research communications
2O7, from powder X-ray diffraction data
of magnesium zinc divanadate, MgZnVaDepartment of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
*Correspondence e-mail: lijun@oregonstate.edu
The 2O7, was determined and refined from laboratory X-ray powder diffraction data. The title compound was synthesized by a solid-state reaction at 1023 K in air. The is isotypic with Mn0.6Zn1.4V2O7 (C2/m; Z = 6) and is related to the of thortveitite. The contains two metal sites with statistically distributed magnesium and zinc atoms with the atomic ratio close to 1:1. One (Mg/Zn) metal site (M1) is located on 8j and the other (M2) on 4h. Three V sites (all on 4i), and eight O (three 8j, four 4i, and one 2b) sites complete the The structure is an alternate stacking of V2O7 layers and (Mg/Zn) atom layers along [20]. It is distinct from other related structures in that each V2O7 layer consists of two groups: a V2O7 dimer and a V4O14 tetramer. Mixed-occupied M1 and M2 are coordinated by oxygen atoms in distorted trigonal bipyramidal and octahedral sites, respectively.
of magnesium zinc divanadate, MgZnVKeywords: crystal structure; powder X-ray diffraction; magnesium zinc divanadate; MgZnV2O7; thortveitite-related structures.
CCDC reference: 2080585
1. Chemical context
Mixed vanadium oxides with tetrahedrally coordinated pentavalent vanadium ions have been used as catalysts in the heterogeneous oxidation process (Chang & Wang, 1988). Since there is a strong correlation between the and its properties, the phase relations of vanadates have been thoroughly investigated. During the course of studying the phase diagram in the MgO–ZnO–V2O5 system, a new phase was identified by its X-ray diffraction pattern in the solid-solution range between (Mg0.80Zn1.20)V2O7 and (Mg1.16Zn0.84)V2O7, which was completely different from Mg2V2O7 or Zn2V2O7 (Chang & Wang, 1988). The of the new phase has not been reported to date. We present here the of MgZnV2O7 (Fig. 1), as determined and refined from laboratory powder X-ray diffraction data (Table 1).
2. Structural commentary
The 2O7, is isotypic with Mn0.6Zn1.4V2O7 (Knowles et al., 2009), where statistically distributed Mg and Zn atoms (Mn and Zn for Mn0.6Zn1.4V2O7) are located in disordered environments in the The unit-cell volume of MgZnV2O7 is smaller than that of Mn0.6Zn1.4V2O7 by 1.65%.
of magnesium zinc divanadate, MgZnVThe 2O7 is shown in Fig. 1a. There are (Mg1/Zn1) (on 8j, 1), (Mg2/Zn2) (on 4h, 2), three V (all on 4i, m), and eight O (three 8j, four 4i, and one 2b, 2/m) sites in the where (Mg1/Zn1) and (Mg2/Zn2) represent statistically distributed magnesium and zinc atoms with the atomic ratio close to 1:1.
of MgZnVThe 2O7 layers and (Mg/Zn) atom layers along [20] (Fig. 1b). Each V2O7 layer consists of two groups: a V2O7 dimer and a V4O14 tetramer. For illustration, a slab of one V2O7 layer and the adjacent (Mg/Zn) layer is shown in Fig. 1c, which is rotated by 90° from Fig. 1b. Two corner-sharing (V1)O4 tetrahedra form the dimeric group. Two (V3)O4 tetrahedra and two (V2)O5 trigonal bipyramids form the tetrameric group, with a sequence of (V3)O4–(V2)O5–(V2)O5–(V3)O4. The two trigonal bipyramidal units in the middle are edge-sharing, each of which is corner-sharing with the adjacent terminal tetrahedron. (Mg1/Zn1) and (Mg2/Zn2) are coordinated by oxygen atoms in a distorted trigonal bipyramidal and a distorted octahedral environment, respectively (Table 2).
can be described as an alternate stacking of V
|
The MgZnV2O7 structure (C2/m, Z = 6) is closely related to thortveitite-type α-Zn2V2O7 (C2/c, Z = 4) (Gopal & Calvo, 1973), thortveite-type β'-Zn2V2O7 (C2/m, Z = 2) (Krasnenko et al., 2003), and β-Mg2V2O7 (P, Z = 2) (Gopal & Calvo, 1974), as shown in Fig. 2, in which they have an alternate stacking of V2O7 layer and Zn or Mg layers. However, in contrast to MgZnV2O7, they only contain the V2O7 dimer groups. The relationships between other thortveitite-related phases are also well described in a previous work (Knowles et al., 2018).
To check the refined structure model, empirical bond-valence sums (BVSs) were calculated (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991), with the program Valence (Hormillosa et al., 1993). The expected charges of the ions match the obtained BVS values (given in valence units): (Mg1/Zn1) = 1.96, (Mg2/Zn2) = 2.11, V1 = 6.08, V2 = 4.31, V3 = 4.69, O1 = 1.60, O2 = 2.26, O3 = 2.25, O4 = 1.71, O5 = 2.10, O6 = 1.87, O7 = 2.02, and O8 = 2.38. The high value for V1 comes from the relatively short V—O distances (Table 2). The restrained distance was slightly longer than the final values, however, the led to the shorter distances. Short bond lengths (1.56–1.60 Å) were also found in other materials, such as BiBa2(VO4)(V2O7) (Huang et al., 1994) Mg2(V2O7) (Nielsen et al., 2001) or Th(V2O7) (Launay et al., 1992). The final atomic positions were confirmed in the Fourier maps (observed and difference map).
3. Synthesis and crystallization
MgZnV2O7 was synthesized by a solid-state reaction from a mixture of Mg(CH3COO)2·4H2O (98.0–102.0%, Alfa-Aesar), ZnO (99.99%, Aldrich) and V2O5 (99.99%, Aldrich) with a nominal composition of Mg:Zn:V = 1:1:2. The mixture was thoroughly ground in an agate mortar with acetone, dried, pressed into a pellet, heated in air at 673 K for 3 h, at 943 K for 6 h, and again at 1023 K for 6 h with intermediate grinding and pressing. For the powder X-ray diffraction measurement, the pellet was ground again in an agate mortar and the resultant powder was dispersed on a zero-background Si sample holder.
4. details
Details of the crystal data collection and structure and the supporting information. Powder X-ray diffraction (PXRD) data for MgZnV2O7 were collected from a Bragg-Brentano diffractometer (PANalytical, 2011) using Cu Kα1 radiation, a focusing primary Ge(111) monochromator (λ = 1.5405 Å) and a position-sensitive PIXcel 3D 2×2 detector. The angular range was set to 8°≤ 2θ ≤ 120°, with a step of 0.0131° and a total measurement time of 8 h at room temperature. The PXRD pattern was indexed using the DICVOL algorithm (Boultif & Louër, 2004) run in WINPLOT (Roisnel & Rodríguez-Carvajal, 2000) through the positions of 26 reflections, resulting in a monoclinic (step 1). The space groups from the systematic were suggested to be C2/m, C2, or Cm, which were indistinguishable from the The highest symmetry, C2/m, was chosen first to determine the structure (step 2), and confirmed later. All the reflections were well indexed, except for a few minor unidentified impurity peaks. The was performed by a combination of the powder profile program GSAS (Larson & Von Dreele, 2000) and the single-crystal structure-refinement program CRYSTALS (Betteridge et al., 2003). The software MCE was used to visualize the three-dimensional Fourier electron-density maps, (Rohlíček & Hušák, 2007). Initially, a structural model was used with only one dummy atom placed at the (0,0,0) position in the A Le Bail fit was used to extract the structure factors from the powder data in GSAS (step 3), followed by applying to build the initial structural solution, using SHELXS97 (Sheldrick, 2008) run in CRYSTALS, which yielded three vanadium sites as the initial structural model (step 4). The initial dummy atom model was then replaced with the partial model containing only three vanadium atoms, and the Le Bail fit was applied in GSAS (step 5). Improved structure factors were then extracted, which were used for the in CRYSTALS (step 6). This process (step 5 to 6) was repeated until a complete and satisfactory structural model was obtained. Finally, in GSAS was employed to complete the structure model, resulting in reasonable isotropic displacement parameters and agreement indices (step 7). The parameters were scale factors, background, unit-cell parameters, peak profile coefficients, atomic coordinates, occupancies for the two (Mg/Zn) sites, common Uiso for the metal atoms, common Uiso for the oxygen atoms, and a March–Dollase preferential orientation coefficient (<111> direction). For the final cycles, the Mg—O, Zn—O, and V—O bond lengths were restrained with a tolerance value of 0.01 Å with respect to the distances determined from CRYSTALS, which matched reasonably well with the radii sums of Shannon (1976). Atomic coordinates and labeling were finally adapted from isotypic Mn0.6Zn1.4V2O7 (Knowles et al., 2009). The final Rietveld plot is displayed in Fig. 3.
are summarized in Table 1Supporting information
CCDC reference: 2080585
Data collection: X'Pert Data Collector (PANalytical, 2011); cell
GSAS (Larson & Von Dreele, 2000); data reduction: X'Pert HighScore Plus (PANalytical, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and CRYSTALS (Betteridge et al., 2003); program(s) used to refine structure: GSAS (Larson & Von Dreele, 2000); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: GSAS (Larson & Von Dreele, 2000).MgZnV2O7 | V = 808.19 (1) Å3 |
Mr = 303.56 | Z = 6 |
Monoclinic, C2/m | F(000) = 864.0 |
Hall symbol: -C 2y | Dx = 3.743 Mg m−3 |
a = 10.32882 (7) Å | Cu Kα1 radiation, λ = 1.5405 Å |
b = 8.50126 (5) Å | T = 298 K |
c = 9.30814 (6) Å | yellow |
β = 98.5748 (5)° | irregular, 24.9 × 24.9 mm |
PANalytical Empyrean diffractometer | Data collection mode: reflection |
Radiation source: sealed X-ray tube, PANalytical Cu Ceramic X-ray tube | Scan method: step |
Specimen mounting: dispersed powder | 2θmin = 5.012°, 2θmax = 119.991°, 2θstep = 0.013° |
Least-squares matrix: full | Profile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 3.306 #2(GV) = 0.000 #3(GW) = 0.000 #4(GP) = 1.565 #5(LX) = 2.176 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = -0.5558 #9(sfec) = 0.00 #10(S/L) = 0.0005 #11(H/L) = 0.0005 #12(eta) = 0.7500 #13(S400 ) = 0.0E+00 #14(S040 ) = 0.0E+00 #15(S004 ) = 0.0E+00 #16(S220 ) = 0.0E+00 #17(S202 ) = 0.0E+00 #18(S022 ) = 0.0E+00 #19(S301 ) = 0.0E+00 #20(S103 ) = 0.0E+00 #21(S121 ) = 0.0E+00 Peak tails are ignored where the intensity is below 0.0020 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rp = 0.055 | 40 parameters |
Rwp = 0.076 | 0 restraints |
Rexp = 0.042 | (Δ/σ)max = 0.03 |
R(F2) = 0.20886 | Background function: GSAS Background function number 1 with 32 terms. Shifted Chebyshev function of 1st kind 1: 684.144 2: -705.826 3: 591.845 4: -383.442 5: 271.953 6: -144.446 7: 80.6035 8: -57.5987 9: 36.6287 10: -27.9916 11: 15.1285 12: -11.9775 13: 12.8819 14: -10.6721 15: 7.66251 16: -8.35018 17: 1.44025 18: -5.00721 19: 5.78817 20: -2.82870 21: 1.93935 22: -1.83947 23: 4.15929 24: 0.506732 25: -0.182215 26: 0.162584 27: 4.98669 28: 0.850932 29: -0.614188 30: -2.46723 31: 3.10631 32: 3.29784 |
8758 data points | Preferred orientation correction: March-Dollase AXIS 1 Ratio= 0.72861 h= 1.000 k= 1.000 l= 1.000 Prefered orientation correction range: Min= 0.62193, Max= 1.62737 |
Excluded region(s): The background is too high at low angles and there was no Bragg's peaks. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | 0.3477 (3) | 0.8175 (3) | 0.2035 (3) | 0.0069 (3)* | 0.508 (4) |
Mg2 | 0.0 | 0.8191 (5) | 0.5 | 0.0069 (3)* | 0.484 (7) |
Zn1 | 0.3477 (3) | 0.8175 (3) | 0.2035 (3) | 0.0069 (3)* | 0.492 (4) |
Zn2 | 0.0 | 0.8191 (5) | 0.5 | 0.0069 (3)* | 0.516 (7) |
V1 | 0.0517 (4) | 0.0 | 0.1885 (4) | 0.0069 (3)* | |
V2 | 0.3777 (4) | 0.0 | 0.8892 (4) | 0.0069 (3)* | |
V3 | 0.6962 (4) | 0.0 | 0.4938 (4) | 0.0069 (3)* | |
O1 | 0.4041 (12) | 0.0 | 0.6850 (12) | 0.0070 (8)* | |
O2 | 0.0 | 0.0 | 0.0 | 0.0070 (8)* | |
O3 | 0.0123 (9) | 0.1586 (10) | 0.7538 (9) | 0.0070 (8)* | |
O4 | 0.2787 (9) | 0.1666 (10) | 0.8864 (9) | 0.0070 (8)* | |
O5 | 0.3613 (10) | 0.1678 (11) | 0.4382 (10) | 0.0070 (8)* | |
O6 | 0.1338 (13) | 0.0 | 0.5091 (13) | 0.0070 (8)* | |
O7 | 0.4380 (14) | 0.0 | 0.1072 (12) | 0.0070 (8)* | |
O8 | 0.2081 (15) | 0.0 | 0.2045 (13) | 0.0070 (8)* |
Mg1—Mg1i | 3.104 (6) | V2—O1 | 1.959 (12) |
Mg1—Mg2ii | 3.185 (3) | V2—O4 | 1.745 (9) |
Mg1—Zn1i | 3.104 (6) | V2—O4xv | 1.745 (9) |
Mg1—Zn2ii | 3.185 (3) | V2—O7xvi | 2.032 (11) |
Mg1—V3iii | 3.307 (5) | V2—O7xvii | 1.898 (15) |
Mg1—O3iv | 1.975 (10) | V3—Mg1xviii | 3.307 (5) |
Mg1—O4iv | 1.929 (9) | V3—Mg1xix | 3.307 (5) |
Mg1—O5v | 2.172 (10) | V3—O1xvii | 1.824 (10) |
Mg1—O7vi | 2.081 (11) | V3—O5xvii | 1.703 (10) |
Mg1—O8vi | 2.120 (11) | V3—O5xx | 1.703 (10) |
Mg2—Mg1ii | 3.185 (3) | V3—O6xvii | 1.760 (15) |
Mg2—Mg1vii | 3.185 (3) | O1—V2 | 1.959 (12) |
Mg2—Mg2viii | 3.076 (9) | O1—V3xvii | 1.824 (10) |
Mg2—Zn1ii | 3.185 (3) | O2—V1 | 1.757 (4) |
Mg2—Zn1vii | 3.185 (3) | O2—V1xxi | 1.757 (4) |
Mg2—Zn2viii | 3.076 (9) | O3—Mg1xxii | 1.975 (10) |
Mg2—O3ix | 2.354 (8) | O3—Mg2ix | 2.354 (8) |
Mg2—O3v | 2.354 (8) | O3—Zn1xxii | 1.975 (10) |
Mg2—O5x | 1.948 (10) | O3—Zn2ix | 2.354 (8) |
Mg2—O5iv | 1.948 (10) | O3—V1xii | 1.628 (10) |
Mg2—O6vi | 2.061 (10) | O4—Mg1xxii | 1.929 (9) |
Mg2—O6xi | 2.061 (10) | O4—Zn1xxii | 1.929 (9) |
Zn1—Mg1i | 3.104 (6) | O4—V2 | 1.745 (9) |
Zn1—Mg2ii | 3.185 (3) | O5—Mg1v | 2.172 (10) |
Zn1—Zn1i | 3.104 (6) | O5—Mg2xxiii | 1.948 (10) |
Zn1—O3iv | 1.975 (10) | O5—Zn1v | 2.172 (10) |
Zn1—O4iv | 1.929 (9) | O5—Zn2xxiii | 1.948 (10) |
Zn1—O5v | 2.172 (10) | O5—V3xvii | 1.703 (10) |
Zn1—O7vi | 2.081 (11) | O6—Mg2xxiv | 2.061 (10) |
Zn1—O8vi | 2.120 (11) | O6—Mg2ix | 2.061 (10) |
Zn2—Mg1ii | 3.185 (3) | O6—Zn2xxiv | 2.061 (10) |
Zn2—Mg1vii | 3.185 (3) | O6—Zn2ix | 2.061 (10) |
Zn2—Mg2viii | 3.076 (9) | O6—V3xvii | 1.760 (15) |
Zn2—Zn2viii | 3.076 (9) | O7—Mg1xxiv | 2.081 (11) |
Zn2—O3ix | 2.354 (8) | O7—Mg1v | 2.081 (11) |
Zn2—O3v | 2.354 (8) | O7—Zn1xxiv | 2.081 (11) |
Zn2—O5x | 1.948 (10) | O7—Zn1v | 2.081 (11) |
Zn2—O5iv | 1.948 (10) | O7—V2xxv | 2.032 (11) |
Zn2—O6vi | 2.061 (10) | O7—V2xvii | 1.898 (15) |
Zn2—O6xi | 2.061 (10) | O8—Mg1xxiv | 2.120 (11) |
V1—O2 | 1.757 (4) | O8—Mg1v | 2.120 (11) |
V1—O3xii | 1.628 (10) | O8—Zn1xxiv | 2.120 (11) |
V1—O3xiii | 1.628 (10) | O8—Zn1v | 2.120 (11) |
V1—O8 | 1.599 (15) | O8—V1 | 1.599 (15) |
V2—V2xiv | 3.014 (6) | ||
Mg1i—Mg1—Mg2ii | 111.37 (6) | O3xii—V1—O3xiii | 111.9 (8) |
Mg1i—Mg1—O3iv | 133.1 (3) | O3xii—V1—O8 | 115.1 (4) |
Mg1i—Mg1—O4iv | 131.7 (3) | O3xiii—V1—O8 | 115.1 (4) |
Mg1i—Mg1—O5v | 86.7 (2) | O1—V2—O4 | 98.7 (4) |
Mg1i—Mg1—O7vi | 41.8 (3) | O1—V2—O4xv | 98.7 (4) |
Mg1i—Mg1—O8vi | 42.9 (3) | O1—V2—O7xvi | 154.4 (6) |
Mg2ii—Mg1—O3iv | 47.5 (3) | O1—V2—O7xvii | 74.5 (5) |
Mg2ii—Mg1—O4iv | 110.4 (3) | O4—V2—O4xv | 108.5 (7) |
Mg2ii—Mg1—O5v | 36.9 (3) | O4—V2—O7xvi | 96.1 (4) |
Mg2ii—Mg1—O7vi | 116.7 (3) | O4—V2—O7xvii | 125.7 (3) |
Mg2ii—Mg1—O8vi | 120.7 (4) | O4xv—V2—O7xvi | 96.1 (4) |
O3iv—Mg1—O4iv | 93.5 (3) | O4xv—V2—O7xvii | 125.7 (3) |
O3iv—Mg1—O5v | 84.3 (3) | O7xvi—V2—O7xvii | 79.9 (7) |
O3iv—Mg1—O7vi | 103.6 (5) | O1xvii—V3—O5xvii | 99.1 (4) |
O3iv—Mg1—O8vi | 167.9 (4) | O1xvii—V3—O5xx | 99.1 (4) |
O4iv—Mg1—O5v | 114.4 (4) | O1xvii—V3—O6xvii | 114.7 (7) |
O4iv—Mg1—O7vi | 128.8 (4) | O5xvii—V3—O5xx | 113.8 (8) |
O4iv—Mg1—O8vi | 94.1 (4) | O5xvii—V3—O6xvii | 114.2 (4) |
O5v—Mg1—O7vi | 115.1 (4) | O5xx—V3—O6xvii | 114.2 (4) |
O5v—Mg1—O8vi | 84.0 (5) | V2—O1—V3xvii | 138.0 (7) |
O7vi—Mg1—O8vi | 78.8 (4) | V1—O2—V1xxi | 180.0 |
Mg1ii—Mg2—Mg1vii | 137.26 (13) | Mg1xxii—O3—Mg2ix | 94.3 (4) |
Mg1ii—Mg2—Mg2viii | 111.37 (6) | Mg1xxii—O3—Zn1xxii | 0.0 |
Mg1ii—Mg2—O3ix | 147.6 (2) | Mg1xxii—O3—V1xii | 145.2 (5) |
Mg1ii—Mg2—O3v | 38.2 (2) | Mg2ix—O3—Zn1xxii | 94.3 (4) |
Mg1ii—Mg2—O5x | 105.2 (3) | Mg2ix—O3—V1xii | 115.7 (4) |
Mg1ii—Mg2—O5iv | 42.0 (3) | Zn1xxii—O3—V1xii | 145.2 (5) |
Mg1ii—Mg2—O6vi | 89.7 (3) | Mg1xxii—O4—Zn1xxii | 0.0 |
Mg1ii—Mg2—O6xi | 123.3 (3) | Mg1xxii—O4—V2 | 154.6 (5) |
Mg1vii—Mg2—Mg2viii | 111.37 (6) | Zn1xxii—O4—V2 | 154.6 (5) |
Mg1vii—Mg2—O3ix | 38.2 (2) | Mg1v—O5—Mg2xxiii | 101.1 (5) |
Mg1vii—Mg2—O3v | 147.6 (2) | Mg1v—O5—Zn1v | 0.0 |
Mg1vii—Mg2—O5x | 42.0 (3) | Mg1v—O5—Zn2xxiii | 101.1 (5) |
Mg1vii—Mg2—O5iv | 105.2 (3) | Mg1v—O5—V3xvii | 116.7 (5) |
Mg1vii—Mg2—O6vi | 123.3 (3) | Mg2xxiii—O5—Zn1v | 101.1 (5) |
Mg1vii—Mg2—O6xi | 89.7 (3) | Mg2xxiii—O5—Zn2xxiii | 0.0 |
Mg2viii—Mg2—O3ix | 85.4 (2) | Mg2xxiii—O5—V3xvii | 136.5 (5) |
Mg2viii—Mg2—O3v | 85.4 (2) | Zn1v—O5—Zn2xxiii | 101.1 (5) |
Mg2viii—Mg2—O5x | 131.3 (3) | Zn1v—O5—V3xvii | 116.7 (5) |
Mg2viii—Mg2—O5iv | 131.3 (3) | Zn2xxiii—O5—V3xvii | 136.5 (5) |
Mg2viii—Mg2—O6vi | 41.7 (3) | Mg2xxiv—O6—Mg2ix | 96.5 (6) |
Mg2viii—Mg2—O6xi | 41.7 (3) | Mg2xxiv—O6—Zn2xxiv | 0.0 |
O3ix—Mg2—O3v | 170.8 (4) | Mg2xxiv—O6—Zn2ix | 96.5 (6) |
O3ix—Mg2—O5x | 80.2 (3) | Mg2xxiv—O6—V3xvii | 131.6 (3) |
O3ix—Mg2—O5iv | 106.1 (4) | Mg2ix—O6—Zn2xxiv | 96.5 (6) |
O3ix—Mg2—O6vi | 85.2 (4) | Mg2ix—O6—Zn2ix | 0.0 |
O3ix—Mg2—O6xi | 87.9 (4) | Mg2ix—O6—V3xvii | 131.6 (3) |
O3v—Mg2—O5x | 106.1 (4) | Zn2xxiv—O6—Zn2ix | 96.5 (6) |
O3v—Mg2—O5iv | 80.2 (3) | Zn2xxiv—O6—V3xvii | 131.6 (3) |
O3v—Mg2—O6vi | 87.9 (4) | Zn2ix—O6—V3xvii | 131.6 (3) |
O3v—Mg2—O6xi | 85.2 (4) | Mg1xxiv—O7—Mg1v | 96.4 (6) |
O5x—Mg2—O5iv | 97.3 (5) | Mg1xxiv—O7—Zn1xxiv | 0.0 |
O5x—Mg2—O6vi | 164.7 (4) | Mg1xxiv—O7—Zn1v | 96.4 (6) |
O5x—Mg2—O6xi | 91.2 (4) | Mg1xxiv—O7—V2xxv | 109.8 (4) |
O5iv—Mg2—O6vi | 91.2 (4) | Mg1xxiv—O7—V2xvii | 120.3 (4) |
O5iv—Mg2—O6xi | 164.7 (4) | Mg1v—O7—Zn1xxiv | 96.4 (6) |
O6vi—Mg2—O6xi | 83.5 (6) | Mg1v—O7—Zn1v | 0.0 |
O3iv—Zn1—O4iv | 93.5 (3) | Mg1v—O7—V2xxv | 109.8 (4) |
O3iv—Zn1—O5v | 84.3 (3) | Mg1v—O7—V2xvii | 120.3 (4) |
O3iv—Zn1—O7vi | 103.6 (5) | Zn1xxiv—O7—Zn1v | 96.4 (6) |
O3iv—Zn1—O8vi | 167.9 (4) | Zn1xxiv—O7—V2xxv | 109.8 (4) |
O4iv—Zn1—O5v | 114.4 (4) | Zn1xxiv—O7—V2xvii | 120.3 (4) |
O4iv—Zn1—O7vi | 128.8 (4) | Zn1v—O7—V2xxv | 109.8 (4) |
O4iv—Zn1—O8vi | 94.1 (4) | Zn1v—O7—V2xvii | 120.3 (4) |
O5v—Zn1—O7vi | 115.1 (4) | V2xxv—O7—V2xvii | 100.1 (7) |
O5v—Zn1—O8vi | 84.0 (5) | Mg1xxiv—O8—Mg1v | 94.1 (7) |
O7vi—Zn1—O8vi | 78.8 (4) | Mg1xxiv—O8—Zn1xxiv | 0.0 |
O5x—Zn2—O5iv | 97.3 (5) | Mg1xxiv—O8—Zn1v | 94.1 (7) |
O5x—Zn2—O6vi | 164.7 (4) | Mg1xxiv—O8—V1 | 132.7 (3) |
O5x—Zn2—O6xi | 91.2 (4) | Mg1v—O8—Zn1xxiv | 94.1 (7) |
O5iv—Zn2—O6vi | 91.2 (4) | Mg1v—O8—Zn1v | 0.0 |
O5iv—Zn2—O6xi | 164.7 (4) | Mg1v—O8—V1 | 132.7 (3) |
O6vi—Zn2—O6xi | 83.5 (6) | Zn1xxiv—O8—Zn1v | 94.1 (7) |
O2—V1—O3xii | 104.6 (3) | Zn1xxiv—O8—V1 | 132.7 (3) |
O2—V1—O3xiii | 104.6 (3) | Zn1v—O8—V1 | 132.7 (3) |
O2—V1—O8 | 104.2 (5) |
Symmetry codes: (i) x, −y+2, z; (ii) −x+1/2, −y+3/2, −z+1; (iii) −x+1, y+1, −z+1; (iv) −x+1/2, y+1/2, −z+1; (v) x, −y+1, z; (vi) x, y+1, z; (vii) x−1/2, −y+3/2, z; (viii) −x, −y+2, −z+1; (ix) −x, −y+1, −z+1; (x) x−1/2, y+1/2, z; (xi) −x, y+1, −z+1; (xii) −x, y, −z+1; (xiii) −x, −y, −z+1; (xiv) −x+1, y, −z+2; (xv) x, −y, z; (xvi) x, y, z+1; (xvii) −x+1, y, −z+1; (xviii) −x+1, y−1, −z+1; (xix) −x+1, −y+1, −z+1; (xx) −x+1, −y, −z+1; (xxi) −x, y, −z; (xxii) −x+1/2, y−1/2, −z+1; (xxiii) x+1/2, y−1/2, z; (xxiv) x, y−1, z; (xxv) x, y, z−1. |
Acknowledgements
This work was supported by the Oregon State University undergraduate internship program. We thank Dr S.-T. Hong at DGIST (Daegu Gyeongbuk Institute of Science and Technology) for assisting with the powder XRD data collection and for helpful discussions.
References
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chang, L. L. Y. & Wang, F. Y. (1988). J. Am. Ceram. Soc. 71, 689–693. CrossRef CAS Web of Science Google Scholar
Gopal, R. & Calvo, C. (1973). Can. J. Chem. 51, 1004–1009. CrossRef ICSD CAS Web of Science Google Scholar
Gopal, R. & Calvo, C. (1974). Acta Cryst. B30, 2491–2493. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Hormillosa, C., Healy, S., Stephen, T. & Brown, I. D. (1993). Bond Valence Calculator. Version 2.0. McMaster University, Canada. Google Scholar
Huang, J., Gu, Q. & Sleight, A. W. (1994). J. Solid State Chem. 110, 226–233. CrossRef ICSD CAS Web of Science Google Scholar
Knowles, K. M., Sil, A., Stöger, B. & Weil, M. (2018). Acta Cryst. C74, 1079–1087. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Knowles, K. M., Vickers, M. E., Sil, A., Han, Y.-H. & Jaffrenou, P. (2009). Acta Cryst. B65, 160–166. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Krasnenko, T. I., Zubkov, V. G. & Tjutinskaja, E. F. (2003). Kristallografiya, 48, 40–43. Google Scholar
Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR. 86–748 Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Launay, S., Mahe, P., Quarton, M. & Robert, F. (1992). J. Solid State Chem. 97, 305–313. CrossRef ICSD CAS Web of Science Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nielsen, U. G., Jakobsen, H. J., Skibsted, J. & Norby, P. (2001). J. Chem. Soc. Dalton Trans. pp. 3214–3218. Web of Science CrossRef ICSD Google Scholar
PANalytical (2011). X'Pert Data Collector and X'Pert High Score Plus. PANalytical BV, Almelo, The Netherlands. Google Scholar
Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600–601. Web of Science CrossRef IUCr Journals Google Scholar
Roisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118–123, Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.