research communications
and Hirshfeld surface analysis of 2-(2-oxo-3-phenyl-1,2,3,8a-tetrahydroquinoxalin-1-yl)ethyl acetate
aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bDepartment of Biochemistry, Faculty of Education & Science, Al-Baydha University, Yemen, cLaboratoire de Chimie Organique Heterocyclique, Faculté des Sciences, Université Mohammed V in Rabat, Morocco, dLaboratoire de Chimie et Biochimie de l'Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo, eSivas Cumhuriyet University, Health Services Vocational School, Department of Pharmacy, 58140, Sivas, Turkey, and fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: camillekalonji1@gmail.com, y.ramli@um5s.net.ma
In the title molecule, C18H16N2O3, the dihydroquinoxaline moiety, with the exception of the N atom is essentially planar with the inner part of the methylpropanoate group (CH2—CH2—O) nearly perpendicular to it. In the crystal, inversion dimers formed by C—H⋯O hydrogen bonds are connected into oblique stacks by π-stacking and C—H⋯π(ring) interactions.
Keywords: crystal structure; dihydroquinoxaline; hydrogen bond; π-stacking; C—H⋯π(ring).
CCDC reference: 2062956
1. Chemical context
Quinoxaline are a class of nitrogen containing ; Ramli et al., 2014). In addition, this heterocyclic scaffold possess anticorrosion characteristics (El Ouali et al., 2010; Zarrok et al., 2012; Tazouti et al., 2016; El Aoufir et al., 2016; Laabaissi et al., 2019). In a continuation of our recent work focused on the synthesis and biological evaluation of novel (Guerrab et al. 2019, 2020, 2021; Abad et al., 2021a,b; Missioui et al. 2021) we report here the of the title compound (Fig. 1). As with many biologically active molecules, the molecular conformation adopted may have a significant effect on its activity.
found in many biologically active drugs (Ramli & Essassi, 20152. Structural commentary
The dihydroquinoxaline moiety, with the exception of N1, is planar to within 0.0186 (9) Å (r.m.s. deviation of the nine fitted atoms = 0.0116 Å). N1 lies 0.0526 (12) Å below the mean plane. The C9–C14 phenyl ring is inclined to the above plane by 11.64 (6)° while the inner part (CH2—CH2—O) of the methyl propanoate substituent is nearly perpendicular to the dihydroquinoxaline unit, as indicated by the angle of 87.34 (6)° between the N1/C15/C16/O2 and N2/C1–C8 planes. The overall conformation is determined in part by the intramolecular C5—H5⋯O3 and C14—H14⋯O1 hydrogen bonds (Table 1 and Fig. 1).
3. Supramolecular features
In the crystal, inversion dimers are formed by C4—H4⋯O3i hydrogen bonds [Table 1; symmetry code: (i) −x + 2, −y + 1, −z + 1] and are connected into oblique stacks by a combination of π-stacking interactions between the C1/C6/N1/C7/C8/N2 and C9–C14 rings [centroid–centroid distance = 3.7786 (9) Å, dihedral angle = 12.20 (6)°] and in addition C16—H16B⋯O3ii and C18—H18A⋯Cg2iii interactions [Table 1 and Fig. 2; Cg2 is the centroid of the C1–C6 ring; symmetry codes: (ii) x − 1, y, z, (iii) −x + 1, −y + 1, −z + 1]. The crystal packing also shows a C17=O3⋯Cg2 interaction [O3⋯Cg2 = 3.9578 (12) Å, C17⋯Cg2 = 3.7440 (16) Å, C17=O3⋯Cg2 = 71.04 (8)°].
4. Database survey
A survey of the Cambridge Structural Database (Version 5.42, last update February 2021; Groom et al., 2016) using the search fragment II yielded 30 hits of which those most similar to the title molecule have the formula III with R = Me and R′ = CH2CO2H (DEZJAW; Missioui et al., 2018), CH2C≡CH (DUCYUW; Benzeid et al., 2009a), benzyl [DUSHUV (Ramli et al., 2010b) and DUSHUV01 (Ramli et al., 2018)], Et (IGANOU; Benzeid et al., 2008), CH2CH=CH2 (YUPXAJ; Ramli et al., 2010a), with R = CF3 and R′ = i-Bu (DUBPUO; Wei et al., 2019), with R = Ph and R′ = CH2(cyclo-CHCH2O) (NIBXEE; Abad et al., 2018a), benzyl (PUGGII; Benzeid et al., 2009b), CH2CH2CH2OH (RIRBOM; Abad et al., 2018b), CH2CO2Et (XEXWIJ; Abad et al., 2018c), CH2CH=CH2 (YAJGEX; Benzeid et al., 2011) and with R = 3-NO2-C6H4 and R′ = benzyl (XIKHAD; Das et al., 2018).
In the majority of the hits, the dihydroquinoxaline ring is essentially planar with the dihedral angle between the constituent rings being less than 1° or having the nitrogen bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms. Two notable exceptions are DEZJAW, where the dihedral angle between the two rings is 3.32°, and RIRBOM, where the nitrogen bearing the exocyclic substituent deviates by 0.062 Å from the plane defined by the other nine atoms.
5. Hirshfeld surface analysis
An effective means of probing intermolecular interactions is Hirshfeld surface analysis (McKinnon et al., 2007; Spackman & Jayatilaka, 2009), which can be conveniently carried out with Crystal Explorer 17 (Turner et al., 2017). A detailed description of the use of Crystal Explorer 17 and the plots obtained has been published (Tan et al., 2019) and will not be given here. Fig. 3a presents front (top) and side (bottom) views of the Hirshfeld surface plotted over dnorm in the range −0.1367 to 1.2965 a.u. One of the intramolecular C—H⋯O hydrogen bonds is indicated by the arrow at the left in the front view while those leading to the formation of the inversion dimers are shown by the arrows on the right of the front view. The C—H⋯π(ring) interaction and the π-stacking interactions are represented by the red spots designated by arrows in the side view. Fig. 3b presents the same two views of the surface plotted over the shape-index. In the front view, the π-stacking interaction is evident at the center as an orange triangle surrounded by blue triangles. Fig. 3c has the same two views of the surface plotted over the curvature index, with the flat area in the center indicating the locus of the π-stacking interaction. Fig. 4 presents fingerprint plots for all intermolecular interactions (a) and those delineated into H⋯H contacts (b, 49.4%), H⋯O/O⋯H contacts (c, 18.2%), H⋯C/C⋯H contacts (d, 17.8%) and C⋯C contacts (e, 7.2%).
6. Synthesis and crystallization
To a solution of 2-oxo-3-phenyl-1,2-dihydroquinoxaline (0.5 g, 2.25 mmol) in N,N-dimethylformamide (15 ml) were added 2-bromoethyl acetate (0.4 ml, 2.25 mmol), potassium carbonate (0.31 g, 2.25 mmol) and a catalytic quantity of tetra-n-butylammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was chromatographed on a silica gel column using a hexane/ethyl acetate 9.5: 0.5 mixture as The solid obtained was recrystallized from ethanol solution to afford colorless column-like specimen of the title compound. Yield: 0.50 g, 67%; m.p. 471–473 K.
1H NMR (Bruker Avance 300 MHz, CDCl3) δ (ppm): 8.24 (d, 2H, Ar—H); 7.91 (d, 1H, Ar—H); 7.82 (m, 3H, Ar—H); 7.53 (m, 1H, Ar—H); 7.25 (m, 2H, Ar—H); 4.73 (t, 2H, O—CH2); 3.92 (t, 2H, N—CH2); 2.23 (s, 3H, OCOCH3).
13C NMR (Bruker Avance 75 MHz, CDCl3) δ (ppm):46.15 (N—CH2); 61.15 (O—CH2); 114.38, 123.82, 127.01, 127.72, 128.13, 128.96, 129.68, 130.33, 130.45,130.62 (CH—Ar); 132.78, 133.36, 135.40, 136.05, 154.24(Cq); 156.92 (C=O); 177.82 (O—C=O).
7. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located from a difference electron-density map and freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2062956
https://doi.org/10.1107/S2056989021005247/vm2249sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005247/vm2249Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021005247/vm2249Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H16N2O3 | Z = 2 |
Mr = 308.33 | F(000) = 324 |
Triclinic, P1 | Dx = 1.403 Mg m−3 |
a = 5.3518 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.6989 (14) Å | Cell parameters from 5207 reflections |
c = 13.3527 (16) Å | θ = 3.1–29.3° |
α = 64.019 (2)° | µ = 0.10 mm−1 |
β = 80.323 (2)° | T = 120 K |
γ = 76.952 (2)° | Column, colourless |
V = 729.83 (15) Å3 | 0.42 × 0.18 × 0.12 mm |
Bruker SMART APEX CCD diffractometer | 3909 independent reflections |
Radiation source: fine-focus sealed tube | 2929 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.3°, θmin = 1.7° |
φ and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.87, Tmax = 0.99 | l = −18→18 |
14193 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.142 | All H-atom parameters refined |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0999P)2] where P = (Fo2 + 2Fc2)/3 |
3909 reflections | (Δ/σ)max < 0.001 |
272 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 30 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.24048 (17) | 0.11347 (8) | 0.45539 (7) | 0.0287 (2) | |
O2 | 0.42582 (17) | 0.24290 (8) | 0.68691 (6) | 0.0264 (2) | |
O3 | 0.74296 (17) | 0.36037 (9) | 0.62940 (7) | 0.0308 (2) | |
N1 | 0.52749 (18) | 0.24890 (9) | 0.40271 (7) | 0.0209 (2) | |
N2 | 0.46952 (18) | 0.31557 (9) | 0.18053 (7) | 0.0205 (2) | |
C1 | 0.6193 (2) | 0.37704 (11) | 0.20843 (9) | 0.0198 (2) | |
C2 | 0.7488 (2) | 0.47088 (11) | 0.12307 (9) | 0.0229 (3) | |
H2 | 0.731 (3) | 0.4919 (13) | 0.0454 (12) | 0.033 (4)* | |
C3 | 0.9057 (2) | 0.53135 (11) | 0.14791 (10) | 0.0253 (3) | |
H3 | 0.999 (3) | 0.5940 (13) | 0.0898 (11) | 0.025 (3)* | |
C4 | 0.9332 (2) | 0.50106 (12) | 0.25984 (10) | 0.0240 (3) | |
H4 | 1.043 (3) | 0.5462 (13) | 0.2757 (11) | 0.023 (3)* | |
C5 | 0.8070 (2) | 0.40967 (11) | 0.34551 (10) | 0.0229 (3) | |
H5 | 0.835 (3) | 0.3898 (15) | 0.4234 (13) | 0.035 (4)* | |
C6 | 0.6527 (2) | 0.34508 (11) | 0.32082 (9) | 0.0197 (2) | |
C7 | 0.3624 (2) | 0.19025 (11) | 0.37929 (9) | 0.0209 (2) | |
C8 | 0.3496 (2) | 0.22703 (11) | 0.25807 (9) | 0.0193 (2) | |
C9 | 0.2018 (2) | 0.16113 (11) | 0.22093 (9) | 0.0210 (2) | |
C10 | 0.2376 (3) | 0.18294 (12) | 0.10782 (10) | 0.0268 (3) | |
H10 | 0.365 (3) | 0.2385 (15) | 0.0602 (13) | 0.040 (4)* | |
C11 | 0.1007 (3) | 0.12852 (13) | 0.06609 (10) | 0.0307 (3) | |
H11 | 0.131 (3) | 0.1475 (15) | −0.0164 (14) | 0.045 (4)* | |
C12 | −0.0746 (3) | 0.05042 (12) | 0.13563 (11) | 0.0299 (3) | |
H12 | −0.174 (3) | 0.0113 (13) | 0.1067 (11) | 0.026 (3)* | |
C13 | −0.1069 (2) | 0.02574 (12) | 0.24773 (11) | 0.0282 (3) | |
H13 | −0.229 (3) | −0.0255 (14) | 0.2925 (12) | 0.030 (4)* | |
C14 | 0.0284 (2) | 0.08023 (11) | 0.29077 (10) | 0.0239 (3) | |
H14 | −0.004 (3) | 0.0579 (14) | 0.3697 (12) | 0.030 (4)* | |
C15 | 0.5682 (2) | 0.20405 (12) | 0.52109 (9) | 0.0224 (3) | |
H15A | 0.751 (3) | 0.2084 (12) | 0.5233 (10) | 0.019 (3)* | |
H15B | 0.546 (2) | 0.1157 (14) | 0.5606 (11) | 0.023 (3)* | |
C16 | 0.3790 (2) | 0.28659 (12) | 0.57099 (9) | 0.0246 (3) | |
H16A | 0.388 (3) | 0.3773 (14) | 0.5287 (11) | 0.027 (3)* | |
H16B | 0.200 (3) | 0.2750 (12) | 0.5718 (10) | 0.024 (3)* | |
C17 | 0.6177 (2) | 0.28800 (12) | 0.70394 (10) | 0.0246 (3) | |
C18 | 0.6508 (3) | 0.23944 (15) | 0.82550 (11) | 0.0319 (3) | |
H18A | 0.545 (4) | 0.305 (2) | 0.8477 (19) | 0.085 (7)* | |
H18B | 0.600 (4) | 0.1579 (19) | 0.8692 (16) | 0.063 (5)* | |
H18C | 0.829 (4) | 0.2289 (18) | 0.8386 (15) | 0.060 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0367 (5) | 0.0329 (5) | 0.0186 (4) | −0.0178 (4) | 0.0010 (3) | −0.0080 (4) |
O2 | 0.0315 (5) | 0.0335 (5) | 0.0192 (4) | −0.0123 (4) | 0.0016 (3) | −0.0136 (4) |
O3 | 0.0309 (5) | 0.0397 (5) | 0.0282 (4) | −0.0145 (4) | 0.0022 (4) | −0.0175 (4) |
N1 | 0.0248 (5) | 0.0241 (5) | 0.0160 (4) | −0.0082 (4) | 0.0008 (4) | −0.0094 (4) |
N2 | 0.0230 (5) | 0.0203 (5) | 0.0195 (4) | −0.0044 (4) | −0.0001 (4) | −0.0097 (4) |
C1 | 0.0212 (5) | 0.0209 (5) | 0.0188 (5) | −0.0040 (4) | 0.0007 (4) | −0.0102 (4) |
C2 | 0.0267 (6) | 0.0224 (6) | 0.0191 (5) | −0.0050 (5) | 0.0012 (4) | −0.0089 (4) |
C3 | 0.0282 (6) | 0.0221 (6) | 0.0236 (6) | −0.0081 (5) | 0.0039 (5) | −0.0080 (5) |
C4 | 0.0239 (6) | 0.0247 (6) | 0.0280 (6) | −0.0063 (5) | −0.0005 (4) | −0.0147 (5) |
C5 | 0.0241 (6) | 0.0256 (6) | 0.0220 (5) | −0.0051 (4) | −0.0004 (4) | −0.0127 (5) |
C6 | 0.0203 (5) | 0.0205 (5) | 0.0185 (5) | −0.0043 (4) | 0.0017 (4) | −0.0091 (4) |
C7 | 0.0237 (6) | 0.0216 (5) | 0.0191 (5) | −0.0063 (4) | 0.0002 (4) | −0.0097 (4) |
C8 | 0.0209 (5) | 0.0201 (5) | 0.0178 (5) | −0.0029 (4) | −0.0013 (4) | −0.0092 (4) |
C9 | 0.0225 (6) | 0.0200 (5) | 0.0217 (5) | −0.0020 (4) | −0.0038 (4) | −0.0097 (4) |
C10 | 0.0338 (7) | 0.0276 (6) | 0.0223 (5) | −0.0105 (5) | −0.0018 (5) | −0.0110 (5) |
C11 | 0.0415 (7) | 0.0316 (7) | 0.0246 (6) | −0.0096 (5) | −0.0061 (5) | −0.0141 (5) |
C12 | 0.0322 (7) | 0.0285 (6) | 0.0373 (7) | −0.0059 (5) | −0.0088 (5) | −0.0188 (6) |
C13 | 0.0266 (6) | 0.0269 (6) | 0.0337 (6) | −0.0085 (5) | −0.0009 (5) | −0.0137 (5) |
C14 | 0.0235 (6) | 0.0243 (6) | 0.0246 (6) | −0.0049 (4) | −0.0009 (4) | −0.0109 (5) |
C15 | 0.0265 (6) | 0.0247 (6) | 0.0170 (5) | −0.0068 (5) | −0.0007 (4) | −0.0089 (4) |
C16 | 0.0254 (6) | 0.0309 (6) | 0.0202 (5) | −0.0069 (5) | −0.0011 (4) | −0.0122 (5) |
C17 | 0.0245 (6) | 0.0294 (6) | 0.0241 (5) | −0.0037 (5) | −0.0003 (4) | −0.0161 (5) |
C18 | 0.0388 (8) | 0.0373 (8) | 0.0229 (6) | −0.0034 (6) | −0.0053 (5) | −0.0159 (6) |
O1—C7 | 1.2275 (13) | C9—C14 | 1.3995 (16) |
O2—C17 | 1.3467 (14) | C9—C10 | 1.4036 (15) |
O2—C16 | 1.4489 (13) | C10—C11 | 1.3828 (17) |
O3—C17 | 1.2043 (14) | C10—H10 | 0.990 (16) |
N1—C7 | 1.3800 (14) | C11—C12 | 1.3884 (19) |
N1—C6 | 1.3882 (14) | C11—H11 | 1.016 (16) |
N1—C15 | 1.4692 (13) | C12—C13 | 1.3822 (18) |
N2—C8 | 1.3016 (14) | C12—H12 | 0.988 (14) |
N2—C1 | 1.3763 (14) | C13—C14 | 1.3894 (17) |
C1—C2 | 1.4022 (15) | C13—H13 | 0.934 (15) |
C1—C6 | 1.4114 (14) | C14—H14 | 0.962 (14) |
C2—C3 | 1.3721 (17) | C15—C16 | 1.5155 (17) |
C2—H2 | 0.972 (15) | C15—H15A | 0.996 (13) |
C3—C4 | 1.4027 (16) | C15—H15B | 0.958 (14) |
C3—H3 | 0.962 (13) | C16—H16A | 0.967 (14) |
C4—C5 | 1.3795 (16) | C16—H16B | 0.993 (14) |
C4—H4 | 0.973 (14) | C17—C18 | 1.4940 (16) |
C5—C6 | 1.3975 (16) | C18—H18A | 0.97 (2) |
C5—H5 | 0.992 (15) | C18—H18B | 0.95 (2) |
C7—C8 | 1.4911 (14) | C18—H18C | 0.97 (2) |
C8—C9 | 1.4861 (15) | ||
C17—O2—C16 | 115.33 (9) | C9—C10—H10 | 117.0 (9) |
C7—N1—C6 | 123.19 (9) | C10—C11—C12 | 120.53 (12) |
C7—N1—C15 | 116.52 (9) | C10—C11—H11 | 118.3 (9) |
C6—N1—C15 | 120.28 (9) | C12—C11—H11 | 121.2 (9) |
C8—N2—C1 | 120.49 (9) | C13—C12—C11 | 119.10 (11) |
N2—C1—C2 | 119.20 (9) | C13—C12—H12 | 119.6 (8) |
N2—C1—C6 | 121.67 (10) | C11—C12—H12 | 121.3 (8) |
C2—C1—C6 | 119.10 (10) | C12—C13—C14 | 121.02 (12) |
C3—C2—C1 | 120.73 (10) | C12—C13—H13 | 117.5 (9) |
C3—C2—H2 | 119.6 (8) | C14—C13—H13 | 121.4 (9) |
C1—C2—H2 | 119.7 (8) | C13—C14—C9 | 120.32 (11) |
C2—C3—C4 | 119.78 (11) | C13—C14—H14 | 116.0 (9) |
C2—C3—H3 | 121.2 (8) | C9—C14—H14 | 123.7 (9) |
C4—C3—H3 | 119.0 (8) | N1—C15—C16 | 110.08 (9) |
C5—C4—C3 | 120.72 (11) | N1—C15—H15A | 106.2 (7) |
C5—C4—H4 | 120.7 (8) | C16—C15—H15A | 112.9 (7) |
C3—C4—H4 | 118.5 (8) | N1—C15—H15B | 109.3 (8) |
C4—C5—C6 | 119.78 (10) | C16—C15—H15B | 110.1 (8) |
C4—C5—H5 | 118.0 (9) | H15A—C15—H15B | 108.2 (11) |
C6—C5—H5 | 122.2 (9) | O2—C16—C15 | 109.30 (10) |
N1—C6—C5 | 122.87 (9) | O2—C16—H16A | 111.5 (8) |
N1—C6—C1 | 117.29 (10) | C15—C16—H16A | 111.6 (8) |
C5—C6—C1 | 119.84 (10) | O2—C16—H16B | 105.9 (7) |
O1—C7—N1 | 120.36 (10) | C15—C16—H16B | 110.3 (7) |
O1—C7—C8 | 124.70 (10) | H16A—C16—H16B | 108.0 (11) |
N1—C7—C8 | 114.94 (9) | O3—C17—O2 | 123.41 (10) |
N2—C8—C9 | 117.09 (9) | O3—C17—C18 | 124.81 (11) |
N2—C8—C7 | 122.12 (10) | O2—C17—C18 | 111.77 (10) |
C9—C8—C7 | 120.78 (9) | C17—C18—H18A | 104.9 (13) |
C14—C9—C10 | 118.14 (10) | C17—C18—H18B | 113.1 (11) |
C14—C9—C8 | 124.43 (10) | H18A—C18—H18B | 110.9 (18) |
C10—C9—C8 | 117.43 (10) | C17—C18—H18C | 111.5 (11) |
C11—C10—C9 | 120.87 (11) | H18A—C18—H18C | 110.2 (17) |
C11—C10—H10 | 122.2 (9) | H18B—C18—H18C | 106.3 (16) |
C8—N2—C1—C2 | 179.20 (10) | O1—C7—C8—N2 | 175.20 (11) |
C8—N2—C1—C6 | 1.29 (17) | N1—C7—C8—N2 | −5.32 (16) |
N2—C1—C2—C3 | −178.09 (10) | O1—C7—C8—C9 | −6.07 (18) |
C6—C1—C2—C3 | −0.13 (17) | N1—C7—C8—C9 | 173.42 (9) |
C1—C2—C3—C4 | −1.29 (18) | N2—C8—C9—C14 | −168.77 (10) |
C2—C3—C4—C5 | 0.91 (18) | C7—C8—C9—C14 | 12.44 (17) |
C3—C4—C5—C6 | 0.92 (18) | N2—C8—C9—C10 | 10.61 (16) |
C7—N1—C6—C5 | 175.87 (10) | C7—C8—C9—C10 | −168.19 (10) |
C15—N1—C6—C5 | −4.42 (16) | C14—C9—C10—C11 | 1.58 (18) |
C7—N1—C6—C1 | −4.13 (16) | C8—C9—C10—C11 | −177.84 (11) |
C15—N1—C6—C1 | 175.58 (10) | C9—C10—C11—C12 | −0.4 (2) |
C4—C5—C6—N1 | 177.66 (10) | C10—C11—C12—C13 | −1.2 (2) |
C4—C5—C6—C1 | −2.34 (17) | C11—C12—C13—C14 | 1.52 (19) |
N2—C1—C6—N1 | −0.14 (16) | C12—C13—C14—C9 | −0.28 (19) |
C2—C1—C6—N1 | −178.05 (10) | C10—C9—C14—C13 | −1.26 (17) |
N2—C1—C6—C5 | 179.86 (10) | C8—C9—C14—C13 | 178.11 (10) |
C2—C1—C6—C5 | 1.95 (16) | C7—N1—C15—C16 | −92.28 (12) |
C6—N1—C7—O1 | −173.92 (10) | C6—N1—C15—C16 | 88.00 (12) |
C15—N1—C7—O1 | 6.36 (16) | C17—O2—C16—C15 | 82.16 (12) |
C6—N1—C7—C8 | 6.57 (15) | N1—C15—C16—O2 | −178.70 (9) |
C15—N1—C7—C8 | −173.15 (9) | C16—O2—C17—O3 | 0.52 (16) |
C1—N2—C8—C9 | −177.24 (9) | C16—O2—C17—C18 | 179.37 (10) |
C1—N2—C8—C7 | 1.54 (17) |
Cg2 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.974 (16) | 2.526 (16) | 3.4713 (17) | 163.6 (11) |
C5—H5···O3 | 0.992 (15) | 2.592 (16) | 3.5435 (15) | 160.7 (12) |
C14—H14···O1 | 0.963 (15) | 2.232 (16) | 2.8387 (16) | 120.0 (12) |
C16—H16B···O3ii | 0.993 (14) | 2.553 (14) | 3.3632 (16) | 138.7 (10) |
C18—H18A···Cg2iii | 0.97 (2) | 2.93 (2) | 3.7585 (17) | 144.2 (17) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR and EME; synthesis, NA and LEG; writing (review and editing of the manuscript) CKM, JTM and YR; formal analysis, SK and JTM; crystal-structure determination, JTM; validation, JTM and YR, project administration, YR
References
Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 173–175. CSD CrossRef CAS Google Scholar
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610. Google Scholar
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519. Google Scholar
Abad, N., Ramli, Y., Lahmidi, S., El Hafi, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633. Google Scholar
Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021a). J. Mol. Struct. 1232, 130004. CSD CrossRef Google Scholar
Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009a). Acta Cryst. E65, o2196. CSD CrossRef IUCr Journals Google Scholar
Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685. CSD CrossRef IUCr Journals Google Scholar
Benzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Das, D. K., Pampana, V. K. K. & Hwang, K. C. (2018). Chem. Sci. 9, 7318–7326. CSD CrossRef CAS PubMed Google Scholar
El Aoufir, Y., Lgaz, H., Bourazmi, H., Kerroum, Y., Ramli, Y., Guenbour, A., Salghi, R., El-Hajjaji, F., Hammouti, B. & Oudda, H. (2016). J. Mater. Environ. Sci. 7, 4330–4347. CAS Google Scholar
El Ouali, I., Hammouti, B., Aouniti, A., Ramli, Y., Azougagh, M., Essassi, E. M. & Bouachrine, M. (2010). J. Mater. Envir. Sci. 1, 1–8. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerrab, W., Chung, I.-M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Chung, I. M., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 127630. CSD CrossRef Google Scholar
Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. M. & Ramli, Y. (2020). J. Mol. Struct. 1205, 127630. CSD CrossRef Google Scholar
Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134. CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Laabaissi, T., Benhiba, F., Rouifi, Z., Allali, M., Missioui, M., Ourrak, K., Oudda, H., Ramli, Y., Warad, I. & Zarrouk, A. (2019). Int. J. Corros. Scale Inhib. 8, 241–256. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCRData 3, x180882. Google Scholar
Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. In the press. Google Scholar
Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x180390. Google Scholar
Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160. Google Scholar
Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21. Google Scholar
Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1922. CSD CrossRef IUCr Journals Google Scholar
Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1767. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tazouti, A., Galai, M., Touir, R., Touhami, M. E., Zarrouk, A., Ramli, Y., Saraçoğlu, M., Kaya, S., Kandemirli, F. & Kaya, C. (2016). J. Mol. Liq. 221, 815–832. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490–5498. CSD CrossRef CAS Google Scholar
Zarrok, H., Zarrouk, A., Salghi, R., Oudda, H., Hammouti, B., Ebn Touhami, M., Bouachrine, M. & Pucci, O. H. (2012). Electrochim. Acta, 30, 405–417. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.