research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­(3,14-di­ethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosa­ne)copper(II) (3,14-di­ethyl-2,6,13,17-tetra­aza­tri­cyclo[16.4.0.07,12]docosa­ne)copper(II) tetra­bromide dihydrate, [Cu(C22H44N4)(H2O)2][Cu(C22H44N4)]Br4·2H2O

crossmark logo

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 May 2021; accepted 26 May 2021; online 28 May 2021)

The crystal structure of the new double CuII complex salt, [Cu(L)(H2O)2][Cu(L)]Br4·2H2O (L = 3,14-diethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosane, C22H44N4) has been determined using synchrotron radiation. The asymmetric unit contains one half of a [Cu(L)(H2O)2]2+ cation, one half of a [Cu(L)]2+ cation (both completed by crystallographic inversion symmetry), two bromide anions and one water solvent mol­ecule. The CuII atom in the first complex exists in a tetra­gonally distorted octa­hedral environment with the four N atoms of the macrocyclic ligand in equatorial and two aqua ligands in axial positions, whereas the CuII atom in the second complex exists in a square-planar environment defined by the four nitro­gen atoms of the macrocyclic ligand. The two macrocyclic rings adopt the most stable trans-III configuration with normal Cu—N bond lengths from 2.016 (3) to 2.055 (3) Å and an axial Cu—O bond length of 2.658 (4) Å. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the macrocycle N—H or C—H groups and the O—H groups of water mol­ecules as donor groups, and the O atoms of water mol­ecules and bromide anions as acceptor groups, giving rise to a one-dimensional network extending parallel to [100].

1. Chemical context

According to recent investigations, 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) derivatives and their transition-metal complexes show anti­viral, anti­microbial and anti­bacterial activities (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]; Alves et al., 2017[Alves, L. G., Pinheiro, P. F., Feliciano, J. R., Dâmaso, D. P., Leitão, J. H. & Martins, A. M. (2017). Int. J. Antimicrob. Agents, 49, 646-649.], 2019[Alves, L. G., Portel, J. F., Sousa, S. A., Ferreira, O., Almada, S., Silva, E. R., Martins, A. M. & Leitão, J. H. (2019). Antibiotics, 8, 224.]; De Clercq, 2019[De Clercq, E. (2019). J. Med. Chem. 62, 7322-7339.]). In particular, novel cyclams and their CuII and FeIII complexes have been studied as anti­cancer agents (Pilon et al., 2019[Pilon, A., Lorenzo, J., Rodriguez-Calado, S., Adão, P., Martins, A. M., Valente, A. & Alves, L. G. (2019). ChemMedChem, 14, 770-778.]). The design of new drugs with these moieties depends on the configuration, substituent and coordination behavior of the cyclam-based macrocycle (Valks et al., 2006[Valks, G. C., McRobbie, G., Lewis, E. A., Hubin, T. J., Hunter, T. M., Sadler, P. J., Pannecouque, C., De Clercq, E. & Archibald, S. J. (2006). J. Med. Chem. 49, 6162-6165.]).

3,14-Diethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)doco­sane (C22H44N4, L) also contains a cyclam backbone with cyclo­hexane subunits and ethyl groups at the carbon atoms (Subhan & Choi, 2014[Subhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410-415.]). To the best of our knowledge, the preparation and crystal structure for any double metal complex containing the macrocycle L have not been reported.

[Scheme 1]

Here, we report on the synthesis and structural characterization of the new double CuII complex, namely, [Cu(L)(H2O)2][Cu(L)]Br4·2H2O, (I)[link], to determine the configuration of the macrocycles and the bonding properties of the water mol­ecules and bromide anions in the crystal.

2. Structural commentary

Two CuII complex cations lie across a crystallographic inversion center and hence the asymmetric unit contains one half of the [Cu1(L)(H2O)2]2+ cation, one half of the [Cu2(L)]2+ cation, two bromide anions and one water solvent mol­ecule. The structures of the mol­ecular [Cu1(L)(H2O)2]Br2 and [Cu2(L)]Br2·2H2O moieties in (I)[link] along with the atom-numbering scheme are shown in Figs. 1[link] and 2[link], respectively.

[Figure 1]
Figure 1
Mol­ecular structure of the [Cu1(L)(H2O)2]Br2 moiety in (I)[link], drawn with displacement ellipsoids at the 20% probability level. Dashed lines represent hydrogen bonding inter­actions and primed atoms are related by the symmetry operation (−x, −y + 1, −z + 1).
[Figure 2]
Figure 2
Mol­ecular structure of the [Cu2(L)]Br2·2H2O moiety in (I)[link], drawn with displacement ellipsoids at the 20% probability level. Dashed lines represent hydrogen bonding inter­actions and primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z + 2).

The macrocyclic skeletons adopt the most stable trans-III configuration. The Cu—N bond lengths range from 2.016 (3) to 2.055 (3) Å and are within the expected range. They are comparable to those observed in related complexes, e.g., [Cu(L)(ClO4)2] [2.0164 (18)–2.0403 (18) Å; Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]], [Cu(L)(NO3)2] [2.021 (2)–2.046 (2) Å; Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]], [Cu(L)(H2O)2](SCN)2 [2.014 (2)–2.047 (2) Å; Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]] and [Cu(L)(H2O)2]Cl2·4H2O [2.0240 (11)–2.0441 (3) Å; Moon & Choi, 2021b[Moon, D. & Choi, J.-H. (2021b). Acta Cryst. E77, 569-572.]]. The environments of the CuII cations may be considered as square-planar and tetra­gonally distorted octa­hedral, depending upon whether or not the out-of-plane oxygen atoms of the water mol­ecules are considered to be bonded to the copper cation. Inter­estingly, the Cu1II atom exists in a tetra­gonally distorted octa­hedral environment with four nitro­gen atoms from the macrocyclic ligand in the equatorial plane and an elongated axial Cu1—O1 [2.658 (4) Å] bond owing to the Jahn–Teller distortion of d9 copper(II) (Murphy & Hathaway, 2003[Murphy, B. & Hathaway, B. J. (2003). Coord. Chem. Rev. 243, 237-262.]) whereas the Cu2II atom exists in a square-planar environment with four nitro­gen atoms from the macrocyclic ligand. The axial Cu1—O1 distance of 2.658 (4) Å in the [Cu1(L)(H2O)2]Br2 moiety is shorter than corresponding bond lengths in [Cu(L)(H2O)2]Cl2·4H2O [2.7866 (16) Å; Moon & Choi, 2021b[Moon, D. & Choi, J.-H. (2021b). Acta Cryst. E77, 569-572.]], [Cu(L)(ClO4)2] [2.762 (2) Å; Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]], but it is longer than the distances in [Cu(L)(NO3)2] (2.506 (2) Å) or [Cu(L)(H2O)2](SCN)2 [2.569 (2) Å; Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]]. The two ethyl groups on the six-membered chelate rings and the two –(CH2)4– parts of the cyclo­hexane backbones in (I)[link] are anti with respect to the macrocyclic plane. The five-membered chelate rings adopt a gauche conformation and the six-membered rings are in chair conformations. The cyclo­hexane rings are also in a chair conformation, with the N atoms in equatorial positions.

3. Supra­molecular features

Extensive hydrogen-bonding inter­actions occur in the crystal structure of (I)[link]; numerical details are given in Table 1[link]. The supra­molecular architecture involves hydrogen-bonding inter­actions involving the N—H or C—H groups of the macrocycle and O—H groups of the water mol­ecules as donors, and the bromide anions as well as the O atoms of the water mol­ecules as acceptors, resulting in a chain structure extending parallel to [100] (Fig. 3[link]). The bromide anions remain outside the coordination sphere [Cu1⋯Br1 = 4.627 (2) Å and Cu2⋯Br2 = 3.887 (3) Å] and are hydrogen-bonded to the semi-coordinating and solvent water mol­ecules through O—H⋯Br hydrogen bonds. The water solvent mol­ecule also remains outside the coordination sphere of Cu2 [Cu2⋯O2 = 4.993 (5) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯Br1i 0.96 (1) 2.38 (2) 3.299 (3) 160 (5)
O1—H2O1⋯Br1 0.96 (1) 2.39 (2) 3.314 (3) 161 (5)
O2—H1O2⋯Br2ii 0.96 (1) 2.35 (1) 3.311 (4) 176 (6)
O2—H2O2⋯Br2iii 0.96 (1) 2.38 (2) 3.335 (4) 170 (6)
N1—H1⋯Br1 0.99 2.54 3.517 (3) 171
N2—H2⋯O1 0.99 2.59 3.161 (4) 116
N3—H3⋯Br2 0.99 2.44 3.373 (3) 157
N4—H4⋯O2iv 0.99 1.98 2.957 (5) 169
C10—H10A⋯O1v 0.98 2.47 3.378 (5) 154
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+2]; (iii) x+1, y, z; (iv) [x-1, y, z]; (v) [-x, -y+1, -z+1].
[Figure 3]
Figure 3
Crystal packing in (I)[link], viewed perpendicular to the bc plane. Dashed lines represent O—H⋯Br (cyan), N—H⋯Br (orange), N—H⋯O (pink), and C—H⋯O (violet) hydrogen-bonding inter­actions, respectively. C-bound H atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.42, update 1, Feb 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 19 hits for organic and transition-metal compounds containing the macrocycle (L, C22H44N4). The crystal structures of (L)·NaClO4 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [H2L](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [H2L]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]), [H2L](NO3)2·2H2O (Moon et al., 2019[Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921-924.]), [H4L]Cl4·4H2O (Moon & Choi, 2021a[Moon, D. & Choi, J.-H. (2021a). Acta Cryst. E77, 213-216.]), [H4L]Br4·4H2O (Moon et al., 2021[Moon, D., Jeon, J. & Choi, J.-H. (2021). J. Mol. Struct. 1242, 130790.]), [H4L](ClO4)4·2H2O (Moon et al., 2021[Moon, D., Jeon, J. & Choi, J.-H. (2021). J. Mol. Struct. 1242, 130790.]), [Ni(L)(N3)2] (Lim et al., 2015[Lim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43-48.]), [Ni(L)(NCS)2] (Lim & Choi, 2017[Lim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361-368.]), {[Ni(L)]0.34[H2L]0.66}Cl2·2H2O (Moon et al., 2020[Moon, D., Jeon, J. & Choi, J.-H. (2020). J. Coord. Chem. 73, 2029-2041.]) [Cu(L)(ClO4)2] (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]), [Cu(L)(NO3)2] (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]), [Cu(L)(H2O)2](SCN)2 (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481-3491.]) and [Cu(L)(H2O)2]Cl2·4H2O (Moon & Choi, 2021b[Moon, D. & Choi, J.-H. (2021b). Acta Cryst. E77, 569-572.]) have been determined.

5. Synthesis and crystallization

Ethyl vinyl ketone (97%), trans-1,2-cyclo­hexa­nedi­amine (99%) and copper(II) bromide (99%) were purchased from Sigma-Aldrich and were used as received. All other chemicals were of analytical reagent grade. 3,14-Diethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane (L) was prepared according to a published procedure (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]). A solution of the macrocycle L (0.184 g, 0.5 mmol) in 10 mL of water was added dropwise to a stirred solution of CuBr2 (0.113 g, 0.5 mmol) in 10 mL of water. The resulting solution was heated in a water bath for 1 h under stirring at 373 K. After cooling to 298 K, the pH was adjusted to 3.0 by the addition of 1.0 M HBr. The solution mixture was filtered. The filtrate was slowly evap­orated at room temperature to yield octa­hedron-like purple crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C- and N-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.99 Å, and with an N—H distance of 0.99 Å with Uiso(H) values of 1.2 and 1.5Ueq, respectively, of the parent atom. The hydrogen atoms of water mol­ecules were assigned based on a difference-Fourier map, and were restrained using DFIX and DANG commands during the least-squares refinement and with Uiso(H) values of 1.2Ueq of the oxygen atom.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C22H44N4)(H2O)2][Cu(C22H44N4)]Br4·2H2O
Mr 1248.00
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 220
a, b, c (Å) 8.0800 (16), 10.380 (2), 17.511 (4)
α, β, γ (°) 97.02 (3), 92.91 (3), 111.31 (3)
V3) 1350.8 (5)
Z 1
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 2.53
Crystal size (mm) 0.08 × 0.07 × 0.07
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.748, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14201, 7233, 5311
Rint 0.023
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.176, 1.11
No. of reflections 7233
No. of parameters 298
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.83, −1.03
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski et al., 2003); data reduction: HKL3000sm (Otwinowski et al., 2003); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaqua(3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane)copper(II) (3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane)copper(II) tetrabromide dihydrate top
Crystal data top
[Cu(C22H44N4)(H2O)2][Cu(C22H44N4)]Br4·2H2OZ = 1
Mr = 1248.00F(000) = 646
Triclinic, P1Dx = 1.534 Mg m3
a = 8.0800 (16) ÅSynchrotron radiation, λ = 0.610 Å
b = 10.380 (2) ÅCell parameters from 74723 reflections
c = 17.511 (4) Åθ = 0.4–33.7°
α = 97.02 (3)°µ = 2.53 mm1
β = 92.91 (3)°T = 220 K
γ = 111.31 (3)°Octahedron, purple
V = 1350.8 (5) Å30.08 × 0.07 × 0.07 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
5311 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.023
ω scanθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski et al., 2003)
h = 1111
Tmin = 0.748, Tmax = 1.000k = 1414
14201 measured reflectionsl = 2424
7233 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0966P)2 + 0.5261P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.176(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.83 e Å3
7233 reflectionsΔρmin = 1.03 e Å3
298 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.013 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.0000000.5000000.5000000.04817 (16)
Br10.40255 (6)0.30972 (5)0.58152 (3)0.08044 (18)
O10.2393 (4)0.4149 (3)0.43417 (19)0.0710 (7)
H1O10.345 (4)0.481 (5)0.418 (3)0.107*
H2O10.279 (6)0.364 (5)0.468 (3)0.107*
N10.0907 (4)0.4722 (3)0.60369 (15)0.0481 (6)
H10.1864080.4357060.5941090.058*
N20.1920 (4)0.6952 (3)0.50070 (15)0.0469 (6)
H20.2945650.6754930.4811960.056*
C10.1334 (4)0.2406 (3)0.56209 (19)0.0479 (6)
H1A0.0355690.2118370.5448200.057*
C20.2814 (5)0.1125 (4)0.5827 (2)0.0555 (8)
H2A0.3865240.1354350.5925310.067*
H2B0.3156280.0363720.5388850.067*
C30.2204 (6)0.0640 (4)0.6541 (2)0.0637 (9)
H3A0.1236800.0311810.6425010.076*
H3B0.3199370.0143410.6680530.076*
C40.1551 (6)0.1834 (4)0.7222 (2)0.0656 (10)
H4A0.2527880.2142780.7349510.079*
H4B0.1172700.1505390.7675900.079*
C50.0004 (5)0.3053 (4)0.7018 (2)0.0584 (8)
H5A0.0995260.2751500.6906340.070*
H5B0.0418540.3809930.7458780.070*
C60.0565 (4)0.3587 (4)0.63125 (19)0.0493 (7)
H60.1507800.3946780.6449340.059*
C70.1707 (5)0.5996 (4)0.66206 (19)0.0556 (8)
H7A0.2146450.5751590.7092330.067*
H7B0.0786800.6369600.6752060.067*
C80.3238 (5)0.7114 (4)0.6327 (2)0.0545 (8)
H8A0.3997930.6668420.6081260.065*
H8B0.3959730.7785030.6772320.065*
C90.2703 (5)0.7921 (4)0.57514 (19)0.0515 (7)
H90.3815470.8656740.5643820.062*
C100.1486 (5)0.8650 (4)0.6047 (2)0.0571 (8)
H10A0.0321810.7942260.6105450.069*
H10B0.1298070.9208690.5663050.069*
C110.2237 (6)0.9604 (4)0.6822 (2)0.0664 (10)
H11A0.1454101.0093670.6965100.100*
H11B0.3416601.0277510.6776160.100*
H11C0.2318230.9043850.7217200.100*
Cu20.5000000.5000001.0000000.04751 (16)
Br20.16473 (6)0.61172 (5)0.88399 (3)0.07704 (17)
O20.9627 (5)0.3069 (4)0.9460 (2)0.0878 (10)
H1O20.919 (9)0.327 (6)0.994 (2)0.132*
H2O21.007 (9)0.394 (3)0.925 (3)0.132*
N30.4976 (4)0.4883 (3)0.88410 (16)0.0497 (6)
H30.3990680.5175120.8678640.060*
N40.3160 (4)0.3051 (3)0.99739 (15)0.0487 (6)
H40.1994820.3137540.9863310.058*
C120.6851 (5)0.7311 (4)0.92254 (19)0.0496 (7)
H120.5801770.7564810.9119010.060*
C130.8522 (5)0.8535 (4)0.9107 (2)0.0584 (8)
H13A0.9583630.8328780.9239570.070*
H13B0.8598830.9377370.9451900.070*
C140.8480 (6)0.8801 (4)0.8269 (2)0.0627 (9)
H14A0.7494480.9109640.8156170.075*
H14B0.9596700.9552080.8199020.075*
C150.8242 (6)0.7492 (4)0.7708 (2)0.0627 (9)
H15A0.8148540.7681150.7175480.075*
H15B0.9290070.7240310.7782550.075*
C160.6574 (5)0.6279 (4)0.7832 (2)0.0604 (9)
H16A0.6479290.5436450.7482240.072*
H16B0.5516060.6495030.7707590.072*
C170.6630 (5)0.6001 (4)0.8667 (2)0.0508 (7)
H170.7661230.5727930.8775650.061*
C180.4599 (5)0.3512 (4)0.8348 (2)0.0574 (8)
H18A0.5638680.3245130.8403870.069*
H18B0.4395380.3605270.7804210.069*
C190.2978 (5)0.2377 (4)0.8567 (2)0.0560 (8)
H19A0.2653880.1548620.8171650.067*
H19B0.1978390.2698990.8558800.067*
C200.3200 (5)0.1945 (4)0.9351 (2)0.0540 (7)
H200.2156840.1083750.9379940.065*
C210.4868 (6)0.1613 (5)0.9475 (2)0.0662 (10)
H21A0.4896390.1299260.9979090.079*
H21B0.5921610.2471110.9486830.079*
C220.4980 (8)0.0487 (5)0.8849 (3)0.0800 (13)
H22A0.6036140.0287950.8975060.120*
H22B0.5048350.0819910.8352590.120*
H22C0.3925250.0358060.8822020.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0540 (3)0.0392 (3)0.0440 (3)0.0098 (2)0.0002 (2)0.0051 (2)
Br10.0674 (3)0.0817 (3)0.1076 (4)0.0363 (2)0.0237 (2)0.0386 (3)
O10.0671 (16)0.0672 (19)0.0746 (19)0.0222 (15)0.0014 (13)0.0065 (14)
N10.0503 (14)0.0427 (15)0.0453 (13)0.0111 (12)0.0022 (10)0.0053 (11)
N20.0497 (13)0.0396 (14)0.0464 (14)0.0116 (11)0.0012 (10)0.0053 (10)
C10.0501 (16)0.0405 (17)0.0506 (17)0.0138 (13)0.0032 (12)0.0084 (12)
C20.0532 (18)0.0449 (19)0.063 (2)0.0113 (15)0.0034 (14)0.0128 (15)
C30.062 (2)0.051 (2)0.070 (2)0.0087 (17)0.0014 (17)0.0190 (17)
C40.074 (2)0.055 (2)0.057 (2)0.0088 (19)0.0002 (17)0.0183 (17)
C50.067 (2)0.049 (2)0.0513 (18)0.0111 (17)0.0024 (15)0.0115 (15)
C60.0504 (16)0.0464 (18)0.0465 (16)0.0129 (14)0.0033 (12)0.0073 (13)
C70.066 (2)0.0471 (19)0.0436 (16)0.0117 (16)0.0014 (14)0.0041 (13)
C80.0544 (17)0.048 (2)0.0526 (18)0.0101 (15)0.0027 (13)0.0065 (14)
C90.0511 (16)0.0436 (18)0.0508 (17)0.0083 (14)0.0006 (13)0.0055 (13)
C100.063 (2)0.051 (2)0.0533 (19)0.0195 (17)0.0014 (14)0.0007 (15)
C110.073 (2)0.059 (2)0.056 (2)0.0163 (19)0.0005 (17)0.0066 (17)
Cu20.0512 (3)0.0412 (3)0.0449 (3)0.0123 (2)0.0036 (2)0.0032 (2)
Br20.0710 (3)0.0929 (4)0.0707 (3)0.0396 (3)0.00245 (19)0.0016 (2)
O20.078 (2)0.106 (3)0.083 (2)0.040 (2)0.0122 (16)0.0070 (19)
N30.0540 (14)0.0435 (15)0.0465 (14)0.0139 (12)0.0027 (11)0.0031 (11)
N40.0523 (14)0.0417 (15)0.0467 (14)0.0123 (12)0.0025 (11)0.0033 (11)
C120.0549 (17)0.0449 (18)0.0460 (16)0.0148 (14)0.0070 (12)0.0069 (13)
C130.0596 (19)0.049 (2)0.059 (2)0.0106 (16)0.0079 (15)0.0075 (15)
C140.074 (2)0.054 (2)0.058 (2)0.0171 (18)0.0160 (17)0.0136 (16)
C150.074 (2)0.058 (2)0.0533 (19)0.0194 (19)0.0157 (16)0.0099 (16)
C160.072 (2)0.056 (2)0.0469 (18)0.0171 (18)0.0079 (15)0.0062 (15)
C170.0557 (17)0.0433 (18)0.0497 (17)0.0148 (15)0.0050 (13)0.0051 (13)
C180.068 (2)0.048 (2)0.0477 (17)0.0136 (17)0.0071 (14)0.0002 (14)
C190.063 (2)0.047 (2)0.0482 (17)0.0113 (16)0.0007 (14)0.0005 (14)
C200.0619 (19)0.0423 (18)0.0491 (17)0.0120 (15)0.0019 (14)0.0002 (13)
C210.084 (3)0.065 (2)0.056 (2)0.038 (2)0.0053 (18)0.0025 (17)
C220.114 (4)0.076 (3)0.066 (3)0.055 (3)0.014 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu1—N1i2.016 (3)Cu2—N32.017 (3)
Cu1—N12.016 (3)Cu2—N3ii2.017 (3)
Cu1—N2i2.055 (3)Cu2—N42.023 (3)
Cu1—N22.055 (3)Cu2—N4ii2.023 (3)
Cu1—O12.658 (4)O2—H1O20.961 (10)
O1—H1O10.958 (10)O2—H2O20.963 (10)
O1—H2O10.960 (10)N3—C181.490 (4)
N1—C71.481 (4)N3—C171.492 (4)
N1—C61.488 (4)N3—H30.9900
N1—H10.9900N4—C201.494 (4)
N2—C1i1.494 (4)N4—C12ii1.495 (4)
N2—C91.498 (4)N4—H40.9900
N2—H20.9900C12—C171.523 (5)
C1—C21.528 (5)C12—C131.526 (5)
C1—C61.537 (5)C12—H120.9900
C1—H1A0.9900C13—C141.526 (5)
C2—C31.528 (5)C13—H13A0.9800
C2—H2A0.9800C13—H13B0.9800
C2—H2B0.9800C14—C151.522 (6)
C3—C41.528 (6)C14—H14A0.9800
C3—H3A0.9800C14—H14B0.9800
C3—H3B0.9800C15—C161.521 (5)
C4—C51.518 (5)C15—H15A0.9800
C4—H4A0.9800C15—H15B0.9800
C4—H4B0.9800C16—C171.526 (5)
C5—C61.530 (5)C16—H16A0.9800
C5—H5A0.9800C16—H16B0.9800
C5—H5B0.9800C17—H170.9900
C6—H60.9900C18—C191.514 (5)
C7—C81.519 (5)C18—H18A0.9800
C7—H7A0.9800C18—H18B0.9800
C7—H7B0.9800C19—C201.516 (5)
C8—C91.525 (5)C19—H19A0.9800
C8—H8A0.9800C19—H19B0.9800
C8—H8B0.9800C20—C211.520 (6)
C9—C101.519 (5)C20—H200.9900
C9—H90.9900C21—C221.533 (6)
C10—C111.531 (5)C21—H21A0.9800
C10—H10A0.9800C21—H21B0.9800
C10—H10B0.9800C22—H22A0.9700
C11—H11A0.9700C22—H22B0.9700
C11—H11B0.9700C22—H22C0.9700
C11—H11C0.9700
N1i—Cu1—N1180.00 (7)N3—Cu2—N3ii180.0
N1i—Cu1—N2i95.47 (11)N3—Cu2—N495.18 (12)
N1—Cu1—N2i84.53 (11)N3ii—Cu2—N484.82 (12)
N1i—Cu1—N284.53 (11)N3—Cu2—N4ii84.82 (12)
N1—Cu1—N295.47 (11)N3ii—Cu2—N4ii95.18 (12)
N2i—Cu1—N2180.0N4—Cu2—N4ii180.0
H1O1—O1—H2O1106 (2)H1O2—O2—H2O2106 (2)
C7—N1—C6113.3 (3)C18—N3—C17112.5 (3)
C7—N1—Cu1116.0 (2)C18—N3—Cu2120.2 (2)
C6—N1—Cu1107.52 (19)C17—N3—Cu2108.2 (2)
C7—N1—H1106.5C18—N3—H3104.8
C6—N1—H1106.5C17—N3—H3104.8
Cu1—N1—H1106.5Cu2—N3—H3104.8
C1i—N2—C9115.1 (3)C20—N4—C12ii115.3 (3)
C1i—N2—Cu1107.68 (19)C20—N4—Cu2117.0 (2)
C9—N2—Cu1120.8 (2)C12ii—N4—Cu2108.3 (2)
C1i—N2—H2103.7C20—N4—H4105.0
C9—N2—H2103.7C12ii—N4—H4105.0
Cu1—N2—H2103.7Cu2—N4—H4105.0
N2i—C1—C2113.8 (3)N4ii—C12—C17107.6 (3)
N2i—C1—C6105.7 (3)N4ii—C12—C13113.6 (3)
C2—C1—C6112.5 (3)C17—C12—C13111.0 (3)
N2i—C1—H1A108.2N4ii—C12—H12108.1
C2—C1—H1A108.2C17—C12—H12108.1
C6—C1—H1A108.2C13—C12—H12108.1
C3—C2—C1111.2 (3)C12—C13—C14110.7 (3)
C3—C2—H2A109.4C12—C13—H13A109.5
C1—C2—H2A109.4C14—C13—H13A109.5
C3—C2—H2B109.4C12—C13—H13B109.5
C1—C2—H2B109.4C14—C13—H13B109.5
H2A—C2—H2B108.0H13A—C13—H13B108.1
C2—C3—C4110.6 (3)C15—C14—C13111.5 (3)
C2—C3—H3A109.5C15—C14—H14A109.3
C4—C3—H3A109.5C13—C14—H14A109.3
C2—C3—H3B109.5C15—C14—H14B109.3
C4—C3—H3B109.5C13—C14—H14B109.3
H3A—C3—H3B108.1H14A—C14—H14B108.0
C5—C4—C3110.2 (3)C16—C15—C14110.8 (3)
C5—C4—H4A109.6C16—C15—H15A109.5
C3—C4—H4A109.6C14—C15—H15A109.5
C5—C4—H4B109.6C16—C15—H15B109.5
C3—C4—H4B109.6C14—C15—H15B109.5
H4A—C4—H4B108.1H15A—C15—H15B108.1
C4—C5—C6110.4 (3)C15—C16—C17111.0 (3)
C4—C5—H5A109.6C15—C16—H16A109.4
C6—C5—H5A109.6C17—C16—H16A109.4
C4—C5—H5B109.6C15—C16—H16B109.4
C6—C5—H5B109.6C17—C16—H16B109.4
H5A—C5—H5B108.1H16A—C16—H16B108.0
N1—C6—C5114.2 (3)N3—C17—C12106.1 (3)
N1—C6—C1106.3 (3)N3—C17—C16113.7 (3)
C5—C6—C1111.3 (3)C12—C17—C16110.6 (3)
N1—C6—H6108.3N3—C17—H17108.7
C5—C6—H6108.3C12—C17—H17108.7
C1—C6—H6108.3C16—C17—H17108.7
N1—C7—C8111.7 (3)N3—C18—C19111.5 (3)
N1—C7—H7A109.3N3—C18—H18A109.3
C8—C7—H7A109.3C19—C18—H18A109.3
N1—C7—H7B109.3N3—C18—H18B109.3
C8—C7—H7B109.3C19—C18—H18B109.3
H7A—C7—H7B107.9H18A—C18—H18B108.0
C7—C8—C9115.8 (3)C18—C19—C20115.6 (3)
C7—C8—H8A108.3C18—C19—H19A108.4
C9—C8—H8A108.3C20—C19—H19A108.4
C7—C8—H8B108.3C18—C19—H19B108.4
C9—C8—H8B108.3C20—C19—H19B108.4
H8A—C8—H8B107.4H19A—C19—H19B107.4
N2—C9—C10112.3 (3)N4—C20—C19109.5 (3)
N2—C9—C8108.6 (3)N4—C20—C21111.4 (3)
C10—C9—C8114.4 (3)C19—C20—C21113.2 (3)
N2—C9—H9107.1N4—C20—H20107.5
C10—C9—H9107.1C19—C20—H20107.5
C8—C9—H9107.1C21—C20—H20107.5
C9—C10—C11112.9 (3)C20—C21—C22113.5 (4)
C9—C10—H10A109.0C20—C21—H21A108.9
C11—C10—H10A109.0C22—C21—H21A108.9
C9—C10—H10B109.0C20—C21—H21B108.9
C11—C10—H10B109.0C22—C21—H21B108.9
H10A—C10—H10B107.8H21A—C21—H21B107.7
C10—C11—H11A109.5C21—C22—H22A109.5
C10—C11—H11B109.5C21—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
C10—C11—H11C109.5C21—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
N2i—C1—C2—C3172.3 (3)N4ii—C12—C13—C14177.4 (3)
C6—C1—C2—C352.1 (4)C17—C12—C13—C1456.0 (4)
C1—C2—C3—C455.5 (5)C12—C13—C14—C1555.6 (5)
C2—C3—C4—C559.7 (5)C13—C14—C15—C1655.8 (5)
C3—C4—C5—C659.7 (5)C14—C15—C16—C1756.3 (5)
C7—N1—C6—C561.5 (4)C18—N3—C17—C12178.7 (3)
Cu1—N1—C6—C5169.1 (3)Cu2—N3—C17—C1243.5 (3)
C7—N1—C6—C1175.5 (3)C18—N3—C17—C1659.5 (4)
Cu1—N1—C6—C146.0 (3)Cu2—N3—C17—C16165.4 (3)
C4—C5—C6—N1176.1 (3)N4ii—C12—C17—N354.6 (3)
C4—C5—C6—C155.7 (4)C13—C12—C17—N3179.5 (3)
N2i—C1—C6—N158.0 (3)N4ii—C12—C17—C16178.3 (3)
C2—C1—C6—N1177.2 (3)C13—C12—C17—C1656.7 (4)
N2i—C1—C6—C5177.1 (3)C15—C16—C17—N3176.2 (3)
C2—C1—C6—C552.3 (4)C15—C16—C17—C1256.9 (4)
C6—N1—C7—C8178.4 (3)C17—N3—C18—C19176.7 (3)
Cu1—N1—C7—C856.6 (3)Cu2—N3—C18—C1947.4 (4)
N1—C7—C8—C976.6 (4)N3—C18—C19—C2068.4 (4)
C1i—N2—C9—C1052.8 (4)C12ii—N4—C20—C19173.1 (3)
Cu1—N2—C9—C1079.2 (3)Cu2—N4—C20—C1957.8 (3)
C1i—N2—C9—C8179.8 (3)C12ii—N4—C20—C2160.9 (4)
Cu1—N2—C9—C848.3 (3)Cu2—N4—C20—C2168.2 (4)
C7—C8—C9—N269.3 (4)C18—C19—C20—N474.7 (4)
C7—C8—C9—C1057.0 (4)C18—C19—C20—C2150.3 (4)
N2—C9—C10—C11177.9 (3)N4—C20—C21—C22179.8 (4)
C8—C9—C10—C1153.6 (4)C19—C20—C21—C2255.8 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br1iii0.96 (1)2.38 (2)3.299 (3)160 (5)
O1—H2O1···Br10.96 (1)2.39 (2)3.314 (3)161 (5)
O2—H1O2···Br2ii0.96 (1)2.35 (1)3.311 (4)176 (6)
O2—H2O2···Br2iv0.96 (1)2.38 (2)3.335 (4)170 (6)
N1—H1···Br10.992.543.517 (3)171
N2—H2···O10.992.593.161 (4)116
N3—H3···Br20.992.443.373 (3)157
N4—H4···O2v0.991.982.957 (5)169
C10—H10A···O1i0.982.473.378 (5)154
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x1, y, z.
 

Funding information

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationAlves, L. G., Pinheiro, P. F., Feliciano, J. R., Dâmaso, D. P., Leitão, J. H. & Martins, A. M. (2017). Int. J. Antimicrob. Agents, 49, 646–649.  CrossRef CAS PubMed Google Scholar
First citationAlves, L. G., Portel, J. F., Sousa, S. A., Ferreira, O., Almada, S., Silva, E. R., Martins, A. M. & Leitão, J. H. (2019). Antibiotics, 8, 224.  CrossRef Google Scholar
First citationAree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481–3491.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2019). J. Med. Chem. 62, 7322–7339.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2021a). Acta Cryst. E77, 213–216.  CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2021b). Acta Cryst. E77, 569–572.  CrossRef IUCr Journals Google Scholar
First citationMoon, D., Jeon, J. & Choi, J.-H. (2020). J. Coord. Chem. 73, 2029–2041.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D., Jeon, J. & Choi, J.-H. (2021). J. Mol. Struct. 1242, 130790.  Google Scholar
First citationMoon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921–924.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.  CSD CrossRef IUCr Journals Google Scholar
First citationMurphy, B. & Hathaway, B. J. (2003). Coord. Chem. Rev. 243, 237–262.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPilon, A., Lorenzo, J., Rodriguez–Calado, S., Adão, P., Martins, A. M., Valente, A. & Alves, L. G. (2019). ChemMedChem, 14, 770–778.  CrossRef CAS PubMed Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationValks, G. C., McRobbie, G., Lewis, E. A., Hubin, T. J., Hunter, T. M., Sadler, P. J., Pannecouque, C., De Clercq, E. & Archibald, S. J. (2006). J. Med. Chem. 49, 6162–6165.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds