research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hy­dr­oxy-8-(4-meth­­oxy­phen­yl)-1,6-di­methyl-5,6,7,8-tetra­hydro­iso­quino­lin-3-yl]sulfan­yl}-N-phenyl­acetamide

crossmark logo

aChemistry Department, Faculty of Science, New Valley University, 72511 El-Kharja, Egypt, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, fChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and gChemistry Department, Faculty of Science, Taiz University, Taiz, Yemen
*Correspondence e-mail: safiyyahalwaleedy@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 12 May 2021; accepted 24 May 2021; online 28 May 2021)

The title mol­ecule, C29H29N3O4S, adopts a conformation with the two phenyl substituents disposed on opposite sides of the mean plane of the iso­quinoline unit. In the crystal, corrugated layers of mol­ecules are formed by N—H⋯O, C—H⋯N and C—H⋯S hydrogen bonds together with C—H⋯π(ring) inter­actions. These layers are connected by C—H⋯O contacts. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (45.2%), C⋯H/H⋯C (20.2%), O⋯H/H⋯O (15.8%) and N⋯H/H⋯N (11.0%) inter­actions.

1. Chemical context

Many tetra­hydro­iso­quinolines have medicinal importance as potent selective and orally active aldosterone synthase (CYP11B2) inhibitors (Martin et al., 2016[Martin, R. E., Lehmann, J., Alzieu, T., Lenz, M., Corrales, M. A. C., Aebi, J. D., Märki, H. P., Kuhn, B., Amrein, K., Mayweg, A. V. & Britton, R. (2016). Org. Biomol. Chem. 14, 5922-5927.]). There are many natural and modified natural products that contain annulated pyridine rings such as the fatty acid bending protein inhibitor, (−)-oxerine, (−)-actinidine, indicaine, and other compounds that are derived from flavouring agents, namely (s)-(−)-perillaldehyde and (1R)-myrtenal (Uredi et al., 2019[Uredi, D., Motati, D. R. & Watkins, E. B. (2019). Chem. Commun. 55, 3270-3273.]). In C—H activation reactions, the pyridine ring acts as the directing group (Zhang et al., 2014[Zhang, M., Zhang, Y., Jie, X., Zhao, H., Li, G. & Su, W. (2014). Org. Chem. Front. 1, 843-895.]).

Tieno­pyridine derivatives show diverse pharmacological activities including anti­bacterial activity against a drug-resistant S. epidermidis clinical strain (Leal et al., 2008[Leal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196-8204.]) and cytotoxic activity against human hepatocellular liver carcinoma (HepG2) (Hassan et al., 2013[Hassan, A. Y., Sarg, M. T., Said, M. M. & El-Sebaey, S. A. (2013). Univ. Org. Chem. 1, 2.]) and are used as anti­platelet drugs for the treatment of acute coronary syndromes (Peters et al., 2003[Peters, R. J. G., Mehta, S. R., Fox, K. A. A., Zhao, F., Lewis, B. S., Kopecky, S. L., Diaz, R., Commerford, P. J., Valentin, V. & Yusuf, S. (2003). Circulation, 108, 1682-1687.]).

[Scheme 1]

2. Structural commentary

The title mol­ecule adopts a conformation in which the C24–C29 phenyl group is on the same side of the mean plane of tetra­hydro­iso­quinoline core as the O2–H2A hy­droxy group, while the 4-meth­oxy­phenyl group is situated on the opposite side (Fig. 1[link]). There is an intra­molecular O2—H2A⋯O1 hydrogen bond, which controls the orientation of the acetyl group. Puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) shows that the conformation of the C1–C5/C9 ring is close to half-chair with the C2 atom as the flap. The mean planes of the C10–C15 and C24–C29 rings are inclined to that of the pyridine N1/C5–C9 ring by 77.17 (3) and 67.93 (5)°, respectively. All bond lengths and angles appear normal for the given formulation.

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is depicted by a dashed line.

3. Supra­molecular features

In the crystal, N3—H3A⋯O2 hydrogen bonds and C25—H25⋯Cg1 inter­actions form chains of mol­ecules extending along the a-axis direction, which are linked into corrugated layers parallel to (010) by C18—H18A⋯N2 and C2—H2⋯S1 hydrogen bonds (Table 1[link] and Fig. 2[link]). The layers are connected by inversion-related C21—H21C⋯O1 contacts into the three-dimensional structure (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.87 2.13 2.8343 (14) 138
N3—H3A⋯O2i 0.91 2.03 2.9335 (14) 174
C2—H2⋯S1ii 1.00 2.86 3.8269 (12) 163
C18—H18A⋯N2ii 0.98 2.52 3.493 (2) 170
C21—H21C⋯O1iii 0.98 2.39 3.3593 (16) 169
C25—H25⋯Cg1i 0.95 2.79 3.6141 (18) 146
Symmetry codes: (i) [x-1, y, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
View of a portion of one layer seen along the b-axis direction. N—H⋯O, C—H⋯N and C—H⋯S hydrogen bonds are depicted, respectively, by dark-blue, light-blue and yellow dashed lines. C—H⋯π(ring) inter­actions are depicted by green dashed lines.
[Figure 3]
Figure 3
View of portions of two layers showing their connection by C—H⋯O hydrogen bonds (black dashed lines). Other inter­molecular inter­actions are depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

Hirshfeld surface calculations (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were performed in order to further characterize the supra­molecular association in the title compound. The Hirshfeld surface plotted over dnorm in the range −0.5236 to +1.6751 a.u. and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) prepared using CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.]) are shown in Figs. 4[link] and 5[link], respectively. The red spots on the Hirshfeld surface represent strong inter­molecular inter­actions (Table 2[link]), whereas the blue colour represents a lack of inter­actions. The fingerprint plots (Fig. 5[link]) reveal that H⋯H (45.2%), C⋯H/H⋯C (20.2%), O⋯H/H⋯O (15.8%) and N⋯H/H⋯N (11.0%) inter­actions make the greatest contributions to the surface contacts. The lowest contributions are from S⋯H/H⋯S (6.2%), O⋯C/C⋯O (1.2%), N⋯C/C⋯N (0.3%) and C⋯C (0.1%) contacts.

Table 2
Summary of short inter­molecular contacts (Å) in the title structure

Contact Distance Symmetry operation
N2⋯H18A 2.52 [{1\over 2}] + x, [{1\over 2}] − y, − [{1\over 2}] + z
H21C⋯O1 2.39 2 − x, 1 − y, 1 − z
O2⋯H3A 2.03 1 + x, y, z
O3⋯H27 2.70 1 + x, y, 1 + z
N2⋯H16B 2.69 [{3\over 2}] − x, − [{1\over 2}] + y, [{3\over 2}] − z
N2⋯H12 2.61 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H26⋯H18C 2.49 1 − x, 1 − y, 1 − z
H27⋯H16B 2.47 x, 1 − y, 1 − z
[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over dnorm in the range −0.5236 to +1.6751 a.u.
[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

Nine comparable tetra­hydro­iso­quinoline derivatives are: NAQRIJ (Mague et al., 2017[Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.]), KUGLIK (Langenohl et al., 2020[Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298-302.]), DUSVIZ (Selvaraj et al., 2020[Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548-1550.]), AKIVUO (Al-Taifi et al., 2021[Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121-125.]), ULUTAZ (Naghiyev et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), CARCOQ (Lehmann et al., 2017[Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867-870.]), POPYEB (Ben Ali & Retailleau, 2019[Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399-1402.]), ENOCIU (Naicker et al., 2011[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100-o103.]) and NIWPAL (Bouasla et al., 2008[Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432.]).

In the crystal of NAQRIJ, dimers are formed through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds, which are further connected into zigzag chains by pairwise C—H⋯N inter­actions that also form inversion dimers. In KUGLIK, the heterocyclic amines are alternately connected by hydrogen bonds thus forming syndiotactic polymeric chains. The hydrogen-bonding network of water mol­ecules forms planes parallel to (100). In the crystal of DUSVIZ, mol­ecules are linked via C—H⋯O hydrogen bonds. For the major disorder component, they form C(11) chains that propagate parallel to the a axis. In AKIVUO, a layer structure with the layers parallel to (10[\overline{1}]) is generated by O—H⋯O and C—H⋯O hydrogen bonds. In ULUTAZ, the mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds into a three-dimensional network. Furthermore, the crystal packing is dominated by C—H⋯π contacts involving the phenyl H atoms. In CARCOQ, mol­ecules are linked by an O—H⋯O hydrogen bond, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to (001). In POPYEB, mol­ecules are packed in a herringbone manner parallel to (103) and (10[\overline{3}]) via weak C—H⋯O and C—H⋯π(ring) inter­actions. In ENOCIU, various C—H⋯π and C—H⋯O bonds link the mol­ecules together. In NIWPAL, the mol­ecules are linked by N—H⋯O inter­molecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to (001).

6. Synthesis and crystallization

A mixture of 7-acetyl-4-cyano-1,6-dimethyl-6-hy­droxy-8-(4-meth­oxy­phen­yl)-5,6,7,8-tetra­hydro­iso­quinoline-3(2H)-thione (10 mmol), N-(phen­yl)-2-chloro­acetamide (10 mmol) and sodium acetate trihydrate (1.77 g, 13 mmol) in ethanol (100 ml) was heated under reflux for 1 h. The reaction mixture was allowed to stand at room temperature overnight. The precipitate that formed was collected and recrystallized from ethanol giving colourless crystals of the title compound, m.p.: 508–510 K, yield 84%. Its IR spectrum showed characteristic absorption bands at 3474 cm−1 (OH); 3311 cm−1 (NH); 3023 cm−1 (C-H aromatic); 2910, 2956 cm−1 (C—H aliphatic); 1800, 1900 cm−1 (overtones of phenyl group); 2220 cm−1 (C≡N) and 1694 cm−1 (C=O). Its 1H NMR (500 MHz, DMSO-d6) spectrum exhibited the following signals: δ 10.21 (s, 1H, NH), 7.48–7.49 (d, 2H, J = 5 Hz, Ar-H); 7.22–7.25 (t, 2H, Ar-H); 6.97–7.00 (t, 1H, Ar-H); 6.89–6.91 (d, J = 10 Hz, 2H, Ar-H); 6.75–6.77 (d, J =10 Hz, 2H, Ar-H); 4.84 (s, 1H, OH); 4.41–4.43 (d, J = 10 Hz, 1H, CH at C-8); 4.04–4.11 (dd, 2H, SCH2); 3.66 (s, 3H, OCH3); 3.20–3.24 (d, J = 20 Hz, 1H, CH of cyclo­hexene ring); 2.83–2.85 (d, J = 10 Hz, 1H, CH at C-7); 2.81–2.84 (d, J = 15 Hz, 1H, CH of cyclo­hexene ring); 2.08 (s, 3H, COCH3); 1.86 (s, 3H, CH3 attached to pyridine ring) and 1.21 (s, 3H, CH3 at C-6).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while those attached to O and N atoms were positioned from a difference map, refined for a few cycles to ensure that reasonable displacement parameters could be achieved, and then their coordinates were adjusted to give O—H = 0.87 and N—H = 0.91 Å. All H atoms were refined using a riding model with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula C29H29N3O4S
Mr 515.61
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.4506 (16), 23.112 (5), 13.601 (3)
β (°) 99.021 (3)
V3) 2623.5 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.39 × 0.25 × 0.14
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 50421, 7039, 5632
Rint 0.034
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.10
No. of reflections 7039
No. of parameters 338
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.20
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-{[7-Acetyl-4-cyano-6-hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}-N-phenylacetamide top
Crystal data top
C29H29N3O4SF(000) = 1088
Mr = 515.61Dx = 1.305 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4506 (16) ÅCell parameters from 9458 reflections
b = 23.112 (5) Åθ = 2.3–29.1°
c = 13.601 (3) ŵ = 0.16 mm1
β = 99.021 (3)°T = 150 K
V = 2623.5 (9) Å3Block, colourless
Z = 40.39 × 0.25 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7039 independent reflections
Radiation source: fine-focus sealed tube5632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.8°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 3131
Tmin = 0.89, Tmax = 0.98l = 1818
50421 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.126H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0798P)2 + 0.1546P]
where P = (Fo2 + 2Fc2)/3
7039 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49743 (4)0.21951 (2)0.34201 (2)0.02816 (10)
O11.20833 (12)0.46549 (4)0.59462 (8)0.0424 (3)
O21.15692 (10)0.36411 (4)0.47667 (6)0.02629 (19)
H2A1.1933310.3992750.4846120.039*
O30.60807 (11)0.50037 (4)0.89281 (7)0.0355 (2)
O40.22412 (14)0.25356 (5)0.17522 (7)0.0472 (3)
N10.55129 (11)0.32668 (4)0.41455 (7)0.0221 (2)
N20.89889 (15)0.16351 (5)0.41504 (9)0.0376 (3)
N30.11079 (13)0.31512 (5)0.27523 (7)0.0283 (2)
H3A0.1230050.3278080.3392950.034*
C10.89205 (13)0.40578 (4)0.57616 (8)0.0193 (2)
H10.9129630.4368580.5286690.023*
C21.05704 (13)0.38474 (5)0.63229 (8)0.0205 (2)
H21.0379340.3655330.6952660.025*
C31.14103 (13)0.34073 (5)0.57288 (8)0.0216 (2)
C41.03246 (13)0.28858 (5)0.55317 (9)0.0225 (2)
H4A1.0795720.2612070.5098240.027*
H4B1.0267980.2687250.6170230.027*
C50.86588 (13)0.30393 (5)0.50451 (8)0.0193 (2)
C60.77354 (13)0.26220 (5)0.44664 (8)0.0204 (2)
C70.61510 (13)0.27491 (5)0.40627 (8)0.0208 (2)
C80.64077 (13)0.36804 (5)0.46651 (8)0.0207 (2)
C90.79759 (13)0.35800 (4)0.51612 (8)0.0187 (2)
C100.80553 (13)0.43324 (5)0.65445 (8)0.0204 (2)
C110.71854 (14)0.39936 (5)0.71205 (9)0.0225 (2)
H110.7041020.3593330.6974720.027*
C120.65289 (14)0.42303 (5)0.79006 (9)0.0251 (2)
H120.5922130.3994540.8276030.030*
C130.67580 (14)0.48133 (5)0.81346 (9)0.0263 (2)
C140.76132 (15)0.51598 (5)0.75698 (9)0.0284 (3)
H140.7768370.5558780.7722870.034*
C150.82427 (14)0.49165 (5)0.67751 (9)0.0249 (2)
H150.8812370.5155770.6382930.030*
C160.6676 (2)0.55312 (7)0.93842 (12)0.0465 (4)
H16A0.7844650.5509130.9555750.070*
H16B0.6206480.5594920.9990050.070*
H16C0.6386040.5852560.8920940.070*
C171.16474 (14)0.43673 (5)0.66046 (10)0.0286 (3)
C181.21626 (19)0.44933 (7)0.76823 (11)0.0431 (4)
H18A1.2676190.4149670.8013210.065*
H18B1.1225280.4597230.7987370.065*
H18C1.2925030.4815760.7754660.065*
C191.30468 (14)0.32302 (6)0.62869 (9)0.0290 (3)
H19A1.2935010.3101030.6958910.044*
H19B1.3776850.3561890.6330790.044*
H19C1.3479910.2913850.5929610.044*
C200.84162 (14)0.20690 (5)0.43026 (9)0.0247 (2)
C210.56021 (15)0.42595 (5)0.46529 (10)0.0265 (2)
H21A0.5199240.4318410.5283020.040*
H21B0.4706320.4273920.4100390.040*
H21C0.6374650.4564480.4567230.040*
C220.29909 (14)0.24507 (5)0.35184 (9)0.0257 (2)
H22A0.2349730.2121810.3706390.031*
H22B0.3071450.2740030.4060680.031*
C230.21135 (15)0.27208 (5)0.25746 (9)0.0273 (3)
C240.00831 (16)0.34254 (5)0.20589 (9)0.0285 (3)
C250.13620 (19)0.36782 (6)0.24298 (11)0.0396 (3)
H250.1411220.3658740.3122040.047*
C260.2556 (2)0.39563 (8)0.18009 (13)0.0514 (4)
H260.3430500.4123730.2060570.062*
C270.2491 (2)0.39938 (7)0.07906 (12)0.0492 (4)
H270.3315960.4185990.0356250.059*
C280.1216 (2)0.37489 (7)0.04246 (11)0.0437 (4)
H280.1159170.3779200.0265520.052*
C290.00134 (18)0.34587 (6)0.10445 (10)0.0351 (3)
H290.0847480.3284800.0779820.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02272 (16)0.03016 (17)0.03103 (18)0.00082 (11)0.00246 (12)0.01154 (12)
O10.0374 (5)0.0381 (5)0.0533 (6)0.0143 (4)0.0119 (5)0.0018 (5)
O20.0251 (4)0.0342 (4)0.0211 (4)0.0026 (3)0.0085 (3)0.0007 (3)
O30.0362 (5)0.0424 (5)0.0303 (5)0.0006 (4)0.0130 (4)0.0128 (4)
O40.0612 (7)0.0552 (6)0.0236 (5)0.0261 (5)0.0014 (5)0.0100 (4)
N10.0203 (5)0.0248 (4)0.0216 (5)0.0017 (4)0.0043 (4)0.0006 (4)
N20.0387 (6)0.0308 (5)0.0423 (7)0.0087 (5)0.0035 (5)0.0053 (5)
N30.0318 (6)0.0322 (5)0.0209 (5)0.0055 (4)0.0039 (4)0.0030 (4)
C10.0191 (5)0.0201 (5)0.0194 (5)0.0001 (4)0.0051 (4)0.0011 (4)
C20.0203 (5)0.0231 (5)0.0186 (5)0.0001 (4)0.0044 (4)0.0003 (4)
C30.0193 (5)0.0275 (5)0.0186 (5)0.0013 (4)0.0048 (4)0.0005 (4)
C40.0193 (5)0.0238 (5)0.0244 (6)0.0038 (4)0.0034 (4)0.0004 (4)
C50.0186 (5)0.0222 (5)0.0181 (5)0.0013 (4)0.0061 (4)0.0019 (4)
C60.0209 (5)0.0215 (5)0.0196 (5)0.0024 (4)0.0054 (4)0.0002 (4)
C70.0199 (5)0.0244 (5)0.0188 (5)0.0002 (4)0.0052 (4)0.0015 (4)
C80.0202 (5)0.0222 (5)0.0206 (5)0.0016 (4)0.0058 (4)0.0015 (4)
C90.0183 (5)0.0206 (5)0.0180 (5)0.0006 (4)0.0054 (4)0.0014 (4)
C100.0194 (5)0.0209 (5)0.0210 (5)0.0015 (4)0.0034 (4)0.0004 (4)
C110.0222 (5)0.0216 (5)0.0238 (5)0.0002 (4)0.0046 (4)0.0005 (4)
C120.0224 (6)0.0291 (6)0.0247 (6)0.0012 (4)0.0065 (5)0.0006 (4)
C130.0222 (6)0.0334 (6)0.0237 (6)0.0037 (5)0.0045 (4)0.0058 (5)
C140.0297 (6)0.0234 (5)0.0319 (6)0.0006 (5)0.0049 (5)0.0058 (5)
C150.0250 (6)0.0219 (5)0.0287 (6)0.0007 (4)0.0074 (5)0.0010 (4)
C160.0458 (9)0.0524 (9)0.0426 (8)0.0003 (7)0.0107 (7)0.0253 (7)
C170.0217 (6)0.0272 (6)0.0359 (7)0.0009 (4)0.0016 (5)0.0037 (5)
C180.0401 (8)0.0420 (8)0.0420 (8)0.0037 (6)0.0101 (6)0.0156 (6)
C190.0202 (6)0.0375 (7)0.0285 (6)0.0038 (5)0.0011 (5)0.0028 (5)
C200.0243 (6)0.0260 (5)0.0236 (6)0.0017 (4)0.0030 (5)0.0023 (4)
C210.0230 (6)0.0220 (5)0.0335 (6)0.0044 (4)0.0017 (5)0.0026 (5)
C220.0217 (5)0.0305 (6)0.0248 (6)0.0004 (5)0.0035 (4)0.0037 (5)
C230.0275 (6)0.0301 (6)0.0236 (6)0.0000 (5)0.0026 (5)0.0054 (5)
C240.0332 (7)0.0260 (6)0.0261 (6)0.0022 (5)0.0037 (5)0.0003 (5)
C250.0448 (8)0.0434 (7)0.0323 (7)0.0137 (6)0.0118 (6)0.0066 (6)
C260.0488 (9)0.0588 (10)0.0482 (9)0.0255 (8)0.0126 (8)0.0086 (7)
C270.0509 (10)0.0524 (9)0.0413 (8)0.0168 (7)0.0023 (7)0.0072 (7)
C280.0532 (9)0.0480 (8)0.0277 (7)0.0080 (7)0.0006 (6)0.0016 (6)
C290.0394 (7)0.0394 (7)0.0264 (6)0.0052 (6)0.0052 (6)0.0020 (5)
Geometric parameters (Å, º) top
S1—C71.7661 (12)C11—H110.9500
S1—C221.8018 (12)C12—C131.3911 (17)
O1—C171.2176 (16)C12—H120.9500
O2—C31.4414 (13)C13—C141.3884 (18)
O2—H2A0.8696C14—C151.3955 (16)
O3—C131.3711 (14)C14—H140.9500
O3—C161.4233 (17)C15—H150.9500
O4—C231.2182 (15)C16—H16A0.9800
N1—C71.3245 (14)C16—H16B0.9800
N1—C81.3482 (15)C16—H16C0.9800
N2—C201.1463 (15)C17—C181.4908 (19)
N3—C231.3545 (16)C18—H18A0.9800
N3—C241.4164 (16)C18—H18B0.9800
N3—H3A0.9097C18—H18C0.9800
C1—C101.5216 (15)C19—H19A0.9800
C1—C91.5229 (15)C19—H19B0.9800
C1—C21.5587 (15)C19—H19C0.9800
C1—H11.0000C21—H21A0.9800
C2—C171.5198 (16)C21—H21B0.9800
C2—C31.5399 (15)C21—H21C0.9800
C2—H21.0000C22—C231.5128 (17)
C3—C41.5129 (16)C22—H22A0.9900
C3—C191.5255 (16)C22—H22B0.9900
C4—C51.5011 (15)C24—C251.3911 (19)
C4—H4A0.9900C24—C291.3923 (18)
C4—H4B0.9900C25—C261.375 (2)
C5—C91.3958 (15)C25—H250.9500
C5—C61.4021 (16)C26—C271.386 (2)
C6—C71.3964 (16)C26—H260.9500
C6—C201.4334 (15)C27—C281.378 (2)
C8—C91.4088 (15)C27—H270.9500
C8—C211.5006 (15)C28—C291.387 (2)
C10—C151.3894 (16)C28—H280.9500
C10—C111.3957 (15)C29—H290.9500
C11—C121.3847 (16)
C7—S1—C22100.59 (6)C15—C14—H14120.3
C3—O2—H2A108.6C10—C15—C14121.50 (11)
C13—O3—C16117.10 (11)C10—C15—H15119.3
C7—N1—C8118.87 (10)C14—C15—H15119.3
C23—N3—C24127.59 (10)O3—C16—H16A109.5
C23—N3—H3A115.3O3—C16—H16B109.5
C24—N3—H3A117.1H16A—C16—H16B109.5
C10—C1—C9114.12 (9)O3—C16—H16C109.5
C10—C1—C2106.17 (9)H16A—C16—H16C109.5
C9—C1—C2112.94 (8)H16B—C16—H16C109.5
C10—C1—H1107.8O1—C17—C18122.75 (13)
C9—C1—H1107.8O1—C17—C2118.98 (12)
C2—C1—H1107.8C18—C17—C2118.24 (12)
C17—C2—C3110.33 (9)C17—C18—H18A109.5
C17—C2—C1109.33 (9)C17—C18—H18B109.5
C3—C2—C1113.55 (9)H18A—C18—H18B109.5
C17—C2—H2107.8C17—C18—H18C109.5
C3—C2—H2107.8H18A—C18—H18C109.5
C1—C2—H2107.8H18B—C18—H18C109.5
O2—C3—C4106.15 (9)C3—C19—H19A109.5
O2—C3—C19110.25 (9)C3—C19—H19B109.5
C4—C3—C19110.59 (10)H19A—C19—H19B109.5
O2—C3—C2110.17 (9)C3—C19—H19C109.5
C4—C3—C2107.61 (9)H19A—C19—H19C109.5
C19—C3—C2111.88 (9)H19B—C19—H19C109.5
C5—C4—C3112.99 (9)N2—C20—C6177.76 (14)
C5—C4—H4A109.0C8—C21—H21A109.5
C3—C4—H4A109.0C8—C21—H21B109.5
C5—C4—H4B109.0H21A—C21—H21B109.5
C3—C4—H4B109.0C8—C21—H21C109.5
H4A—C4—H4B107.8H21A—C21—H21C109.5
C9—C5—C6118.41 (10)H21B—C21—H21C109.5
C9—C5—C4122.51 (10)C23—C22—S1114.22 (9)
C6—C5—C4119.07 (9)C23—C22—H22A108.7
C7—C6—C5119.41 (10)S1—C22—H22A108.7
C7—C6—C20120.66 (10)C23—C22—H22B108.7
C5—C6—C20119.93 (10)S1—C22—H22B108.7
N1—C7—C6122.32 (10)H22A—C22—H22B107.6
N1—C7—S1119.46 (9)O4—C23—N3124.77 (12)
C6—C7—S1118.22 (8)O4—C23—C22122.14 (11)
N1—C8—C9122.85 (10)N3—C23—C22112.92 (10)
N1—C8—C21114.24 (10)C25—C24—C29119.47 (12)
C9—C8—C21122.90 (10)C25—C24—N3117.25 (11)
C5—C9—C8117.89 (10)C29—C24—N3123.27 (12)
C5—C9—C1121.24 (10)C26—C25—C24120.45 (14)
C8—C9—C1120.80 (9)C26—C25—H25119.8
C15—C10—C11118.02 (10)C24—C25—H25119.8
C15—C10—C1120.86 (10)C25—C26—C27120.43 (14)
C11—C10—C1120.80 (10)C25—C26—H26119.8
C12—C11—C10121.20 (11)C27—C26—H26119.8
C12—C11—H11119.4C28—C27—C26119.13 (14)
C10—C11—H11119.4C28—C27—H27120.4
C11—C12—C13119.99 (11)C26—C27—H27120.4
C11—C12—H12120.0C27—C28—C29121.28 (14)
C13—C12—H12120.0C27—C28—H28119.4
O3—C13—C14124.61 (11)C29—C28—H28119.4
O3—C13—C12115.51 (11)C28—C29—C24119.22 (13)
C14—C13—C12119.87 (11)C28—C29—H29120.4
C13—C14—C15119.40 (11)C24—C29—H29120.4
C13—C14—H14120.3
C10—C1—C2—C1773.07 (11)C2—C1—C9—C57.81 (14)
C9—C1—C2—C17161.14 (9)C10—C1—C9—C853.90 (13)
C10—C1—C2—C3163.24 (9)C2—C1—C9—C8175.28 (9)
C9—C1—C2—C337.45 (12)C9—C1—C10—C15145.75 (11)
C17—C2—C3—O268.34 (12)C2—C1—C10—C1589.18 (12)
C1—C2—C3—O254.80 (12)C9—C1—C10—C1140.85 (14)
C17—C2—C3—C4176.35 (9)C2—C1—C10—C1184.22 (12)
C1—C2—C3—C460.51 (11)C15—C10—C11—C120.12 (17)
C17—C2—C3—C1954.68 (13)C1—C10—C11—C12173.46 (10)
C1—C2—C3—C19177.82 (9)C10—C11—C12—C131.27 (18)
O2—C3—C4—C564.32 (11)C16—O3—C13—C1419.52 (18)
C19—C3—C4—C5176.09 (9)C16—O3—C13—C12161.09 (12)
C2—C3—C4—C553.62 (12)C11—C12—C13—O3179.06 (10)
C3—C4—C5—C926.75 (15)C11—C12—C13—C141.52 (18)
C3—C4—C5—C6154.50 (10)O3—C13—C14—C15179.75 (11)
C9—C5—C6—C72.77 (16)C12—C13—C14—C150.39 (18)
C4—C5—C6—C7176.02 (10)C11—C10—C15—C141.28 (17)
C9—C5—C6—C20177.84 (10)C1—C10—C15—C14172.30 (11)
C4—C5—C6—C203.36 (16)C13—C14—C15—C101.03 (18)
C8—N1—C7—C62.18 (16)C3—C2—C17—O159.92 (14)
C8—N1—C7—S1177.89 (8)C1—C2—C17—O165.65 (14)
C5—C6—C7—N14.95 (17)C3—C2—C17—C18118.40 (12)
C20—C6—C7—N1175.67 (11)C1—C2—C17—C18116.04 (12)
C5—C6—C7—S1175.12 (8)C7—S1—C22—C23103.44 (9)
C20—C6—C7—S14.25 (15)C24—N3—C23—O47.0 (2)
C22—S1—C7—N122.84 (10)C24—N3—C23—C22168.25 (11)
C22—S1—C7—C6157.23 (9)S1—C22—C23—O436.74 (17)
C7—N1—C8—C92.71 (16)S1—C22—C23—N3147.86 (9)
C7—N1—C8—C21176.15 (10)C23—N3—C24—C25155.07 (13)
C6—C5—C9—C81.73 (15)C23—N3—C24—C2925.9 (2)
C4—C5—C9—C8179.52 (10)C29—C24—C25—C260.4 (2)
C6—C5—C9—C1178.72 (9)N3—C24—C25—C26179.45 (14)
C4—C5—C9—C12.53 (16)C24—C25—C26—C270.7 (3)
N1—C8—C9—C54.65 (16)C25—C26—C27—C280.0 (3)
C21—C8—C9—C5174.11 (10)C26—C27—C28—C291.0 (3)
N1—C8—C9—C1178.34 (10)C27—C28—C29—C241.3 (2)
C21—C8—C9—C12.90 (16)C25—C24—C29—C280.6 (2)
C10—C1—C9—C5129.19 (11)N3—C24—C29—C28178.39 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.872.132.8343 (14)138
N3—H3A···O2i0.912.032.9335 (14)174
C2—H2···S1ii1.002.863.8269 (12)163
C18—H18A···N2ii0.982.523.493 (2)170
C21—H21C···O1iii0.982.393.3593 (16)169
C25—H25···Cg1i0.952.793.6141 (18)146
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y+1, z+1.
Summary of short intermolecular contacts (Å) in the title structure top
ContactDistanceSymmetry operation
N2···H18A2.52-1/2 + x, 1/2 - y, - 1/2 + z
H21C···O12.392 - x, 1 - y, 1 - z
O2···H3A2.031 + x, y, z
O3···H272.701 + x, y, 1 + z
N2···H16B2.693/2 - x, - 1/2 + y, 3/2 - z
N2···H122.611/2 + x, 1/2 - y, -1/2 + z
H26···H18C2.491 - x, 1 - y, 1 - z
H27···H16B2.47-x, 1 - y, 1 - z
 

Acknowledgements

Author contributions are as follows. Conceptualization, SKM and EAB; methodology, JTM, EAB and MA; investigation, EMS, RH and EAB; writing (original draft), JTM, MA and SKM; writing (review and editing of the manuscript), SKM, EAB and NF; visualization, SKM, EAB, MA and JTM; funding acquisition, SAHA; resources, SKM, EAB, JTM and RH; supervision, EAB and SKM.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAl-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBen Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHassan, A. Y., Sarg, M. T., Said, M. M. & El-Sebaey, S. A. (2013). Univ. Org. Chem. 1, 2.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLangenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196–8204.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.  Google Scholar
First citationMartin, R. E., Lehmann, J., Alzieu, T., Lenz, M., Corrales, M. A. C., Aebi, J. D., Märki, H. P., Kuhn, B., Amrein, K., Mayweg, A. V. & Britton, R. (2016). Org. Biomol. Chem. 14, 5922–5927.  CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeters, R. J. G., Mehta, S. R., Fox, K. A. A., Zhao, F., Lewis, B. S., Kopecky, S. L., Diaz, R., Commerford, P. J., Valentin, V. & Yusuf, S. (2003). Circulation, 108, 1682–1687.  CrossRef PubMed CAS Google Scholar
First citationSelvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548–1550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.  Google Scholar
First citationUredi, D., Motati, D. R. & Watkins, E. B. (2019). Chem. Commun. 55, 3270–3273.  CrossRef CAS Google Scholar
First citationZhang, M., Zhang, Y., Jie, X., Zhao, H., Li, G. & Su, W. (2014). Org. Chem. Front. 1, 843–895.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds