2) = 0.2844 (16) Å and φ(2) = 226.3 (3)°], while the 1,2,3,4-tetrahydropyridine ring (N1/C3–C7) adopts a twisted boat conformation with QT = 0.5368 (14) Å, θ = 135.38 (15)°, φ = 82.6 (2)°. The C9–C14 and C17–C22 phenyl rings, which are attached to C5 and C7, respectively, are in equatorial positions (Fig. 2) and make dihedral angles of 64.00 (7) and 65.90 (7)°, respectively, with the mean plane of the 1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine ring system. The dihedral angle between the phenyl rings is 61.43 (8)°. The molecular conformation of the title compound is stabilized by an N2—H2N⋯O1 hydrogen bond (Fig. 2, Table 1).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, pairs of molecules are linked by O—H⋯N, C—H⋯N and N—H⋯O hydrogen bonds via two methanol molecules, forming a centrosymmetric R44(16) ring motif (Bernstein et al., 1995; Table 1; Fig. 3). These motifs are connected to each other by C—H⋯N hydrogen bonds and form columns along the a-axis direction (Figs. 4 and 5). The columns form a stable molecular packing, being connected to each other by van der Waals interactions.
To further investigate and visualize the intermolecular interactions of the title compound, the CrystalExplorer program (Turner et al., 2017) was used. The interactions between the corresponding donor and acceptor atoms are visualized as bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 6), corresponding to O1—HO1⋯N3, C7—H7⋯N3 and N2—H2N⋯O1 hydrogen bonds. The other red spots correspond to weaker van der Waals interactions, of which the details are listed in Table 2.
|
The overall two-dimensional fingerprint plot of the title structure and H⋯H, N⋯H/H⋯N and C⋯H/H⋯C contacts are illustrated in Fig. 7a–d). The greatest contribution to the overall Hirshfeld surface results from H⋯H contacts with a 43.8% contribution (Fig. 7b). The relative contributions of the other interactions in descending order are: N⋯H/H⋯N (31.7%), C⋯H/H⋯C (18.4%), O⋯H/H⋯O (2.6%), C⋯C (2.4%), N⋯O/O⋯N (0.1%) and C⋯O/O⋯C (0.1%). The large contributions of H⋯H, N⋯H/H⋯N and C⋯H/H⋯C interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) reveals two related compounds having the 1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine ring system of the title compound: ethyl 8-benzoyl-5-oxo-7-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-6-carboxylate (refcode ADETUZ; Yu et al., 2006) and 1-[(6-chloropyridin-3-yl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine (BUDZAC; Tian et al., 2009).
In ADETUZ, the six-membered ring adopts a twist-boat conformation. The molecules form dimeric associations via inversion-generated pairs of N—H⋯O hydrogen bonds. In BUDZAC, the fused pyridine ring adopts a twisted sofa conformation. The molecular structure features close intramolecular C—H⋯N and C—H⋯O hydrogen bonding.
5. Synthesis and crystallization
To a solution of benzylidenemalononitrile (0.78 g; 5.1 mmol) in ethanol (30 mL), ethylenediamine (0.31 g; 5.2 mmol) was added and the mixture was refluxed for 7 h. Then 25 mL of ethanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from methanol (yield 47%; m.p. 443–444 K).
1H NMR (300 MHz, DMSO-d6): 3.18 (t, 2H, NCH2); 3.42 (t, 2H, NCH2); 4.79 (s, 1H, CH-Ar); 5.19 (s, 1H, CH-Ar); 7.41–7.58 (m, 10H, 10Ar-H); 7.70 (s, 1H, NH).13C NMR (75 MHz, DMSO-d6): 42.04 (NCH2), 47.67 (CH-Ar), 48.41 (Cquart), 48.64 (=Cquart), 49.05 (NCH2), 63.46 (CH-Ar), 112.91 (CN), 113.69 (CN), 121.24 (CN), 129.03 (4CHarom), 129.42 (2CHarom), 129.72 (CHarom), 129.96 (2CHarom), 130.85 (CHarom), 133.25 (Carom),135.90 (Car.), 162.08 (=Cquart).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the amine and hydroxyl groups were located in a difference map [N2—H2N = 0.887 (18) Å and O1—HO1 = 0.92 (3) Å] and were refined with the constraint Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).
details are summarized in Table 3Supporting information
CCDC reference: 2081515
https://doi.org/10.1107/S2056989021004655/vm2248sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021004655/vm2248Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021004655/vm2248Isup3.cml
Data collection: APEX2 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C22H17N5·CH4O | F(000) = 808 |
Mr = 383.45 | Dx = 1.220 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9885 reflections |
a = 8.5517 (10) Å | θ = 3.1–26.4° |
b = 18.781 (2) Å | µ = 0.08 mm−1 |
c = 13.1925 (14) Å | T = 296 K |
β = 99.757 (4)° | Block, colourless |
V = 2088.2 (4) Å3 | 0.28 × 0.26 × 0.25 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | Rint = 0.033 |
φ and ω scans | θmax = 26.4°, θmin = 2.7° |
33652 measured reflections | h = −10→10 |
4239 independent reflections | k = −23→23 |
3656 reflections with I > 2σ(I) | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.5899P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4239 reflections | Δρmax = 0.31 e Å−3 |
269 parameters | Δρmin = −0.23 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.60712 (14) | 0.34477 (6) | 0.50461 (8) | 0.0455 (3) | |
N2 | 0.42807 (17) | 0.38674 (7) | 0.59278 (9) | 0.0554 (4) | |
N3 | 0.16518 (16) | 0.50048 (7) | 0.42172 (10) | 0.0564 (4) | |
N4 | 0.77545 (19) | 0.37704 (11) | 0.17841 (12) | 0.0818 (7) | |
N5 | 0.43619 (17) | 0.24442 (8) | 0.29156 (13) | 0.0687 (5) | |
C1 | 0.6680 (2) | 0.32722 (10) | 0.61313 (11) | 0.0610 (5) | |
O1 | 0.15621 (16) | 0.45171 (9) | 0.65565 (10) | 0.0796 (5) | |
C2 | 0.5187 (2) | 0.33436 (11) | 0.66018 (13) | 0.0728 (6) | |
C3 | 0.47744 (16) | 0.38817 (7) | 0.50125 (10) | 0.0416 (4) | |
C4 | 0.41241 (15) | 0.42550 (7) | 0.41462 (9) | 0.0400 (4) | |
C5 | 0.49374 (15) | 0.42867 (7) | 0.32123 (9) | 0.0400 (3) | |
C6 | 0.60291 (14) | 0.36144 (7) | 0.32248 (9) | 0.0396 (4) | |
C7 | 0.71275 (15) | 0.35675 (7) | 0.43062 (10) | 0.0406 (3) | |
C8 | 0.27705 (16) | 0.46706 (7) | 0.41791 (10) | 0.0430 (4) | |
C9 | 0.38002 (16) | 0.43787 (7) | 0.22050 (10) | 0.0435 (4) | |
C10 | 0.24007 (17) | 0.39947 (9) | 0.19806 (11) | 0.0529 (5) | |
C11 | 0.14001 (19) | 0.40923 (12) | 0.10485 (13) | 0.0698 (6) | |
C12 | 0.1790 (2) | 0.45789 (13) | 0.03484 (12) | 0.0768 (7) | |
C13 | 0.3160 (3) | 0.49685 (11) | 0.05680 (13) | 0.0726 (7) | |
C14 | 0.4164 (2) | 0.48700 (9) | 0.14907 (12) | 0.0567 (5) | |
C15 | 0.70149 (17) | 0.36934 (9) | 0.24146 (11) | 0.0519 (4) | |
C16 | 0.50897 (16) | 0.29533 (7) | 0.30346 (11) | 0.0456 (4) | |
C17 | 0.84126 (15) | 0.30107 (7) | 0.43683 (10) | 0.0422 (4) | |
C18 | 0.99408 (17) | 0.32313 (8) | 0.43065 (13) | 0.0555 (5) | |
C19 | 1.11587 (18) | 0.27445 (10) | 0.43609 (15) | 0.0650 (6) | |
C20 | 1.08799 (19) | 0.20309 (9) | 0.44872 (14) | 0.0622 (6) | |
C21 | 0.93680 (19) | 0.18065 (8) | 0.45511 (14) | 0.0615 (5) | |
C22 | 0.81374 (17) | 0.22886 (8) | 0.44866 (12) | 0.0519 (4) | |
C23 | 0.1184 (3) | 0.4273 (2) | 0.74675 (18) | 0.1210 (12) | |
H1A | 0.74920 | 0.36056 | 0.64351 | 0.0730* | |
H1B | 0.71018 | 0.27920 | 0.62033 | 0.0730* | |
H2A | 0.46245 | 0.28943 | 0.65878 | 0.0870* | |
H2B | 0.54270 | 0.35144 | 0.73049 | 0.0870* | |
H2N | 0.334 (2) | 0.4024 (10) | 0.6028 (14) | 0.0660* | |
H5 | 0.56337 | 0.47045 | 0.32956 | 0.0480* | |
H7 | 0.76386 | 0.40317 | 0.44550 | 0.0490* | |
H10 | 0.21323 | 0.36709 | 0.24562 | 0.0640* | |
H11 | 0.04673 | 0.38302 | 0.08952 | 0.0840* | |
H12 | 0.11175 | 0.46428 | −0.02770 | 0.0920* | |
H13 | 0.34110 | 0.52988 | 0.00955 | 0.0870* | |
H14 | 0.50947 | 0.51345 | 0.16372 | 0.0680* | |
H18 | 1.01463 | 0.37126 | 0.42275 | 0.0670* | |
H19 | 1.21761 | 0.28995 | 0.43119 | 0.0780* | |
H20 | 1.17047 | 0.17038 | 0.45289 | 0.0750* | |
H21 | 0.91735 | 0.13251 | 0.46387 | 0.0740* | |
H22 | 0.71184 | 0.21295 | 0.45224 | 0.0620* | |
HO1 | 0.061 (3) | 0.4657 (15) | 0.617 (2) | 0.1190* | |
H23A | 0.21254 | 0.42549 | 0.79796 | 0.1810* | |
H23B | 0.07336 | 0.38048 | 0.73674 | 0.1810* | |
H23C | 0.04282 | 0.45890 | 0.76915 | 0.1810* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0484 (6) | 0.0509 (6) | 0.0359 (6) | 0.0044 (5) | 0.0037 (5) | 0.0042 (5) |
N2 | 0.0646 (8) | 0.0647 (8) | 0.0388 (6) | 0.0088 (6) | 0.0142 (6) | 0.0043 (5) |
N3 | 0.0557 (7) | 0.0551 (7) | 0.0591 (8) | 0.0089 (6) | 0.0120 (6) | −0.0015 (6) |
N4 | 0.0656 (9) | 0.1250 (15) | 0.0605 (9) | 0.0014 (9) | 0.0267 (8) | 0.0042 (9) |
N5 | 0.0602 (8) | 0.0552 (8) | 0.0845 (10) | −0.0080 (7) | −0.0053 (7) | −0.0160 (7) |
C1 | 0.0707 (10) | 0.0703 (10) | 0.0390 (7) | 0.0103 (8) | 0.0004 (7) | 0.0099 (7) |
O1 | 0.0639 (7) | 0.1204 (12) | 0.0577 (7) | 0.0139 (8) | 0.0191 (6) | 0.0105 (7) |
C2 | 0.0933 (13) | 0.0838 (12) | 0.0428 (8) | 0.0176 (10) | 0.0161 (8) | 0.0159 (8) |
C3 | 0.0469 (7) | 0.0407 (6) | 0.0369 (6) | −0.0037 (5) | 0.0067 (5) | −0.0032 (5) |
C4 | 0.0432 (7) | 0.0391 (6) | 0.0373 (6) | −0.0009 (5) | 0.0057 (5) | −0.0018 (5) |
C5 | 0.0414 (6) | 0.0390 (6) | 0.0396 (6) | −0.0032 (5) | 0.0067 (5) | 0.0017 (5) |
C6 | 0.0377 (6) | 0.0438 (7) | 0.0370 (6) | −0.0019 (5) | 0.0051 (5) | −0.0007 (5) |
C7 | 0.0397 (6) | 0.0399 (6) | 0.0400 (6) | −0.0044 (5) | 0.0009 (5) | −0.0008 (5) |
C8 | 0.0499 (7) | 0.0397 (7) | 0.0393 (6) | −0.0026 (6) | 0.0076 (5) | −0.0017 (5) |
C9 | 0.0451 (7) | 0.0480 (7) | 0.0381 (6) | 0.0099 (6) | 0.0095 (5) | 0.0036 (5) |
C10 | 0.0431 (7) | 0.0721 (10) | 0.0434 (7) | 0.0063 (7) | 0.0067 (6) | 0.0015 (7) |
C11 | 0.0436 (8) | 0.1130 (15) | 0.0509 (9) | 0.0185 (9) | 0.0027 (7) | −0.0113 (9) |
C12 | 0.0699 (11) | 0.1208 (16) | 0.0386 (8) | 0.0531 (12) | 0.0064 (7) | 0.0081 (9) |
C13 | 0.0874 (13) | 0.0836 (12) | 0.0502 (9) | 0.0394 (11) | 0.0218 (9) | 0.0238 (8) |
C14 | 0.0666 (9) | 0.0564 (9) | 0.0501 (8) | 0.0135 (7) | 0.0182 (7) | 0.0125 (7) |
C15 | 0.0445 (7) | 0.0657 (9) | 0.0455 (7) | 0.0031 (6) | 0.0076 (6) | 0.0017 (6) |
C16 | 0.0407 (7) | 0.0467 (7) | 0.0466 (7) | 0.0017 (6) | −0.0004 (5) | −0.0075 (6) |
C17 | 0.0387 (6) | 0.0444 (7) | 0.0412 (7) | −0.0035 (5) | −0.0002 (5) | −0.0002 (5) |
C18 | 0.0436 (7) | 0.0490 (8) | 0.0716 (10) | −0.0085 (6) | 0.0034 (7) | 0.0044 (7) |
C19 | 0.0385 (7) | 0.0712 (11) | 0.0841 (12) | −0.0037 (7) | 0.0074 (7) | 0.0060 (9) |
C20 | 0.0488 (8) | 0.0629 (10) | 0.0731 (11) | 0.0106 (7) | 0.0052 (7) | 0.0055 (8) |
C21 | 0.0582 (9) | 0.0453 (8) | 0.0798 (11) | 0.0022 (7) | 0.0080 (8) | 0.0084 (7) |
C22 | 0.0418 (7) | 0.0462 (7) | 0.0663 (9) | −0.0052 (6) | 0.0053 (6) | 0.0051 (6) |
C23 | 0.0825 (15) | 0.205 (3) | 0.0758 (14) | −0.0012 (18) | 0.0142 (12) | 0.0563 (18) |
N1—C1 | 1.4754 (18) | C17—C22 | 1.390 (2) |
N1—C3 | 1.3710 (18) | C17—C18 | 1.387 (2) |
N1—C7 | 1.4554 (17) | C18—C19 | 1.379 (2) |
N2—C2 | 1.458 (2) | C19—C20 | 1.376 (3) |
N2—C3 | 1.3453 (18) | C20—C21 | 1.376 (2) |
N3—C8 | 1.1524 (19) | C21—C22 | 1.380 (2) |
N4—C15 | 1.136 (2) | C1—H1A | 0.9700 |
N5—C16 | 1.137 (2) | O1—HO1 | 0.92 (3) |
C1—C2 | 1.517 (2) | C1—H1B | 0.9700 |
O1—C23 | 1.375 (3) | C2—H2A | 0.9700 |
N2—H2N | 0.887 (18) | C2—H2B | 0.9700 |
C3—C4 | 1.3753 (18) | C5—H5 | 0.9800 |
C4—C8 | 1.4029 (19) | C7—H7 | 0.9800 |
C4—C5 | 1.5151 (17) | C10—H10 | 0.9300 |
C5—C6 | 1.5687 (18) | C11—H11 | 0.9300 |
C5—C9 | 1.5177 (18) | C12—H12 | 0.9300 |
C6—C7 | 1.5720 (18) | C13—H13 | 0.9300 |
C6—C16 | 1.4770 (19) | C14—H14 | 0.9300 |
C6—C15 | 1.4767 (19) | C18—H18 | 0.9300 |
C7—C17 | 1.5091 (19) | C19—H19 | 0.9300 |
C9—C14 | 1.391 (2) | C20—H20 | 0.9300 |
C9—C10 | 1.386 (2) | C21—H21 | 0.9300 |
C10—C11 | 1.386 (2) | C22—H22 | 0.9300 |
C11—C12 | 1.380 (3) | C23—H23A | 0.9600 |
C12—C13 | 1.370 (3) | C23—H23B | 0.9600 |
C13—C14 | 1.378 (3) | C23—H23C | 0.9600 |
C1—N1—C3 | 108.34 (11) | C17—C22—C21 | 120.35 (14) |
C1—N1—C7 | 121.89 (12) | N1—C1—H1A | 112.00 |
C3—N1—C7 | 118.49 (11) | N1—C1—H1B | 112.00 |
C2—N2—C3 | 110.22 (13) | C2—C1—H1A | 112.00 |
N1—C1—C2 | 101.20 (13) | C2—C1—H1B | 112.00 |
N2—C2—C1 | 101.97 (14) | H1A—C1—H1B | 109.00 |
C3—N2—H2N | 123.9 (12) | C23—O1—HO1 | 105.2 (17) |
C2—N2—H2N | 122.3 (12) | N2—C2—H2B | 111.00 |
N1—C3—C4 | 122.75 (12) | C1—C2—H2A | 111.00 |
N2—C3—C4 | 127.72 (13) | C1—C2—H2B | 111.00 |
N1—C3—N2 | 109.53 (12) | H2A—C2—H2B | 109.00 |
C5—C4—C8 | 119.88 (11) | N2—C2—H2A | 111.00 |
C3—C4—C5 | 121.27 (12) | C4—C5—H5 | 107.00 |
C3—C4—C8 | 118.52 (12) | C9—C5—H5 | 107.00 |
C6—C5—C9 | 113.12 (10) | C6—C5—H5 | 107.00 |
C4—C5—C9 | 113.71 (11) | N1—C7—H7 | 108.00 |
C4—C5—C6 | 108.31 (10) | C17—C7—H7 | 108.00 |
C5—C6—C15 | 108.86 (11) | C6—C7—H7 | 108.00 |
C5—C6—C16 | 111.67 (10) | C9—C10—H10 | 120.00 |
C7—C6—C16 | 109.34 (11) | C11—C10—H10 | 120.00 |
C15—C6—C16 | 108.80 (11) | C12—C11—H11 | 120.00 |
C7—C6—C15 | 109.63 (11) | C10—C11—H11 | 120.00 |
C5—C6—C7 | 108.52 (10) | C11—C12—H12 | 120.00 |
C6—C7—C17 | 113.94 (11) | C13—C12—H12 | 120.00 |
N1—C7—C6 | 105.90 (10) | C14—C13—H13 | 120.00 |
N1—C7—C17 | 112.68 (11) | C12—C13—H13 | 120.00 |
N3—C8—C4 | 178.94 (14) | C9—C14—H14 | 120.00 |
C10—C9—C14 | 118.99 (13) | C13—C14—H14 | 120.00 |
C5—C9—C10 | 122.00 (12) | C19—C18—H18 | 120.00 |
C5—C9—C14 | 119.01 (13) | C17—C18—H18 | 120.00 |
C9—C10—C11 | 120.11 (15) | C18—C19—H19 | 120.00 |
C10—C11—C12 | 119.91 (16) | C20—C19—H19 | 120.00 |
C11—C12—C13 | 120.48 (16) | C21—C20—H20 | 120.00 |
C12—C13—C14 | 119.84 (18) | C19—C20—H20 | 120.00 |
C9—C14—C13 | 120.66 (17) | C20—C21—H21 | 120.00 |
N4—C15—C6 | 178.24 (18) | C22—C21—H21 | 120.00 |
N5—C16—C6 | 178.13 (16) | C17—C22—H22 | 120.00 |
C7—C17—C18 | 118.34 (12) | C21—C22—H22 | 120.00 |
C18—C17—C22 | 118.52 (13) | O1—C23—H23A | 109.00 |
C7—C17—C22 | 123.14 (12) | O1—C23—H23B | 109.00 |
C17—C18—C19 | 120.67 (14) | O1—C23—H23C | 109.00 |
C18—C19—C20 | 120.48 (15) | H23A—C23—H23B | 109.00 |
C19—C20—C21 | 119.31 (15) | H23A—C23—H23C | 109.00 |
C20—C21—C22 | 120.66 (14) | H23B—C23—H23C | 109.00 |
C3—N1—C1—C2 | 26.59 (16) | C9—C5—C6—C7 | −179.03 (10) |
C7—N1—C1—C2 | 169.55 (13) | C9—C5—C6—C15 | 61.71 (14) |
C7—N1—C3—N2 | −158.46 (12) | C4—C5—C6—C15 | −171.28 (11) |
C1—N1—C7—C6 | 171.10 (12) | C16—C6—C7—N1 | −57.45 (13) |
C1—N1—C3—N2 | −14.05 (16) | C16—C6—C7—C17 | 66.96 (14) |
C3—N1—C7—C17 | −174.68 (11) | C15—C6—C7—C17 | −52.24 (15) |
C1—N1—C3—C4 | 166.57 (13) | C5—C6—C7—N1 | 64.58 (12) |
C7—N1—C3—C4 | 22.16 (19) | C5—C6—C7—C17 | −171.02 (10) |
C1—N1—C7—C17 | 45.91 (17) | C15—C6—C7—N1 | −176.64 (11) |
C3—N1—C7—C6 | −49.49 (14) | N1—C7—C17—C18 | −137.73 (13) |
C3—N2—C2—C1 | 22.03 (17) | N1—C7—C17—C22 | 42.12 (18) |
C2—N2—C3—C4 | 173.60 (14) | C6—C7—C17—C18 | 101.58 (15) |
C2—N2—C3—N1 | −5.74 (17) | C6—C7—C17—C22 | −78.57 (16) |
N1—C1—C2—N2 | −28.10 (16) | C5—C9—C10—C11 | −179.63 (15) |
N1—C3—C4—C5 | −8.3 (2) | C14—C9—C10—C11 | 1.2 (2) |
N1—C3—C4—C8 | 178.32 (12) | C5—C9—C14—C13 | −179.97 (16) |
N2—C3—C4—C5 | 172.44 (13) | C10—C9—C14—C13 | −0.8 (2) |
N2—C3—C4—C8 | −0.9 (2) | C9—C10—C11—C12 | −0.8 (3) |
C3—C4—C5—C6 | 24.53 (16) | C10—C11—C12—C13 | −0.1 (3) |
C8—C4—C5—C6 | −162.18 (11) | C11—C12—C13—C14 | 0.6 (3) |
C8—C4—C5—C9 | −35.51 (17) | C12—C13—C14—C9 | −0.1 (3) |
C3—C4—C5—C9 | 151.19 (12) | C7—C17—C18—C19 | 179.89 (15) |
C4—C5—C6—C7 | −52.02 (13) | C22—C17—C18—C19 | 0.0 (2) |
C9—C5—C6—C16 | −58.43 (14) | C7—C17—C22—C21 | −179.19 (14) |
C4—C5—C9—C10 | −43.99 (18) | C18—C17—C22—C21 | 0.7 (2) |
C4—C5—C9—C14 | 135.18 (14) | C17—C18—C19—C20 | −0.6 (3) |
C6—C5—C9—C10 | 80.12 (16) | C18—C19—C20—C21 | 0.5 (3) |
C6—C5—C9—C14 | −100.71 (15) | C19—C20—C21—C22 | 0.2 (3) |
C4—C5—C6—C16 | 68.57 (13) | C20—C21—C22—C17 | −0.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—HO1···N3i | 0.92 (3) | 2.02 (3) | 2.907 (2) | 161 (2) |
N2—H2N···O1 | 0.887 (18) | 2.004 (18) | 2.870 (2) | 165.0 (16) |
C7—H7···N3ii | 0.98 | 2.52 | 3.3742 (19) | 146 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
H2N···O1 | 2.00 | x, y, z |
H7···N3 | 2.52 | 1 - x, 1 - y, 1 - z |
N3···H18 | 2.75 | -1 + x, y, z |
N3···HO1 | 2.02 | -x, 1 - y, 1 - z |
N5···H1B | 2.75 | -1/2 + x, 1/2 - y, -1/2 + z |
N5···H23B | 2.77 | 1/2 + x, 1/2 - y, -1/2 + z |
H12···H12 | 2.54 | -x, 1 - y, -z |
C20···H2B | 3.02 | 1/2 + x, 1/2 - y, -1/2 + z |
H5···O1 | 2.79 | 1 - x, 1 - y, 1 - z |
H12···C23 | 3.07 | x, y, -1 + z |
Acknowledgements
Author contributions are as follows. Conceptualization, FNN and IGM; methodology, GZM, MA and FNN; investigation, ZA, AAA and FNN; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA, IGM and ANK; visualization, MA and ANK; funding acquisition, IGM, and FNN; resources, GZM, AAA, MA and FNN; supervision, MA, IGM and ANK.
Funding information
This work was supported by Baku State University and UNEC Research Program.
References
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, L.-J. & Mankad, N. P. (2020). Chem. Soc. Rev. 49, 8036–8064. Web of Science CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hosseini, H. & Bayat, M. (2018). RSC Adv. 8, 41218–41225. Web of Science CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. NCS 233, 1019–1020. CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Yu, C.-Y., Yan, S.-J. & Huang, Z.-T. (2006). Acta Cryst. E62, o2731–o2733. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.