research communications
7,12]docosane)copper(II) (3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane)copper(II) tetrabromide dihydrate, [Cu(C22H44N4)(H2O)2][Cu(C22H44N4)]Br4·2H2O
of diaqua(3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.0aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The II complex salt, [Cu(L)(H2O)2][Cu(L)]Br4·2H2O (L = 3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane, C22H44N4) has been determined using synchrotron radiation. The contains one half of a [Cu(L)(H2O)2]2+ cation, one half of a [Cu(L)]2+ cation (both completed by crystallographic inversion symmetry), two bromide anions and one water solvent molecule. The CuII atom in the first complex exists in a tetragonally distorted octahedral environment with the four N atoms of the macrocyclic ligand in equatorial and two aqua ligands in axial positions, whereas the CuII atom in the second complex exists in a square-planar environment defined by the four nitrogen atoms of the macrocyclic ligand. The two macrocyclic rings adopt the most stable trans-III configuration with normal Cu—N bond lengths from 2.016 (3) to 2.055 (3) Å and an axial Cu—O bond length of 2.658 (4) Å. The is stabilized by intermolecular hydrogen bonds involving the macrocycle N—H or C—H groups and the O—H groups of water molecules as donor groups, and the O atoms of water molecules and bromide anions as acceptor groups, giving rise to a one-dimensional network extending parallel to [100].
of the new double CuKeywords: crystal structure; macrocycle; double copper(II) complex; bromide; hydrogen bonding; synchrotron radiation.
CCDC reference: 2086077
1. Chemical context
According to recent investigations, 1,4,8,11-tetraazacyclotetradecane (cyclam) derivatives and their transition-metal complexes show antiviral, antimicrobial and antibacterial activities (Ronconi & Sadler, 2007; Ross et al., 2012; Alves et al., 2017, 2019; De Clercq, 2019). In particular, novel cyclams and their CuII and FeIII complexes have been studied as anticancer agents (Pilon et al., 2019). The design of new drugs with these moieties depends on the configuration, substituent and coordination behavior of the cyclam-based macrocycle (Valks et al., 2006).
3,14-Diethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane (C22H44N4, L) also contains a cyclam backbone with cyclohexane subunits and ethyl groups at the carbon atoms (Subhan & Choi, 2014). To the best of our knowledge, the preparation and for any double metal complex containing the macrocycle L have not been reported.
Here, we report on the synthesis and structural characterization of the new double CuII complex, namely, [Cu(L)(H2O)2][Cu(L)]Br4·2H2O, (I), to determine the configuration of the macrocycles and the bonding properties of the water molecules and bromide anions in the crystal.
2. Structural commentary
Two CuII complex cations lie across a crystallographic inversion center and hence the contains one half of the [Cu1(L)(H2O)2]2+ cation, one half of the [Cu2(L)]2+ cation, two bromide anions and one water solvent molecule. The structures of the molecular [Cu1(L)(H2O)2]Br2 and [Cu2(L)]Br2·2H2O moieties in (I) along with the atom-numbering scheme are shown in Figs. 1 and 2, respectively.
The macrocyclic skeletons adopt the most stable trans-III configuration. The Cu—N bond lengths range from 2.016 (3) to 2.055 (3) Å and are within the expected range. They are comparable to those observed in related complexes, e.g., [Cu(L)(ClO4)2] [2.0164 (18)–2.0403 (18) Å; Lim et al., 2006], [Cu(L)(NO3)2] [2.021 (2)–2.046 (2) Å; Choi et al., 2012], [Cu(L)(H2O)2](SCN)2 [2.014 (2)–2.047 (2) Å; Choi et al., 2012] and [Cu(L)(H2O)2]Cl2·4H2O [2.0240 (11)–2.0441 (3) Å; Moon & Choi, 2021b]. The environments of the CuII cations may be considered as square-planar and tetragonally distorted octahedral, depending upon whether or not the out-of-plane oxygen atoms of the water molecules are considered to be bonded to the copper cation. Interestingly, the Cu1II atom exists in a tetragonally distorted octahedral environment with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and an elongated axial Cu1—O1 [2.658 (4) Å] bond owing to the Jahn–Teller distortion of d9 copper(II) (Murphy & Hathaway, 2003) whereas the Cu2II atom exists in a square-planar environment with four nitrogen atoms from the macrocyclic ligand. The axial Cu1—O1 distance of 2.658 (4) Å in the [Cu1(L)(H2O)2]Br2 moiety is shorter than corresponding bond lengths in [Cu(L)(H2O)2]Cl2·4H2O [2.7866 (16) Å; Moon & Choi, 2021b], [Cu(L)(ClO4)2] [2.762 (2) Å; Lim et al., 2006], but it is longer than the distances in [Cu(L)(NO3)2] (2.506 (2) Å) or [Cu(L)(H2O)2](SCN)2 [2.569 (2) Å; Choi et al., 2012]. The two ethyl groups on the six-membered chelate rings and the two –(CH2)4– parts of the cyclohexane backbones in (I) are anti with respect to the macrocyclic plane. The five-membered chelate rings adopt a gauche conformation and the six-membered rings are in chair conformations. The cyclohexane rings are also in a chair conformation, with the N atoms in equatorial positions.
3. Supramolecular features
Extensive hydrogen-bonding interactions occur in the ; numerical details are given in Table 1. The supramolecular architecture involves hydrogen-bonding interactions involving the N—H or C—H groups of the macrocycle and O—H groups of the water molecules as donors, and the bromide anions as well as the O atoms of the water molecules as acceptors, resulting in a chain structure extending parallel to [100] (Fig. 3). The bromide anions remain outside the coordination sphere [Cu1⋯Br1 = 4.627 (2) Å and Cu2⋯Br2 = 3.887 (3) Å] and are hydrogen-bonded to the semi-coordinating and solvent water molecules through O—H⋯Br hydrogen bonds. The water solvent molecule also remains outside the coordination sphere of Cu2 [Cu2⋯O2 = 4.993 (5) Å].
of (I)4. Database survey
A search of the Cambridge Structural Database (Version 5.42, update 1, Feb 2021; Groom et al., 2016) indicated 19 hits for organic and transition-metal compounds containing the macrocycle (L, C22H44N4). The crystal structures of (L)·NaClO4 (Aree et al., 2018), [H2L](ClO4)2 (Aree et al., 2018), [H2L]Cl2·4H2O (Moon et al., 2013), [H2L](NO3)2·2H2O (Moon et al., 2019), [H4L]Cl4·4H2O (Moon & Choi, 2021a), [H4L]Br4·4H2O (Moon et al., 2021), [H4L](ClO4)4·2H2O (Moon et al., 2021), [Ni(L)(N3)2] (Lim et al., 2015), [Ni(L)(NCS)2] (Lim & Choi, 2017), {[Ni(L)]0.34[H2L]0.66}Cl2·2H2O (Moon et al., 2020) [Cu(L)(ClO4)2] (Lim et al., 2006), [Cu(L)(NO3)2] (Choi et al., 2012), [Cu(L)(H2O)2](SCN)2 (Choi et al., 2012) and [Cu(L)(H2O)2]Cl2·4H2O (Moon & Choi, 2021b) have been determined.
5. Synthesis and crystallization
Ethyl vinyl ketone (97%), trans-1,2-cyclohexanediamine (99%) and copper(II) bromide (99%) were purchased from Sigma-Aldrich and were used as received. All other chemicals were of analytical reagent grade. 3,14-Diethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane (L) was prepared according to a published procedure (Lim et al., 2006). A solution of the macrocycle L (0.184 g, 0.5 mmol) in 10 mL of water was added dropwise to a stirred solution of CuBr2 (0.113 g, 0.5 mmol) in 10 mL of water. The resulting solution was heated in a water bath for 1 h under stirring at 373 K. After cooling to 298 K, the pH was adjusted to 3.0 by the addition of 1.0 M HBr. The solution mixture was filtered. The filtrate was slowly evaporated at room temperature to yield octahedron-like purple crystals of (I) suitable for X-ray structural analysis.
6. Refinement
Crystal data, data collection and structure . All C- and N-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.99 Å, and with an N—H distance of 0.99 Å with Uiso(H) values of 1.2 and 1.5Ueq, respectively, of the parent atom. The hydrogen atoms of water molecules were assigned based on a difference-Fourier map, and were restrained using DFIX and DANG commands during the least-squares and with Uiso(H) values of 1.2Ueq of the oxygen atom.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2086077
https://doi.org/10.1107/S205698902100551X/wm5611sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100551X/wm5611Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski et al., 2003); data reduction: HKL3000sm (Otwinowski et al., 2003); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C22H44N4)(H2O)2][Cu(C22H44N4)]Br4·2H2O | Z = 1 |
Mr = 1248.00 | F(000) = 646 |
Triclinic, P1 | Dx = 1.534 Mg m−3 |
a = 8.0800 (16) Å | Synchrotron radiation, λ = 0.610 Å |
b = 10.380 (2) Å | Cell parameters from 74723 reflections |
c = 17.511 (4) Å | θ = 0.4–33.7° |
α = 97.02 (3)° | µ = 2.53 mm−1 |
β = 92.91 (3)° | T = 220 K |
γ = 111.31 (3)° | Octahedron, purple |
V = 1350.8 (5) Å3 | 0.08 × 0.07 × 0.07 mm |
Rayonix MX225HS CCD area detector diffractometer | 5311 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.023 |
ω scan | θmax = 25.0°, θmin = 1.8° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski et al., 2003) | h = −11→11 |
Tmin = 0.748, Tmax = 1.000 | k = −14→14 |
14201 measured reflections | l = −24→24 |
7233 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.056 | w = 1/[σ2(Fo2) + (0.0966P)2 + 0.5261P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.176 | (Δ/σ)max = 0.001 |
S = 1.11 | Δρmax = 0.83 e Å−3 |
7233 reflections | Δρmin = −1.03 e Å−3 |
298 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
6 restraints | Extinction coefficient: 0.013 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.000000 | 0.500000 | 0.500000 | 0.04817 (16) | |
Br1 | 0.40255 (6) | 0.30972 (5) | 0.58152 (3) | 0.08044 (18) | |
O1 | 0.2393 (4) | 0.4149 (3) | 0.43417 (19) | 0.0710 (7) | |
H1O1 | 0.345 (4) | 0.481 (5) | 0.418 (3) | 0.107* | |
H2O1 | 0.279 (6) | 0.364 (5) | 0.468 (3) | 0.107* | |
N1 | 0.0907 (4) | 0.4722 (3) | 0.60369 (15) | 0.0481 (6) | |
H1 | 0.186408 | 0.435706 | 0.594109 | 0.058* | |
N2 | 0.1920 (4) | 0.6952 (3) | 0.50070 (15) | 0.0469 (6) | |
H2 | 0.294565 | 0.675493 | 0.481196 | 0.056* | |
C1 | −0.1334 (4) | 0.2406 (3) | 0.56209 (19) | 0.0479 (6) | |
H1A | −0.035569 | 0.211837 | 0.544820 | 0.057* | |
C2 | −0.2814 (5) | 0.1125 (4) | 0.5827 (2) | 0.0555 (8) | |
H2A | −0.386524 | 0.135435 | 0.592531 | 0.067* | |
H2B | −0.315628 | 0.036372 | 0.538885 | 0.067* | |
C3 | −0.2204 (6) | 0.0640 (4) | 0.6541 (2) | 0.0637 (9) | |
H3A | −0.123680 | 0.031181 | 0.642501 | 0.076* | |
H3B | −0.319937 | −0.014341 | 0.668053 | 0.076* | |
C4 | −0.1551 (6) | 0.1834 (4) | 0.7222 (2) | 0.0656 (10) | |
H4A | −0.252788 | 0.214278 | 0.734951 | 0.079* | |
H4B | −0.117270 | 0.150539 | 0.767590 | 0.079* | |
C5 | 0.0004 (5) | 0.3053 (4) | 0.7018 (2) | 0.0584 (8) | |
H5A | 0.099526 | 0.275150 | 0.690634 | 0.070* | |
H5B | 0.041854 | 0.380993 | 0.745878 | 0.070* | |
C6 | −0.0565 (4) | 0.3587 (4) | 0.63125 (19) | 0.0493 (7) | |
H6 | −0.150780 | 0.394678 | 0.644934 | 0.059* | |
C7 | 0.1707 (5) | 0.5996 (4) | 0.66206 (19) | 0.0556 (8) | |
H7A | 0.214645 | 0.575159 | 0.709233 | 0.067* | |
H7B | 0.078680 | 0.636960 | 0.675206 | 0.067* | |
C8 | 0.3238 (5) | 0.7114 (4) | 0.6327 (2) | 0.0545 (8) | |
H8A | 0.399793 | 0.666842 | 0.608126 | 0.065* | |
H8B | 0.395973 | 0.778503 | 0.677232 | 0.065* | |
C9 | 0.2703 (5) | 0.7921 (4) | 0.57514 (19) | 0.0515 (7) | |
H9 | 0.381547 | 0.865674 | 0.564382 | 0.062* | |
C10 | 0.1486 (5) | 0.8650 (4) | 0.6047 (2) | 0.0571 (8) | |
H10A | 0.032181 | 0.794226 | 0.610545 | 0.069* | |
H10B | 0.129807 | 0.920869 | 0.566305 | 0.069* | |
C11 | 0.2237 (6) | 0.9604 (4) | 0.6822 (2) | 0.0664 (10) | |
H11A | 0.145410 | 1.009367 | 0.696510 | 0.100* | |
H11B | 0.341660 | 1.027751 | 0.677616 | 0.100* | |
H11C | 0.231823 | 0.904385 | 0.721720 | 0.100* | |
Cu2 | 0.500000 | 0.500000 | 1.000000 | 0.04751 (16) | |
Br2 | 0.16473 (6) | 0.61172 (5) | 0.88399 (3) | 0.07704 (17) | |
O2 | 0.9627 (5) | 0.3069 (4) | 0.9460 (2) | 0.0878 (10) | |
H1O2 | 0.919 (9) | 0.327 (6) | 0.994 (2) | 0.132* | |
H2O2 | 1.007 (9) | 0.394 (3) | 0.925 (3) | 0.132* | |
N3 | 0.4976 (4) | 0.4883 (3) | 0.88410 (16) | 0.0497 (6) | |
H3 | 0.399068 | 0.517512 | 0.867864 | 0.060* | |
N4 | 0.3160 (4) | 0.3051 (3) | 0.99739 (15) | 0.0487 (6) | |
H4 | 0.199482 | 0.313754 | 0.986331 | 0.058* | |
C12 | 0.6851 (5) | 0.7311 (4) | 0.92254 (19) | 0.0496 (7) | |
H12 | 0.580177 | 0.756481 | 0.911901 | 0.060* | |
C13 | 0.8522 (5) | 0.8535 (4) | 0.9107 (2) | 0.0584 (8) | |
H13A | 0.958363 | 0.832878 | 0.923957 | 0.070* | |
H13B | 0.859883 | 0.937737 | 0.945190 | 0.070* | |
C14 | 0.8480 (6) | 0.8801 (4) | 0.8269 (2) | 0.0627 (9) | |
H14A | 0.749448 | 0.910964 | 0.815617 | 0.075* | |
H14B | 0.959670 | 0.955208 | 0.819902 | 0.075* | |
C15 | 0.8242 (6) | 0.7492 (4) | 0.7708 (2) | 0.0627 (9) | |
H15A | 0.814854 | 0.768115 | 0.717548 | 0.075* | |
H15B | 0.929007 | 0.724031 | 0.778255 | 0.075* | |
C16 | 0.6574 (5) | 0.6279 (4) | 0.7832 (2) | 0.0604 (9) | |
H16A | 0.647929 | 0.543645 | 0.748224 | 0.072* | |
H16B | 0.551606 | 0.649503 | 0.770759 | 0.072* | |
C17 | 0.6630 (5) | 0.6001 (4) | 0.8667 (2) | 0.0508 (7) | |
H17 | 0.766123 | 0.572793 | 0.877565 | 0.061* | |
C18 | 0.4599 (5) | 0.3512 (4) | 0.8348 (2) | 0.0574 (8) | |
H18A | 0.563868 | 0.324513 | 0.840387 | 0.069* | |
H18B | 0.439538 | 0.360527 | 0.780421 | 0.069* | |
C19 | 0.2978 (5) | 0.2377 (4) | 0.8567 (2) | 0.0560 (8) | |
H19A | 0.265388 | 0.154862 | 0.817165 | 0.067* | |
H19B | 0.197839 | 0.269899 | 0.855880 | 0.067* | |
C20 | 0.3200 (5) | 0.1945 (4) | 0.9351 (2) | 0.0540 (7) | |
H20 | 0.215684 | 0.108375 | 0.937994 | 0.065* | |
C21 | 0.4868 (6) | 0.1613 (5) | 0.9475 (2) | 0.0662 (10) | |
H21A | 0.489639 | 0.129926 | 0.997909 | 0.079* | |
H21B | 0.592161 | 0.247111 | 0.948683 | 0.079* | |
C22 | 0.4980 (8) | 0.0487 (5) | 0.8849 (3) | 0.0800 (13) | |
H22A | 0.603614 | 0.028795 | 0.897506 | 0.120* | |
H22B | 0.504835 | 0.081991 | 0.835259 | 0.120* | |
H22C | 0.392525 | −0.035806 | 0.882202 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0540 (3) | 0.0392 (3) | 0.0440 (3) | 0.0098 (2) | 0.0002 (2) | 0.0051 (2) |
Br1 | 0.0674 (3) | 0.0817 (3) | 0.1076 (4) | 0.0363 (2) | 0.0237 (2) | 0.0386 (3) |
O1 | 0.0671 (16) | 0.0672 (19) | 0.0746 (19) | 0.0222 (15) | 0.0014 (13) | 0.0065 (14) |
N1 | 0.0503 (14) | 0.0427 (15) | 0.0453 (13) | 0.0111 (12) | 0.0022 (10) | 0.0053 (11) |
N2 | 0.0497 (13) | 0.0396 (14) | 0.0464 (14) | 0.0116 (11) | 0.0012 (10) | 0.0053 (10) |
C1 | 0.0501 (16) | 0.0405 (17) | 0.0506 (17) | 0.0138 (13) | 0.0032 (12) | 0.0084 (12) |
C2 | 0.0532 (18) | 0.0449 (19) | 0.063 (2) | 0.0113 (15) | 0.0034 (14) | 0.0128 (15) |
C3 | 0.062 (2) | 0.051 (2) | 0.070 (2) | 0.0087 (17) | −0.0014 (17) | 0.0190 (17) |
C4 | 0.074 (2) | 0.055 (2) | 0.057 (2) | 0.0088 (19) | −0.0002 (17) | 0.0183 (17) |
C5 | 0.067 (2) | 0.049 (2) | 0.0513 (18) | 0.0111 (17) | −0.0024 (15) | 0.0115 (15) |
C6 | 0.0504 (16) | 0.0464 (18) | 0.0465 (16) | 0.0129 (14) | 0.0033 (12) | 0.0073 (13) |
C7 | 0.066 (2) | 0.0471 (19) | 0.0436 (16) | 0.0117 (16) | −0.0014 (14) | 0.0041 (13) |
C8 | 0.0544 (17) | 0.048 (2) | 0.0526 (18) | 0.0101 (15) | −0.0027 (13) | 0.0065 (14) |
C9 | 0.0511 (16) | 0.0436 (18) | 0.0508 (17) | 0.0083 (14) | 0.0006 (13) | 0.0055 (13) |
C10 | 0.063 (2) | 0.051 (2) | 0.0533 (19) | 0.0195 (17) | 0.0014 (14) | 0.0007 (15) |
C11 | 0.073 (2) | 0.059 (2) | 0.056 (2) | 0.0163 (19) | 0.0005 (17) | −0.0066 (17) |
Cu2 | 0.0512 (3) | 0.0412 (3) | 0.0449 (3) | 0.0123 (2) | 0.0036 (2) | 0.0032 (2) |
Br2 | 0.0710 (3) | 0.0929 (4) | 0.0707 (3) | 0.0396 (3) | 0.00245 (19) | −0.0016 (2) |
O2 | 0.078 (2) | 0.106 (3) | 0.083 (2) | 0.040 (2) | 0.0122 (16) | 0.0070 (19) |
N3 | 0.0540 (14) | 0.0435 (15) | 0.0465 (14) | 0.0139 (12) | 0.0027 (11) | 0.0031 (11) |
N4 | 0.0523 (14) | 0.0417 (15) | 0.0467 (14) | 0.0123 (12) | 0.0025 (11) | 0.0033 (11) |
C12 | 0.0549 (17) | 0.0449 (18) | 0.0460 (16) | 0.0148 (14) | 0.0070 (12) | 0.0069 (13) |
C13 | 0.0596 (19) | 0.049 (2) | 0.059 (2) | 0.0106 (16) | 0.0079 (15) | 0.0075 (15) |
C14 | 0.074 (2) | 0.054 (2) | 0.058 (2) | 0.0171 (18) | 0.0160 (17) | 0.0136 (16) |
C15 | 0.074 (2) | 0.058 (2) | 0.0533 (19) | 0.0194 (19) | 0.0157 (16) | 0.0099 (16) |
C16 | 0.072 (2) | 0.056 (2) | 0.0469 (18) | 0.0171 (18) | 0.0079 (15) | 0.0062 (15) |
C17 | 0.0557 (17) | 0.0433 (18) | 0.0497 (17) | 0.0148 (15) | 0.0050 (13) | 0.0051 (13) |
C18 | 0.068 (2) | 0.048 (2) | 0.0477 (17) | 0.0136 (17) | 0.0071 (14) | 0.0002 (14) |
C19 | 0.063 (2) | 0.047 (2) | 0.0482 (17) | 0.0113 (16) | 0.0007 (14) | 0.0005 (14) |
C20 | 0.0619 (19) | 0.0423 (18) | 0.0491 (17) | 0.0120 (15) | 0.0019 (14) | −0.0002 (13) |
C21 | 0.084 (3) | 0.065 (2) | 0.056 (2) | 0.038 (2) | 0.0053 (18) | 0.0025 (17) |
C22 | 0.114 (4) | 0.076 (3) | 0.066 (3) | 0.055 (3) | 0.014 (2) | 0.005 (2) |
Cu1—N1i | 2.016 (3) | Cu2—N3 | 2.017 (3) |
Cu1—N1 | 2.016 (3) | Cu2—N3ii | 2.017 (3) |
Cu1—N2i | 2.055 (3) | Cu2—N4 | 2.023 (3) |
Cu1—N2 | 2.055 (3) | Cu2—N4ii | 2.023 (3) |
Cu1—O1 | 2.658 (4) | O2—H1O2 | 0.961 (10) |
O1—H1O1 | 0.958 (10) | O2—H2O2 | 0.963 (10) |
O1—H2O1 | 0.960 (10) | N3—C18 | 1.490 (4) |
N1—C7 | 1.481 (4) | N3—C17 | 1.492 (4) |
N1—C6 | 1.488 (4) | N3—H3 | 0.9900 |
N1—H1 | 0.9900 | N4—C20 | 1.494 (4) |
N2—C1i | 1.494 (4) | N4—C12ii | 1.495 (4) |
N2—C9 | 1.498 (4) | N4—H4 | 0.9900 |
N2—H2 | 0.9900 | C12—C17 | 1.523 (5) |
C1—C2 | 1.528 (5) | C12—C13 | 1.526 (5) |
C1—C6 | 1.537 (5) | C12—H12 | 0.9900 |
C1—H1A | 0.9900 | C13—C14 | 1.526 (5) |
C2—C3 | 1.528 (5) | C13—H13A | 0.9800 |
C2—H2A | 0.9800 | C13—H13B | 0.9800 |
C2—H2B | 0.9800 | C14—C15 | 1.522 (6) |
C3—C4 | 1.528 (6) | C14—H14A | 0.9800 |
C3—H3A | 0.9800 | C14—H14B | 0.9800 |
C3—H3B | 0.9800 | C15—C16 | 1.521 (5) |
C4—C5 | 1.518 (5) | C15—H15A | 0.9800 |
C4—H4A | 0.9800 | C15—H15B | 0.9800 |
C4—H4B | 0.9800 | C16—C17 | 1.526 (5) |
C5—C6 | 1.530 (5) | C16—H16A | 0.9800 |
C5—H5A | 0.9800 | C16—H16B | 0.9800 |
C5—H5B | 0.9800 | C17—H17 | 0.9900 |
C6—H6 | 0.9900 | C18—C19 | 1.514 (5) |
C7—C8 | 1.519 (5) | C18—H18A | 0.9800 |
C7—H7A | 0.9800 | C18—H18B | 0.9800 |
C7—H7B | 0.9800 | C19—C20 | 1.516 (5) |
C8—C9 | 1.525 (5) | C19—H19A | 0.9800 |
C8—H8A | 0.9800 | C19—H19B | 0.9800 |
C8—H8B | 0.9800 | C20—C21 | 1.520 (6) |
C9—C10 | 1.519 (5) | C20—H20 | 0.9900 |
C9—H9 | 0.9900 | C21—C22 | 1.533 (6) |
C10—C11 | 1.531 (5) | C21—H21A | 0.9800 |
C10—H10A | 0.9800 | C21—H21B | 0.9800 |
C10—H10B | 0.9800 | C22—H22A | 0.9700 |
C11—H11A | 0.9700 | C22—H22B | 0.9700 |
C11—H11B | 0.9700 | C22—H22C | 0.9700 |
C11—H11C | 0.9700 | ||
N1i—Cu1—N1 | 180.00 (7) | N3—Cu2—N3ii | 180.0 |
N1i—Cu1—N2i | 95.47 (11) | N3—Cu2—N4 | 95.18 (12) |
N1—Cu1—N2i | 84.53 (11) | N3ii—Cu2—N4 | 84.82 (12) |
N1i—Cu1—N2 | 84.53 (11) | N3—Cu2—N4ii | 84.82 (12) |
N1—Cu1—N2 | 95.47 (11) | N3ii—Cu2—N4ii | 95.18 (12) |
N2i—Cu1—N2 | 180.0 | N4—Cu2—N4ii | 180.0 |
H1O1—O1—H2O1 | 106 (2) | H1O2—O2—H2O2 | 106 (2) |
C7—N1—C6 | 113.3 (3) | C18—N3—C17 | 112.5 (3) |
C7—N1—Cu1 | 116.0 (2) | C18—N3—Cu2 | 120.2 (2) |
C6—N1—Cu1 | 107.52 (19) | C17—N3—Cu2 | 108.2 (2) |
C7—N1—H1 | 106.5 | C18—N3—H3 | 104.8 |
C6—N1—H1 | 106.5 | C17—N3—H3 | 104.8 |
Cu1—N1—H1 | 106.5 | Cu2—N3—H3 | 104.8 |
C1i—N2—C9 | 115.1 (3) | C20—N4—C12ii | 115.3 (3) |
C1i—N2—Cu1 | 107.68 (19) | C20—N4—Cu2 | 117.0 (2) |
C9—N2—Cu1 | 120.8 (2) | C12ii—N4—Cu2 | 108.3 (2) |
C1i—N2—H2 | 103.7 | C20—N4—H4 | 105.0 |
C9—N2—H2 | 103.7 | C12ii—N4—H4 | 105.0 |
Cu1—N2—H2 | 103.7 | Cu2—N4—H4 | 105.0 |
N2i—C1—C2 | 113.8 (3) | N4ii—C12—C17 | 107.6 (3) |
N2i—C1—C6 | 105.7 (3) | N4ii—C12—C13 | 113.6 (3) |
C2—C1—C6 | 112.5 (3) | C17—C12—C13 | 111.0 (3) |
N2i—C1—H1A | 108.2 | N4ii—C12—H12 | 108.1 |
C2—C1—H1A | 108.2 | C17—C12—H12 | 108.1 |
C6—C1—H1A | 108.2 | C13—C12—H12 | 108.1 |
C3—C2—C1 | 111.2 (3) | C12—C13—C14 | 110.7 (3) |
C3—C2—H2A | 109.4 | C12—C13—H13A | 109.5 |
C1—C2—H2A | 109.4 | C14—C13—H13A | 109.5 |
C3—C2—H2B | 109.4 | C12—C13—H13B | 109.5 |
C1—C2—H2B | 109.4 | C14—C13—H13B | 109.5 |
H2A—C2—H2B | 108.0 | H13A—C13—H13B | 108.1 |
C2—C3—C4 | 110.6 (3) | C15—C14—C13 | 111.5 (3) |
C2—C3—H3A | 109.5 | C15—C14—H14A | 109.3 |
C4—C3—H3A | 109.5 | C13—C14—H14A | 109.3 |
C2—C3—H3B | 109.5 | C15—C14—H14B | 109.3 |
C4—C3—H3B | 109.5 | C13—C14—H14B | 109.3 |
H3A—C3—H3B | 108.1 | H14A—C14—H14B | 108.0 |
C5—C4—C3 | 110.2 (3) | C16—C15—C14 | 110.8 (3) |
C5—C4—H4A | 109.6 | C16—C15—H15A | 109.5 |
C3—C4—H4A | 109.6 | C14—C15—H15A | 109.5 |
C5—C4—H4B | 109.6 | C16—C15—H15B | 109.5 |
C3—C4—H4B | 109.6 | C14—C15—H15B | 109.5 |
H4A—C4—H4B | 108.1 | H15A—C15—H15B | 108.1 |
C4—C5—C6 | 110.4 (3) | C15—C16—C17 | 111.0 (3) |
C4—C5—H5A | 109.6 | C15—C16—H16A | 109.4 |
C6—C5—H5A | 109.6 | C17—C16—H16A | 109.4 |
C4—C5—H5B | 109.6 | C15—C16—H16B | 109.4 |
C6—C5—H5B | 109.6 | C17—C16—H16B | 109.4 |
H5A—C5—H5B | 108.1 | H16A—C16—H16B | 108.0 |
N1—C6—C5 | 114.2 (3) | N3—C17—C12 | 106.1 (3) |
N1—C6—C1 | 106.3 (3) | N3—C17—C16 | 113.7 (3) |
C5—C6—C1 | 111.3 (3) | C12—C17—C16 | 110.6 (3) |
N1—C6—H6 | 108.3 | N3—C17—H17 | 108.7 |
C5—C6—H6 | 108.3 | C12—C17—H17 | 108.7 |
C1—C6—H6 | 108.3 | C16—C17—H17 | 108.7 |
N1—C7—C8 | 111.7 (3) | N3—C18—C19 | 111.5 (3) |
N1—C7—H7A | 109.3 | N3—C18—H18A | 109.3 |
C8—C7—H7A | 109.3 | C19—C18—H18A | 109.3 |
N1—C7—H7B | 109.3 | N3—C18—H18B | 109.3 |
C8—C7—H7B | 109.3 | C19—C18—H18B | 109.3 |
H7A—C7—H7B | 107.9 | H18A—C18—H18B | 108.0 |
C7—C8—C9 | 115.8 (3) | C18—C19—C20 | 115.6 (3) |
C7—C8—H8A | 108.3 | C18—C19—H19A | 108.4 |
C9—C8—H8A | 108.3 | C20—C19—H19A | 108.4 |
C7—C8—H8B | 108.3 | C18—C19—H19B | 108.4 |
C9—C8—H8B | 108.3 | C20—C19—H19B | 108.4 |
H8A—C8—H8B | 107.4 | H19A—C19—H19B | 107.4 |
N2—C9—C10 | 112.3 (3) | N4—C20—C19 | 109.5 (3) |
N2—C9—C8 | 108.6 (3) | N4—C20—C21 | 111.4 (3) |
C10—C9—C8 | 114.4 (3) | C19—C20—C21 | 113.2 (3) |
N2—C9—H9 | 107.1 | N4—C20—H20 | 107.5 |
C10—C9—H9 | 107.1 | C19—C20—H20 | 107.5 |
C8—C9—H9 | 107.1 | C21—C20—H20 | 107.5 |
C9—C10—C11 | 112.9 (3) | C20—C21—C22 | 113.5 (4) |
C9—C10—H10A | 109.0 | C20—C21—H21A | 108.9 |
C11—C10—H10A | 109.0 | C22—C21—H21A | 108.9 |
C9—C10—H10B | 109.0 | C20—C21—H21B | 108.9 |
C11—C10—H10B | 109.0 | C22—C21—H21B | 108.9 |
H10A—C10—H10B | 107.8 | H21A—C21—H21B | 107.7 |
C10—C11—H11A | 109.5 | C21—C22—H22A | 109.5 |
C10—C11—H11B | 109.5 | C21—C22—H22B | 109.5 |
H11A—C11—H11B | 109.5 | H22A—C22—H22B | 109.5 |
C10—C11—H11C | 109.5 | C21—C22—H22C | 109.5 |
H11A—C11—H11C | 109.5 | H22A—C22—H22C | 109.5 |
H11B—C11—H11C | 109.5 | H22B—C22—H22C | 109.5 |
N2i—C1—C2—C3 | −172.3 (3) | N4ii—C12—C13—C14 | 177.4 (3) |
C6—C1—C2—C3 | −52.1 (4) | C17—C12—C13—C14 | 56.0 (4) |
C1—C2—C3—C4 | 55.5 (5) | C12—C13—C14—C15 | −55.6 (5) |
C2—C3—C4—C5 | −59.7 (5) | C13—C14—C15—C16 | 55.8 (5) |
C3—C4—C5—C6 | 59.7 (5) | C14—C15—C16—C17 | −56.3 (5) |
C7—N1—C6—C5 | −61.5 (4) | C18—N3—C17—C12 | −178.7 (3) |
Cu1—N1—C6—C5 | 169.1 (3) | Cu2—N3—C17—C12 | −43.5 (3) |
C7—N1—C6—C1 | 175.5 (3) | C18—N3—C17—C16 | 59.5 (4) |
Cu1—N1—C6—C1 | 46.0 (3) | Cu2—N3—C17—C16 | −165.4 (3) |
C4—C5—C6—N1 | −176.1 (3) | N4ii—C12—C17—N3 | 54.6 (3) |
C4—C5—C6—C1 | −55.7 (4) | C13—C12—C17—N3 | 179.5 (3) |
N2i—C1—C6—N1 | −58.0 (3) | N4ii—C12—C17—C16 | 178.3 (3) |
C2—C1—C6—N1 | 177.2 (3) | C13—C12—C17—C16 | −56.7 (4) |
N2i—C1—C6—C5 | 177.1 (3) | C15—C16—C17—N3 | 176.2 (3) |
C2—C1—C6—C5 | 52.3 (4) | C15—C16—C17—C12 | 56.9 (4) |
C6—N1—C7—C8 | 178.4 (3) | C17—N3—C18—C19 | 176.7 (3) |
Cu1—N1—C7—C8 | −56.6 (3) | Cu2—N3—C18—C19 | 47.4 (4) |
N1—C7—C8—C9 | 76.6 (4) | N3—C18—C19—C20 | −68.4 (4) |
C1i—N2—C9—C10 | 52.8 (4) | C12ii—N4—C20—C19 | 173.1 (3) |
Cu1—N2—C9—C10 | −79.2 (3) | Cu2—N4—C20—C19 | −57.8 (3) |
C1i—N2—C9—C8 | −179.8 (3) | C12ii—N4—C20—C21 | −60.9 (4) |
Cu1—N2—C9—C8 | 48.3 (3) | Cu2—N4—C20—C21 | 68.2 (4) |
C7—C8—C9—N2 | −69.3 (4) | C18—C19—C20—N4 | 74.7 (4) |
C7—C8—C9—C10 | 57.0 (4) | C18—C19—C20—C21 | −50.3 (4) |
N2—C9—C10—C11 | 177.9 (3) | N4—C20—C21—C22 | −179.8 (4) |
C8—C9—C10—C11 | 53.6 (4) | C19—C20—C21—C22 | −55.8 (5) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···Br1iii | 0.96 (1) | 2.38 (2) | 3.299 (3) | 160 (5) |
O1—H2O1···Br1 | 0.96 (1) | 2.39 (2) | 3.314 (3) | 161 (5) |
O2—H1O2···Br2ii | 0.96 (1) | 2.35 (1) | 3.311 (4) | 176 (6) |
O2—H2O2···Br2iv | 0.96 (1) | 2.38 (2) | 3.335 (4) | 170 (6) |
N1—H1···Br1 | 0.99 | 2.54 | 3.517 (3) | 171 |
N2—H2···O1 | 0.99 | 2.59 | 3.161 (4) | 116 |
N3—H3···Br2 | 0.99 | 2.44 | 3.373 (3) | 157 |
N4—H4···O2v | 0.99 | 1.98 | 2.957 (5) | 169 |
C10—H10A···O1i | 0.98 | 2.47 | 3.378 (5) | 154 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z; (v) x−1, y, z. |
Funding information
This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.
References
Alves, L. G., Pinheiro, P. F., Feliciano, J. R., Dâmaso, D. P., Leitão, J. H. & Martins, A. M. (2017). Int. J. Antimicrob. Agents, 49, 646–649. CrossRef CAS PubMed Google Scholar
Alves, L. G., Portel, J. F., Sousa, S. A., Ferreira, O., Almada, S., Silva, E. R., Martins, A. M. & Leitão, J. H. (2019). Antibiotics, 8, 224. CrossRef Google Scholar
Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86–93. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481–3491. Web of Science CSD CrossRef CAS Google Scholar
De Clercq, E. (2019). J. Med. Chem. 62, 7322–7339. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361–368. Web of Science CSD CrossRef CAS Google Scholar
Lim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43–48. Web of Science CSD CrossRef CAS Google Scholar
Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moon, D. & Choi, J.-H. (2021a). Acta Cryst. E77, 213–216. CrossRef IUCr Journals Google Scholar
Moon, D. & Choi, J.-H. (2021b). Acta Cryst. E77, 569–572. CrossRef IUCr Journals Google Scholar
Moon, D., Jeon, J. & Choi, J.-H. (2020). J. Coord. Chem. 73, 2029–2041. Web of Science CSD CrossRef CAS Google Scholar
Moon, D., Jeon, J. & Choi, J.-H. (2021). J. Mol. Struct. 1242, 130790. Google Scholar
Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921–924. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620. CSD CrossRef IUCr Journals Google Scholar
Murphy, B. & Hathaway, B. J. (2003). Coord. Chem. Rev. 243, 237–262. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pilon, A., Lorenzo, J., Rodriguez–Calado, S., Adão, P., Martins, A. M., Valente, A. & Alves, L. G. (2019). ChemMedChem, 14, 770–778. CrossRef CAS PubMed Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648. Web of Science CrossRef CAS Google Scholar
Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Subhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410–415. Web of Science CSD CrossRef CAS Google Scholar
Valks, G. C., McRobbie, G., Lewis, E. A., Hubin, T. J., Hunter, T. M., Sadler, P. J., Pannecouque, C., De Clercq, E. & Archibald, S. J. (2006). J. Med. Chem. 49, 6162–6165. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.