research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and mol­ecular docking study of (E)-2-{[(E)-2-hy­dr­oxy-5-methyl­benzyl­­idene]hydrazinyl­­idene}-1,2-di­phenyl­ethan-1-one

crossmark logo

aSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, dSamsun University, Faculty of Engineering, Biomedical Engineering, 55420, Samsun, Turkey, eIbb University, Science College, Department of Physics, Ibb, Yemen, and fAljanad University for Science & Technology, Engineering College, Taiz, Yemen
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, samirbas@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 17 May 2021; accepted 24 May 2021; online 28 May 2021)

The title compound, C22H18N2O2, is a Schiff base that exists in the phenol–imine tautomeric form and adopts an E configuration with respect to the C=N bond. The mol­ecular structure is stabilized by an O—H⋯N hydrogen bond, forming an S(6) ring motif. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules to form inversion dimers. Weak ππ stacking inter­actions along the a-axis direction provide additional stabilization of the crystal structure. The mol­ecule is non-planar, the aromatic ring of the benzaldehyde residue being nearly perpendicular to the phenyl and 4-methyl­phenol rings with dihedral angles of 88.78 (13) and 82.26 (14)°, respectively. A mol­ecular docking study between the title mol­ecule and the COVID-19 main protease (PDB ID: 6LU7) was performed, showing that it is a potential agent because of its affinity and ability to adhere to the active sites of the protein.

1. Chemical context

Schiff bases have wide applications inter­ests as corrosion inhibitors (Antonijevic & Petrovic, 2008[Antonijevic, M. & Petrovic, M. (2008). Int. J. Electrochem. Sci. 3, 1-28.]), biologically active materials (Al Zoubi, 2013[Al Zoubi, W. (2013). Int. J. Org. Chem. 3, 73-95.]) and thermostable systems (Destri et al., 1998[Destri, S., Khotina, I. A. & Porzio, W. (1998). Macromolecules, 31, 1079-1086.]). The optical and semiconducting phenomena of the azomethine linkage group have been also widely investigated as a result of their photo-efficiency, with wavelengths depending on the chemical architecture of the Schiff-base mol­ecules (Iwan & Sek, 2008[Iwan, A. & Sek, D. (2008). Prog. Polym. Sci. 33, 289-345.]). Schiff bases have significant importance in the development of metal complexes, because Schiff base ligands are potentially capable of forming stable complexes by coordination of metal ions via their oxygen and nitro­gen donors (Ebrahimipour et al., 2012[Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148-155.]). Hydrazine, hydrazone and hydrazide derivatives are relatively scarce in nature and have been isolated from plants, marine organisms and microorganisms. These compounds exhibit remarkable structural diversity and relevant biological activities (Le Goff & Ouazzani, 2014[Le Goff, G. & Ouazzani, J. (2014). Bioorg. Med. Chem. 22, 6529-6544.]). Salicyl­aldehyde complexes with transition metals have worked as anti­malarial and anti­leukemic agents (Scovill et al., 1982[Scovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem. 25, 1261-1264.]). In this study, a new Schiff base with potential biological character, (E)-2-{[(E)-2-hy­droxy-5-meth­yl­benzyl­idene]hydrazineyl­idene}-1,2-di­phenyl­ethan-1-one, was obtained in crystalline form from the reaction of 2-hy­droxy-5-methyl­benzaldehyde with (E)-2-hydrazineyl­idene-1,2-di­phenyl­ethan-1-one. We report here the synthesis, crystal and mol­ecular structure of the title compound. We have also performed a mol­ecular docking study to determine possible inter­molecular inter­actions between the COVID-19 main protease (PDB ID: 6LU7) and the title compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title structure contains one mol­ecule (Fig. 1[link]), which crystallizes in the phenol–imine tautomeric form with an E configuration for the imine functionality. The hy­droxy H atom is involved in a strong intra­molecular O—H⋯N hydrogen bond, forming an S(6) ring motif, which stabilizes the mol­ecular structure. The di­benzyl­idene hydrazine unit is approximately planar with the dihedral angle formed by the two terminal phenyl rings of 7.62 (15)°. On the other hand, the mol­ecule is non-planar, because the C1–C6 ring is nearly perpendicular to the C9–C14 and C16–C21 rings with dihedral angles of 88.78 (13) and 82.26 (14)°, respectively. The C17—O2, C15—N2 and C15—C16 bond lengths in the mol­ecule are 1.359 (5), 1.287 (5), and 1.452 (5) Å, respectively. These results suggest single-bond character for C17—O2 and C15—C16 and double-bond character for the C15—N2 bond as expected for a phenol–imine structure (Kaştaş et al., 2020[Kaştaş, G., Kaştaş, A., Ersanlı, C. C. & Kırca, B. K. (2020). Crystallogr. Rep. 65, 463-467.]). The bond lengths and angles in the title mol­ecule agree reasonably well with those found in closely related structures (Bouchama et al., 2015[Bouchama, A., Yahiaoui, M., Chiter, C., Setifi, Z. & Simpson, J. (2015). Acta Cryst. E71, 35-37.]; Wieland et al., 2011[Wieland, M., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. 22, 1267-1279.]). Based on the refinement parameters, the tautomeric form of the compound is the phenol–imine form in which the tautomeric proton (H2) is located on the phenolic oxygen atom (O2). The distance of 2.650 (5) Å between the nitro­gen and the oxygen atoms show that the mol­ecule has a strong O—H⋯N intra­molecular hydrogen bond, forming an S(6) ring motif.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines denote the intra­molecular O—H⋯N hydrogen bonds forming an S(6) ring motif.

3. Supra­molecular features

In the crystal, mol­ecules are linked by pairs of C3—H3⋯O2 hydrogen bonds, forming inversion dimers with an R22(11) ring motif (Table 1[link] and Fig. 2[link]). There are also weak ππ inter­actions [Cg2⋯Cg3(−x, −y, −z) = 3.909 (2) Å; Cg2 and Cg3 are the centroids of the C9–C14 and C16–C21 rings, respectively] that stabilize the crystal structure, forming a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.94 2.650 (5) 145
C3—H3⋯O2i 0.93 2.54 3.434 (8) 162
Symmetry code: (i) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Blue dashed lines denote the inter­molecular C3—H3⋯O2 hydrogen bonds forming an inversion dimer (Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (benzyl­idenehydrazono)-1,2-di­phenyl­ethanone skeleton revealed 14 similar compounds. In MOZZEH01 (Marcel et al., 2011[Marcel, W., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. pp. 22 Article 1267.]), the C=N [1.291 (2) Å], N—N [1.414 (2) Å] and C=O bond lengths [1.235 (1) Å] are within the ranges observed for the title compound. The C7—C8 bond distance of 1.523 (2) Å corresponding to the value expected for a Csp2—Csp2 single bond, is slightly longer than observed for the title compound [1.472 (5) Å]. This bond length is shorter than in NOTZIH [1.528 (3) Å; Bouchama et al., 2015[Bouchama, A., Yahiaoui, M., Chiter, C., Setifi, Z. & Simpson, J. (2015). Acta Cryst. E71, 35-37.]]. In HULFAX (Elmacı et al., 2015[Elmacı, G., Aktan, E., Seferoğlu, N., Hökelek, T. & Seferoğlu, Z. (2015). J. Mol. Struct. 1099, 83-91.]), the C15—N2 bond length [1.276 (4) Å] is typical of for an azomethine C=N bond and shorter than in the title compound [1.287 (5) Å]. In MOZZEH (Patra et al., 2009[Patra, G. K., Mukherjee, A. & Ng, S. W. (2009). Acta Cryst. E65, o1745.]) and MUBTUZ (Patra & Ng, 2009[Patra, G. K. & Ng, S. W. (2009). Acta Cryst. E65, o1810.]), the di­methyl­ene hydrazine (—C=N—N=C—) units are approximately planar, the torsion angles around the N—N bond being 177.82 (12) and 162.2 (6)°, respectively. Although these values are comparable to the title compound, they are slightly smaller than 178.3 (3)°. In LOTKEN (Yahyaoui et al., 2019[Yahyaoui, M., Bouchama, A., Anak, B., Chiter, C., Djedouani, A. & Rabilloud, F. (2019). J. Mol. Struct. 1177, 69-77.]), N—N (hydrazone) distances are within the range of typical single bond [1.398 (6)–1.4077 (16) Å and the C=N bonds in the hydrazone units are between 1.2893 (19) and 1.3014 (18) Å]. The torsion angles involving the —N=C— vary between −171.02 and −179.90°. All these values are similar to those observed in the title compound.

5. Mol­ecular docking study

Mol­ecular docking is a crucial method for investigating the inter­action between small mol­ecules and macromolecules. Inter­molecular contacts that occur between a ligand and a protein are evaluated by mol­ecular docking. In summary, this method is one of the major approaches to estimate the binding area where the ligand connects with the protein. In this study, AutoDockVina (Trott & Olson, 2010[Trott, O. & Olson, A. J. (2010). J. Comput. Chem. 31, 455-461.]) was utilized for predicting binding sites between the title mol­ecule and 6LU7. 6LU7 is a main protease of COVID-19, and can be efficient for drug design to treat ailments (Jin et al., 2020[Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289-293.]). The three-dimensional structure of 6LU7 was received from the Protein Data Bank (PDB). Before the computation, the protein must be prepared for efficient insertion. Therefore, all water mol­ecules and ligands were removed from protein active sites. LYS102, VAL104, GLN110, THR111, ASN151, ASP153 and SER158 were defined as active areas. According to these active sites, grid box dimensions were determined to be 100 × 100 × 95 Å. In addition, `x, y, z' centers were adjusted to be −20.378, 27.848, 69.124, respectively, and then the 6LU7 protein was saved in PDBQT format for calculations. In the next step of the experiment, rotatable angles for coupling structures were identified and recorded in PDBQT format. Discovery Studio Visualizer (Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Vol. 936. Biovia, San Diego, CA, USA.]) was used for observations and preparations. All docking calculations were computed with AutoDockVina. Twenty variable adherences were decided by AutoDockVina for the ligands connected to the receptor of the protein. The best affinity energy was observed in the first calculation, of −7.2 kcal mol−1. The bonding type of inter­action is demonstrated in Fig. 3[link]. The 2D and 3D visuals of the inter­molecular inter­actions for the best binding pose of the title compound docked into macromolecule 6LU7 can be seen in Fig. 4[link]. In addition, the docking conformation is shown in Fig. 5[link]. As a consequence, the title compound could be a potential mol­ecule for drug design to treat severe acute respiratory syndrome resulting from the novel corona virus SARS CoV2 because of its affinity and ability suitable to adhere to active sites of the protein.

[Figure 3]
Figure 3
Three-dimensional visualization of the inter­molecular inter­actions for the best binding pose of the title compound docking with 6LU7.
[Figure 4]
Figure 4
Two-dimensional visuals of the inter­molecular inter­actions for the best binding pose of the title compound docking with 6LU7.
[Figure 5]
Figure 5
Three-dimensional conformation of the complex of the title compound with 6LU7.

6. Synthesis and crystallization

(E)-2-{[(E)-2-Hy­droxy-5-methyl­benzyl­idene]hydrazineyl­id­ene}-1,2-di­phenyl­ethan-1-one was prepared by refluxing a mixture of a solution containing 2-hy­droxy-5-methyl­benzaldehyde (0.02 mmol) in ethanol (20 mL) and a solution containing (E)-2-hydrazineyl­idene-1,2-di­phenyl­ethan-1-one (0.02 mmol) in ethanol (20 mL). The reaction mixture was stirred for 5 h under reflux. The obtained crystalline material was washed with ethanol and dried at room temperature. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atom was located in a difference-Fourier map and refined with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C22H18N2O2
Mr 342.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.4089 (6), 11.4544 (14), 21.9491 (17)
β (°) 97.814 (6)
V3) 1845.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.71 × 0.49 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.952, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 8376, 3262, 1801
Rint 0.037
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.287, 1.11
No. of reflections 3262
No. of parameters 237
No. of restraints 84
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.45
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

(E)-2-{[(E)-2-Hydroxy-5-methylbenzylidene]hydrazinylidene}-1,2-diphenylethan-1-one top
Crystal data top
C22H18N2O2F(000) = 720
Mr = 342.38Dx = 1.232 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4089 (6) ÅCell parameters from 7807 reflections
b = 11.4544 (14) Åθ = 1.8–29.1°
c = 21.9491 (17) ŵ = 0.08 mm1
β = 97.814 (6)°T = 296 K
V = 1845.4 (3) Å3Prism, orange
Z = 40.71 × 0.49 × 0.21 mm
Data collection top
Stoe IPDS 2
diffractometer
3262 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1801 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.037
Detector resolution: 6.67 pixels mm-1θmax = 25.1°, θmin = 1.9°
rotation method scansh = 78
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1312
Tmin = 0.952, Tmax = 0.987l = 2626
8376 measured reflections
Refinement top
Refinement on F284 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.085H-atom parameters constrained
wR(F2) = 0.287 w = 1/[σ2(Fo2) + (0.1388P)2 + 0.7696P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3262 reflectionsΔρmax = 0.50 e Å3
237 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.8073 (5)0.5988 (3)0.50905 (13)0.0632 (9)
N10.7264 (5)0.5098 (3)0.47015 (13)0.0650 (9)
O20.9055 (6)0.8135 (3)0.54443 (14)0.0968 (12)
H20.8662430.7629280.5196590.145*
O10.8305 (6)0.6961 (4)0.37321 (16)0.1135 (14)
C160.9521 (5)0.6438 (4)0.61058 (16)0.0587 (10)
C90.5718 (5)0.4721 (4)0.36834 (16)0.0604 (10)
C150.8727 (5)0.5634 (4)0.56320 (16)0.0605 (10)
H150.8690840.4842180.5722320.073*
C80.6674 (5)0.5488 (3)0.41603 (16)0.0587 (10)
C211.0127 (6)0.6008 (4)0.66984 (15)0.0647 (11)
H211.0086550.5208130.6767260.078*
C140.5475 (6)0.3537 (4)0.37911 (18)0.0701 (12)
H140.5922870.3219380.4171750.084*
C201.0782 (6)0.6731 (5)0.71822 (17)0.0722 (12)
C70.7011 (7)0.6748 (4)0.39951 (17)0.0729 (12)
C170.9626 (6)0.7633 (4)0.59982 (19)0.0704 (12)
C100.5008 (6)0.5172 (4)0.31111 (17)0.0740 (12)
H100.5134520.5963280.3032210.089*
C130.4574 (7)0.2826 (4)0.3337 (2)0.0806 (13)
H130.4421790.2035960.3411960.097*
C120.3900 (7)0.3298 (5)0.2771 (2)0.0809 (14)
H120.3296300.2823170.2465320.097*
C191.0877 (7)0.7906 (5)0.7057 (2)0.0844 (15)
H191.1340500.8406150.7373450.101*
C110.4120 (7)0.4460 (5)0.26600 (19)0.0832 (14)
H110.3669150.4771350.2278360.100*
C181.0317 (7)0.8376 (4)0.6481 (2)0.0874 (14)
H181.0397790.9175810.6416260.105*
C221.1374 (8)0.6258 (6)0.78220 (19)0.0994 (18)
H22A1.0448250.6417370.8077190.149*
H22B1.2491680.6626130.7994080.149*
H22C1.1556450.5430060.7800460.149*
C30.3300 (11)0.9322 (6)0.4407 (3)0.1213 (13)
H30.2456660.9894890.4471210.146*
C20.2919 (10)0.8188 (5)0.4544 (3)0.1180 (12)
H2A0.1887970.7990540.4720400.142*
C60.5724 (10)0.7645 (5)0.4144 (2)0.1031 (12)
C10.4177 (10)0.7334 (5)0.4404 (2)0.1081 (12)
H10.3969960.6552680.4486000.130*
C50.6069 (10)0.8824 (5)0.4039 (2)0.1137 (12)
H50.7106530.9055240.3875650.136*
C40.4790 (11)0.9644 (6)0.4189 (2)0.1204 (13)
H40.5002781.0434590.4131960.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.066 (2)0.068 (2)0.0531 (17)0.0089 (17)0.0017 (14)0.0065 (15)
N10.073 (2)0.069 (2)0.0499 (17)0.0104 (17)0.0016 (15)0.0052 (15)
O20.137 (3)0.0681 (19)0.076 (2)0.010 (2)0.0158 (19)0.0019 (16)
O10.123 (3)0.137 (3)0.086 (2)0.046 (3)0.033 (2)0.010 (2)
C160.054 (2)0.070 (3)0.0515 (19)0.0107 (19)0.0062 (16)0.0051 (17)
C90.054 (2)0.076 (3)0.0511 (19)0.007 (2)0.0080 (16)0.0057 (18)
C150.059 (2)0.067 (2)0.055 (2)0.0119 (19)0.0068 (17)0.0041 (17)
C80.055 (2)0.071 (3)0.0500 (19)0.0077 (19)0.0063 (16)0.0002 (17)
C210.061 (3)0.083 (3)0.050 (2)0.001 (2)0.0076 (17)0.0030 (18)
C140.077 (3)0.073 (3)0.058 (2)0.006 (2)0.004 (2)0.002 (2)
C200.058 (3)0.103 (4)0.054 (2)0.003 (2)0.0051 (18)0.011 (2)
C70.084 (3)0.085 (3)0.047 (2)0.020 (3)0.001 (2)0.0051 (19)
C170.078 (3)0.070 (3)0.061 (2)0.012 (2)0.000 (2)0.007 (2)
C100.087 (3)0.082 (3)0.051 (2)0.003 (2)0.0026 (19)0.003 (2)
C130.083 (3)0.076 (3)0.082 (3)0.002 (2)0.010 (2)0.016 (2)
C120.073 (3)0.101 (4)0.068 (3)0.006 (3)0.003 (2)0.029 (3)
C190.077 (3)0.105 (4)0.068 (3)0.005 (3)0.001 (2)0.026 (3)
C110.087 (4)0.105 (4)0.054 (2)0.008 (3)0.002 (2)0.009 (2)
C180.098 (4)0.074 (3)0.087 (3)0.001 (3)0.001 (3)0.016 (2)
C220.097 (4)0.147 (5)0.052 (2)0.010 (3)0.000 (2)0.007 (3)
C30.163 (3)0.104 (2)0.0846 (19)0.038 (2)0.0283 (19)0.0113 (17)
C20.157 (3)0.105 (2)0.0817 (18)0.036 (2)0.0232 (18)0.0129 (17)
C60.153 (3)0.0836 (19)0.0617 (17)0.024 (2)0.0240 (17)0.0021 (16)
C10.150 (3)0.0933 (19)0.0707 (18)0.033 (2)0.0220 (18)0.0100 (16)
C50.165 (3)0.0914 (19)0.0731 (18)0.022 (2)0.0253 (18)0.0004 (16)
C40.169 (3)0.097 (2)0.0819 (19)0.028 (2)0.0292 (19)0.0017 (17)
Geometric parameters (Å, º) top
N2—C151.287 (5)C10—H100.9300
N2—N11.411 (4)C13—C121.384 (6)
N1—C81.289 (4)C13—H130.9300
O2—C171.359 (5)C12—C111.366 (7)
O2—H20.8200C12—H120.9300
O1—C71.209 (5)C19—C181.384 (7)
C16—C171.393 (6)C19—H190.9300
C16—C211.406 (5)C11—H110.9300
C16—C151.452 (5)C18—H180.9300
C9—C141.393 (6)C22—H22A0.9600
C9—C101.393 (5)C22—H22B0.9600
C9—C81.472 (5)C22—H22C0.9600
C15—H150.9300C3—C41.314 (9)
C8—C71.518 (6)C3—C21.372 (9)
C21—C201.382 (6)C3—H30.9300
C21—H210.9300C2—C11.413 (8)
C14—C131.386 (6)C2—H2A0.9300
C14—H140.9300C6—C11.393 (9)
C20—C191.377 (7)C6—C51.399 (8)
C20—C221.514 (6)C1—H10.9300
C7—C61.469 (7)C5—C41.405 (9)
C17—C181.402 (6)C5—H50.9300
C10—C111.379 (6)C4—H40.9300
C15—N2—N1114.0 (3)C11—C12—C13120.2 (4)
C8—N1—N2111.7 (3)C11—C12—H12119.9
C17—O2—H2109.5C13—C12—H12119.9
C17—C16—C21118.9 (4)C20—C19—C18123.1 (4)
C17—C16—C15121.9 (3)C20—C19—H19118.5
C21—C16—C15119.2 (4)C18—C19—H19118.5
C14—C9—C10118.2 (4)C12—C11—C10120.3 (4)
C14—C9—C8121.4 (3)C12—C11—H11119.8
C10—C9—C8120.4 (4)C10—C11—H11119.8
N2—C15—C16121.8 (4)C19—C18—C17119.1 (5)
N2—C15—H15119.1C19—C18—H18120.4
C16—C15—H15119.1C17—C18—H18120.4
N1—C8—C9121.2 (4)C20—C22—H22A109.5
N1—C8—C7120.3 (3)C20—C22—H22B109.5
C9—C8—C7118.5 (3)H22A—C22—H22B109.5
C20—C21—C16122.4 (4)C20—C22—H22C109.5
C20—C21—H21118.8H22A—C22—H22C109.5
C16—C21—H21118.8H22B—C22—H22C109.5
C13—C14—C9120.7 (4)C4—C3—C2123.6 (7)
C13—C14—H14119.7C4—C3—H3118.2
C9—C14—H14119.7C2—C3—H3118.2
C19—C20—C21117.0 (4)C3—C2—C1116.5 (7)
C19—C20—C22121.3 (4)C3—C2—H2A121.8
C21—C20—C22121.7 (5)C1—C2—H2A121.8
O1—C7—C6123.2 (5)C1—C6—C5119.6 (6)
O1—C7—C8118.2 (5)C1—C6—C7120.5 (5)
C6—C7—C8118.6 (4)C5—C6—C7119.9 (7)
O2—C17—C16123.4 (4)C6—C1—C2121.0 (6)
O2—C17—C18117.2 (4)C6—C1—H1119.5
C16—C17—C18119.5 (4)C2—C1—H1119.5
C11—C10—C9120.9 (5)C6—C5—C4117.6 (7)
C11—C10—H10119.6C6—C5—H5121.2
C9—C10—H10119.6C4—C5—H5121.2
C12—C13—C14119.7 (5)C3—C4—C5121.6 (7)
C12—C13—H13120.1C3—C4—H4119.2
C14—C13—H13120.1C5—C4—H4119.2
C15—N2—N1—C8178.3 (3)C14—C9—C10—C111.2 (6)
N1—N2—C15—C16176.5 (3)C8—C9—C10—C11179.6 (4)
C17—C16—C15—N20.4 (6)C9—C14—C13—C120.3 (7)
C21—C16—C15—N2176.7 (4)C14—C13—C12—C110.1 (7)
N2—N1—C8—C9177.8 (3)C21—C20—C19—C181.5 (7)
N2—N1—C8—C74.3 (5)C22—C20—C19—C18178.7 (5)
C14—C9—C8—N12.4 (6)C13—C12—C11—C100.2 (7)
C10—C9—C8—N1176.7 (4)C9—C10—C11—C120.9 (7)
C14—C9—C8—C7175.5 (4)C20—C19—C18—C170.4 (8)
C10—C9—C8—C75.3 (6)O2—C17—C18—C19178.6 (4)
C17—C16—C21—C201.7 (6)C16—C17—C18—C190.1 (7)
C15—C16—C21—C20175.5 (4)C4—C3—C2—C13.8 (8)
C10—C9—C14—C130.9 (6)O1—C7—C6—C1174.8 (4)
C8—C9—C14—C13179.9 (4)C8—C7—C6—C13.2 (6)
C16—C21—C20—C192.1 (6)O1—C7—C6—C56.6 (7)
C16—C21—C20—C22178.0 (4)C8—C7—C6—C5175.3 (4)
N1—C8—C7—O196.0 (5)C5—C6—C1—C22.1 (7)
C9—C8—C7—O181.9 (5)C7—C6—C1—C2179.4 (4)
N1—C8—C7—C685.9 (5)C3—C2—C1—C60.5 (7)
C9—C8—C7—C696.2 (4)C1—C6—C5—C41.6 (7)
C21—C16—C17—O2179.2 (4)C7—C6—C5—C4179.9 (4)
C15—C16—C17—O22.1 (7)C2—C3—C4—C54.4 (9)
C21—C16—C17—C180.5 (6)C6—C5—C4—C31.5 (8)
C15—C16—C17—C18176.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.942.650 (5)145
C3—H3···O2i0.932.543.434 (8)162
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

Author contributions are as follows. Conceptualization, SK, ND and SOMA; synthesis, DT and AAA; writing (review and editing of the manuscript) SK, FAA and DT; formal analysis, SK and ND; crystal-structure determination, ND; validation, SK, ND and AAA, project administration, SK and SOMA.

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationAl Zoubi, W. (2013). Int. J. Org. Chem. 3, 73–95.  Google Scholar
First citationAntonijevic, M. & Petrovic, M. (2008). Int. J. Electrochem. Sci. 3, 1–28.  CAS Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Vol. 936. Biovia, San Diego, CA, USA.  Google Scholar
First citationBouchama, A., Yahiaoui, M., Chiter, C., Setifi, Z. & Simpson, J. (2015). Acta Cryst. E71, 35–37.  CSD CrossRef IUCr Journals Google Scholar
First citationDestri, S., Khotina, I. A. & Porzio, W. (1998). Macromolecules, 31, 1079–1086.  CrossRef CAS Google Scholar
First citationEbrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155.  Google Scholar
First citationElmacı, G., Aktan, E., Seferoğlu, N., Hökelek, T. & Seferoğlu, Z. (2015). J. Mol. Struct. 1099, 83–91.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwan, A. & Sek, D. (2008). Prog. Polym. Sci. 33, 289–345.  CrossRef CAS Google Scholar
First citationJin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289–293.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKaştaş, G., Kaştaş, A., Ersanlı, C. C. & Kırca, B. K. (2020). Crystallogr. Rep. 65, 463–467.  Google Scholar
First citationLe Goff, G. & Ouazzani, J. (2014). Bioorg. Med. Chem. 22, 6529–6544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarcel, W., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. pp. 22 Article 1267.  Google Scholar
First citationPatra, G. K., Mukherjee, A. & Ng, S. W. (2009). Acta Cryst. E65, o1745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatra, G. K. & Ng, S. W. (2009). Acta Cryst. E65, o1810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem. 25, 1261–1264.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTrott, O. & Olson, A. J. (2010). J. Comput. Chem. 31, 455–461.  Web of Science PubMed CAS Google Scholar
First citationWieland, M., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. 22, 1267–1279.  Web of Science CSD CrossRef CAS Google Scholar
First citationYahyaoui, M., Bouchama, A., Anak, B., Chiter, C., Djedouani, A. & Rabilloud, F. (2019). J. Mol. Struct. 1177, 69–77.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds