research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of potassium tri­ethyl­hydridoborate (`superhydride')

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 29 April 2021; accepted 4 May 2021; online 7 May 2021)

In the title compound, formally K+·C6H16B, the contact sphere of potassium consists of eleven hydrogen atoms from three different anions, assuming an arbitrary cut-off of 3 Å. The shortest inter­action, 2.53 (2) Å, involves the hydridic hydrogen H01, which fulfils a bridging function in the formation of chains of KHBEt3 units parallel to the a axis [K1—H01i 2.71 (2) Å, K1—H01—K1ii 126.7 (9)°, operators x∓1/2, −y + [{3\over 2}], −z + 1].

1. Chemical context

The title compound KHBEt3 was first prepared by Ziegler and Lehmkuhl from NaBEt3H and potassium amalgam (Ziegler & Lehmkuhl, 1963[Ziegler, K. & Lehmkuhl, H. (1963). German Patent DE 1157620.]), but a more convenient approach was reported a few years later using KH and BEt3 in toluene (Binger et al., 1968[Binger, P., Benedikt, G., Rotermund, G. W. & Köster, R. (1968). Liebigs Ann. Chem. 717, 21-40.]). Alternatively, the latter reaction may also be performed in THF (Brown & Krishnamurthy, 1978[Brown, C. A. & Krishnamurthy, S. (1978). J. Organomet. Chem. 156, 111-121.]). Since its original synthesis this so-called `superhydride' reagent has found widespread applications, e.g. as a reducing reagent in organic synthesis (Brown & Hubbard, 1979[Brown, C. A. & Hubbard, J. L. (1979). J. Am. Chem. Soc. 101, 3964-3966.]; Ito et al., 1985[Ito, Y., Katsuki, T. & Yamaguchi, M. (1985). Tetrahedron Lett. 26, 4643-4646.]; Yoon et al. 1987[Yoon, N. M., Yang, H. S. & Hwang, Y. S. (1987). Bull. Korean Chem. Soc. 8, 285-291.], 1989[Yoon, N. M., Yang, H. S. & Hwang, Y. S. (1989). Bull. Korean Chem. Soc. 10, 205-206.]), for the generation of low-valent transition-metal complexes (Bönnemann & Korall, 1992[Bönnemann, H. & Korall, B. (1992). Angew. Chem. Int. Ed. Engl. 31, 1490-1492.]), and as a hydride transfer reagent resulting in well-defined metal–hydride complexes (Smith et al., 2003[Smith, J. M., Lachicotte, R. J. & Holland, P. J. (2003). J. Am. Chem. Soc. 125, 15752-15753.]; Pfirrmann et al., 2008[Pfirrmann, S., Limberg, C. & Ziemer, B. (2008). Dalton Trans. pp. 6689-6691.]; Walter et al., 2011[Walter, M. D., Grunenberg, J. & White, P. S. (2011). Chem. Sci. 2, 2120-2130.]; Maekawa et al., 2012[Maekawa, M., Römelt, M., Daniliuc, C. G., Jones, P. G., White, P. S., Neese, F. & Walter, M. D. (2012). Chem. Sci. 3, 2972-2979.]). Despite it being a reagent in frequent use, the structure of KHBEt3 has so far remained elusive. The few reported examples of structures containing KHBEt3 include its adducts with polydentate amines such as N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) and N,N,N′,N",N"-penta­methyl­diethylenetri­amine (PMDETA) (Haywood & Wheatley, 2009[Haywood, J. & Wheatley, A. E. H. (2009). Eur. J. Inorg. Chem. pp. 5010-5016.]). During our study on the coordination chemistry of enanti­omerically pure constrained-geometry complexes of the rare-earth metals bearing a dianionic N-donor functionalized penta­dienyl ligand, we accidentally obtained crystals of solvent-free KHBEt3 unsupported by any further ligands (see Synthesis and crystallization) and here report its structure.

[Scheme 1]

2. Structural commentary

The asymmetric unit of KHBEt3 is shown in Fig. 1[link]. Selected inter­atomic distances and angles are shown in Table 1[link]. The shortest contact involving the potassium atom is K1—H01 at 2.53 (2) Å, but K1—H5B (not drawn explicitly) is not much longer at 2.69 Å. If the neighbouring asymmetric units generated by the 21 screw axis parallel to the a axis (see next section) are considered, there are a total of eleven K1—H distances shorter than 3 Å, with no clear limit as to what might be considered a `bonding' distance. One further such distance involves the 21 screw axis parallel to the c axis. The environment of the potassium atom is shown in Fig. 2[link]. For comparison, one may note the K—H distance of 2.85 Å in potassium hydride (Kuznetsov & Shkrabkina, 1962[Kuznetsov, V. G. & Shkrabkina, M. M. (1962). J. Struct. Chem. 3, 532-537.]), which, however, is regarded as an essentially ionic compound, crystallizing in the NaCl lattice type with coordination number 6 (cf. the ionic formulation of the title compound in Table 2[link], which is certainly a considerable oversimplification). Some K⋯H contacts of ca 2.8–2.9 Å, involving methyl hydrogen atoms, have been postulated as structurally significant in a TMEDA complex of potassium diiso­propyl­amide (Clegg et al., 1998[Clegg, W., Kleditzsch, S., Mulvey, R. E. & O'Shaughnessy, P. (1998). J. Organomet. Chem. 558, 193-196.]). Similarly, the distances from K1 to carbon and boron atoms range upwards from 3.103 (2) and 3.205 (2) Å, respectively. The bonding to CHn and BH moieties may involve multi-centre inter­actions, but we do not wish to speculate on their exact nature. The coordination geometry at the boron atom is as expected tetra­hedral to a good approximation.

Table 1
Selected geometric parameters (Å, °)

K1—C1i 3.103 (2) K1—H2Biii 2.83
K1—B1 3.205 (2) K1—H3Bii 2.93
K1—C5 3.310 (2) K1—H3A 2.93
K1—C3ii 3.387 (2) K1—H5Aii 2.94
K1—C5ii 3.396 (2) K1—H3Aii 2.97
K1—B1i 3.465 (2) K1—H5Bii 2.99
K1—H01 2.53 (2) B1—C3 1.640 (3)
K1—H5B 2.69 B1—C5 1.640 (3)
K1—H01i 2.71 (2) B1—C1 1.640 (3)
K1—H1Ai 2.76 B1—H01 1.20 (2)
K1—H1Bi 2.75    
       
C3—B1—C5 109.90 (16) C1—B1—H01 106.1 (10)
C3—B1—C1 112.16 (16) K1—H01—B1 113.5 (13)
C5—B1—C1 111.40 (16) K1—H01—K1ii 126.7 (9)
C3—B1—H01 107.6 (10) H01—K1—H01i 104.0 (4)
C5—B1—H01 109.5 (10)    
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Table 2
Experimental details

Crystal data
Chemical formula K+·C6H16B
Mr 138.10
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.4758 (3), 7.6682 (6), 14.8010 (12)
V3) 848.48 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.3 × 0.2 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.976, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13206, 2441, 2182
Rint 0.060
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.068, 1.04
No. of reflections 2441
No. of parameters 80
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.23
Absolute structure Flack x determined using 806 quotients [(I+)−(I)]/[(I+)+(I)] (Parsonset al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (3)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).
[Figure 1]
Figure 1
The asymmetric unit of KHBEt3. Ellipsoids are drawn at the 50% level. Only the shortest K1—H contact is drawn explicitly.
[Figure 2]
Figure 2
The environment of the potassium atom in KHBEt3, showing ten of the eleven K—H contacts < 3 Å to three neighbouring hydridotri­ethyl­borate units. Radii are arbitrary. K—H distances shorter than 2.8 Å are shown as thick dashed bonds, whereas those greater than 2.9 Å are shown as thin dashed bonds. The anion on the right corresponds to the asymmetric unit; the anions at top and bottom were generated by the operators [{1\over 2}] + x, [{3\over 2}] − y, 1 − z and −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z, respectively. The contact to H2B of a fourth anion (at [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z) is omitted for clarity.

3. Supra­molecular features

To a first approximation, ignoring all inter­actions at K1 except for K1—H01, the mol­ecules are connected by the appropriate 21 operators to form chains parallel to the a axis (Fig. 3[link]). The hydridic hydrogen atom acts as the main bridging group, with K1—H01i = 2.71 (2) Å, H01—K1—H01i = 104.0 (4)°, K1—H01—K1ii = 126.7 (9)°. The distance between adjacent potassium atoms in the chain is 4.6839 (6) Å.

[Figure 3]
Figure 3
Simplified packing diagram of KHBEt3 viewed parallel to the b axis. Hydrogen atoms except for H01 are omitted.

4. Database survey

A CSD search with ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for organic hydridoborate derivatives involving K—H bonds led to the above-mentioned complexes [K(TMEDA)Et3BH]2 and [K(PMDETA)Et3BH]2 (Haywood & Wheatley, 2009[Haywood, J. & Wheatley, A. E. H. (2009). Eur. J. Inorg. Chem. pp. 5010-5016.], refcodes CUNNEF and CUNNIJ) with K—H distances of 2.52, 2.58 (3) and 2.64, 2.69 (3) Å, respectively, in the central K2H2 rings. A similar structure (refcode OZAZAR), but with 1,3,5-tri­methyl-1,3,5-tri­aza­nonane, was reported by Krieck et al. (2010[Krieck, S., Görls, H. & Westerhausen, M. (2010). Inorg. Chem. Commun. 13, 1466-1469.]), with K—H = 2.56, 2.59 (3) Å. Somewhat more complex structures, involving cyclic boranes and additional aromatic ligands at the potassium atom, have been reported by Grigsby & Power (1996[Grigsby, W. J. & Power, P. P. (1996). J. Am. Chem. Soc. 118, 7981-7988.]; refcode TIZYAC, K—H = 2.54, 2.68 Å) and Chen et al. [2007[Chen, X., Liu, S., Du, B., Meyers, E. A. & Shore, S. G. (2007). Eur. J. Inorg. Chem. pp. 5563-5570.]; refcode MITWUI, K—H = 2.65–2.92 (1) Å].

5. Synthesis and crystallization

We attempted the preparation of a rare-earth metal hydride by salt metathesis between [{(η5:κ-N-pdl*SiMe2NtBu)La(thf)}2(μ-Cl)] (Jones et al., 2021[Jones, P. G., Freytag, M., Fecker, A. C. & Walter, M. D. (2021). CSD Communication (CCDC-2056070). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc270hvm.]) and 2 equiv. of KHBEt3 (1 M in THF) in n-hexane. The standard work-up procedure included removal of the solvent under dynamic vacuum, extraction of the residue with n-hexane and filtration. The filtrate was concentrated and cooled to 243 K. After several days, a few pale-yellow crystals were harvested. However, in contrast to our expectations, these did not consist of [{(η5:κ-N-pdl*SiMe2NtBu)La(thf)}2(μ-H)], but of the starting reagent KHBEt3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The BH hydrogen atom was refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C—H = 0.98 Å, H—C—H = 109.5 °). The methyl­ene hydrogens were included using a riding model starting from calculated positions (C—H = 0.99 Å). The Uiso(H) values were fixed at 1.2 (for methyl­ene groups) or 1.5 (for methyl groups) times the equivalent Ueq value of the parent carbon atoms.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

Potassium triethylhydridoborate top
Crystal data top
K+·C6H16BDx = 1.081 Mg m3
Mr = 138.10Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2443 reflections
a = 7.4758 (3) Åθ = 2.8–26.1°
b = 7.6682 (6) ŵ = 0.54 mm1
c = 14.8010 (12) ÅT = 100 K
V = 848.48 (10) Å3Prism, pale yellow
Z = 40.3 × 0.2 × 0.15 mm
F(000) = 304
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2441 independent reflections
Radiation source: Enhance (Mo) X-ray Source2182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2013)
k = 1010
Tmin = 0.976, Tmax = 1.000l = 2020
13206 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.0172P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2441 reflectionsΔρmax = 0.20 e Å3
80 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack x determined using 806 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsonset al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The compound is achiral and crystallizes only by chance in a chiral (Sohncke) space group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.22297 (6)0.87358 (6)0.42934 (3)0.01798 (12)
B10.2627 (3)0.6127 (3)0.59734 (14)0.0140 (4)
H010.368 (3)0.680 (3)0.5467 (14)0.020 (6)*
C10.3821 (3)0.5161 (3)0.67567 (13)0.0159 (4)
H1B0.4574830.4261960.6464600.019*
H1A0.4632450.6034940.7029100.019*
C20.2753 (3)0.4296 (3)0.75137 (15)0.0260 (5)
H2C0.2008420.5172180.7815470.039*
H2B0.3577730.3777630.7952570.039*
H2A0.1986370.3383120.7258850.039*
C30.1433 (3)0.4737 (3)0.53862 (14)0.0184 (5)
H3B0.0533830.4208460.5793830.022*
H3A0.0774040.5393430.4916260.022*
C40.2465 (3)0.3262 (3)0.49238 (16)0.0271 (5)
H4C0.3425930.3757260.4553480.041*
H4B0.1649520.2593040.4538460.041*
H4A0.2981150.2491850.5383420.041*
C50.1323 (3)0.7630 (3)0.64061 (14)0.0150 (4)
H5B0.0670290.8203940.5905740.018*
H5A0.0422780.7047830.6793260.018*
C60.2249 (3)0.9042 (3)0.69656 (16)0.0270 (5)
H6C0.2845440.8504120.7485170.041*
H6B0.1357280.9883250.7179300.041*
H6A0.3136440.9642830.6591070.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01299 (19)0.0216 (2)0.0194 (2)0.00053 (18)0.00233 (19)0.0028 (2)
B10.0099 (10)0.0164 (10)0.0156 (10)0.0015 (10)0.0008 (8)0.0005 (8)
C10.0112 (10)0.0187 (10)0.0178 (11)0.0003 (8)0.0013 (8)0.0028 (9)
C20.0195 (11)0.0318 (12)0.0267 (12)0.0025 (10)0.0045 (10)0.0133 (9)
C30.0145 (10)0.0199 (11)0.0207 (11)0.0033 (8)0.0003 (8)0.0018 (8)
C40.0236 (13)0.0251 (11)0.0326 (12)0.0052 (9)0.0056 (10)0.0120 (9)
C50.0130 (10)0.0163 (10)0.0158 (10)0.0002 (8)0.0018 (8)0.0013 (8)
C60.0185 (10)0.0248 (12)0.0377 (13)0.0016 (10)0.0033 (11)0.0127 (9)
Geometric parameters (Å, º) top
K1—C1i3.103 (2)B1—C11.640 (3)
K1—B13.205 (2)B1—H011.20 (2)
K1—C53.310 (2)C1—C21.527 (3)
K1—C3ii3.387 (2)C1—H1B0.9900
K1—C5ii3.396 (2)C1—H1A0.9900
K1—B1i3.465 (2)C2—H2C0.9800
K1—C2iii3.513 (2)C2—H2B0.9800
K1—C33.518 (2)C2—H2A0.9800
K1—H012.53 (2)C3—C41.530 (3)
K1—H5B2.69C3—H3B0.9900
K1—H01i2.71 (2)C3—H3A0.9900
K1—H1Ai2.76C4—H4C0.9800
K1—H1Bi2.75C4—H4B0.9800
K1—H2Biii2.83C4—H4A0.9800
K1—H3Bii2.93C5—C61.529 (3)
K1—H3A2.93C5—H5B0.9900
K1—H5Aii2.94C5—H5A0.9900
K1—H3Aii2.97C6—H6C0.9800
K1—H5Bii2.99C6—H6B0.9800
B1—C31.640 (3)C6—H6A0.9800
B1—C51.640 (3)
C1i—K1—B1129.41 (5)B1—C1—H1A108.4
C1i—K1—C5112.01 (5)K1ii—C1—H1A61.0
B1—K1—C529.10 (5)H1B—C1—H1A107.5
C1i—K1—C3ii137.56 (5)C1—C2—K1iv146.66 (14)
B1—K1—C3ii91.22 (5)C1—C2—H2C109.5
C5—K1—C3ii98.42 (5)K1iv—C2—H2C96.6
C1i—K1—C5ii132.18 (5)C1—C2—H2B109.5
B1—K1—C5ii87.74 (5)K1iv—C2—H2B39.9
C5—K1—C5ii113.18 (5)H2C—C2—H2B109.5
C3ii—K1—C5ii46.63 (5)C1—C2—H2A109.5
C1i—K1—B1i28.23 (5)K1iv—C2—H2A79.5
B1—K1—B1i101.50 (5)H2C—C2—H2A109.5
C5—K1—B1i84.95 (5)H2B—C2—H2A109.5
C3ii—K1—B1i157.94 (5)C4—C3—B1116.29 (17)
C5ii—K1—B1i150.39 (5)C4—C3—K1i141.80 (14)
C1i—K1—C2iii78.93 (6)B1—C3—K1i101.88 (11)
B1—K1—C2iii99.69 (6)C4—C3—K1110.68 (14)
C5—K1—C2iii122.65 (5)B1—C3—K165.47 (10)
C3ii—K1—C2iii109.29 (5)K1i—C3—K185.41 (5)
C5ii—K1—C2iii64.15 (5)C4—C3—H3B108.2
B1i—K1—C2iii86.47 (5)B1—C3—H3B108.2
C1i—K1—C3109.21 (5)K1i—C3—H3B55.0
B1—K1—C327.73 (5)K1—C3—H3B138.8
C5—K1—C346.18 (5)C4—C3—H3A108.2
C3ii—K1—C3113.21 (5)B1—C3—H3A108.2
C5ii—K1—C391.37 (5)K1i—C3—H3A57.4
B1i—K1—C384.88 (5)K1—C3—H3A47.0
C2iii—K1—C376.61 (5)H3B—C3—H3A107.4
C1i—K1—H01148.8 (5)C3—C4—H4C109.5
B1—K1—H0120.1 (5)C3—C4—H4B109.5
C5—K1—H0144.7 (5)H4C—C4—H4B109.5
C3ii—K1—H0173.1 (5)C3—C4—H4A109.5
C5ii—K1—H0169.0 (5)H4C—C4—H4A109.5
B1i—K1—H01121.4 (5)H4B—C4—H4A109.5
C2iii—K1—H0197.1 (5)C6—C5—B1116.11 (17)
C3—K1—H0140.9 (5)C6—C5—K1103.74 (13)
C3—B1—C5109.90 (16)B1—C5—K171.90 (10)
C3—B1—C1112.16 (16)C6—C5—K1i142.33 (14)
C5—B1—C1111.40 (16)B1—C5—K1i101.54 (11)
C3—B1—K186.80 (11)K1—C5—K1i88.60 (5)
C5—B1—K179.00 (11)C6—C5—H5B108.3
C1—B1—K1151.74 (13)B1—C5—H5B108.3
C3—B1—K1ii119.99 (12)K1—C5—H5B44.0
C5—B1—K1ii127.85 (13)K1i—C5—H5B57.7
C1—B1—K1ii63.51 (10)C6—C5—H5A108.3
K1—B1—K1ii89.12 (5)B1—C5—H5A108.3
C3—B1—H01107.6 (10)K1—C5—H5A143.3
C5—B1—H01109.5 (10)K1i—C5—H5A54.9
C1—B1—H01106.1 (10)H5B—C5—H5A107.4
K1—B1—H0146.4 (10)C5—C6—H6C109.5
K1ii—B1—H0142.8 (10)C5—C6—H6B109.5
C2—C1—B1115.49 (18)H6C—C6—H6B109.5
C2—C1—K1ii156.25 (14)C5—C6—H6A109.5
B1—C1—K1ii88.26 (11)H6C—C6—H6A109.5
C2—C1—H1B108.4H6B—C6—H6A109.5
B1—C1—H1B108.4K1—H01—B1113.5 (13)
K1ii—C1—H1B60.2K1—H01—K1ii126.7 (9)
C2—C1—H1A108.4H01—K1—H01i104.0 (4)
C3—B1—C1—C266.0 (2)K1ii—B1—C3—K1i166.41 (7)
C5—B1—C1—C257.7 (2)C5—B1—C3—K177.09 (14)
K1—B1—C1—C2164.9 (2)C1—B1—C3—K1158.41 (16)
K1ii—B1—C1—C2179.55 (19)K1ii—B1—C3—K187.13 (10)
C3—B1—C1—K1ii113.58 (14)C3—B1—C5—C6179.27 (18)
C5—B1—C1—K1ii122.76 (14)C1—B1—C5—C655.8 (2)
K1—B1—C1—K1ii15.5 (3)K1—B1—C5—C696.78 (17)
B1—C1—C2—K1iv161.9 (2)K1ii—B1—C5—C616.6 (3)
K1ii—C1—C2—K1iv17.0 (6)C3—B1—C5—K182.48 (14)
C5—B1—C3—C4179.06 (18)C1—B1—C5—K1152.57 (16)
C1—B1—C3—C456.4 (2)K1ii—B1—C5—K180.16 (12)
K1—B1—C3—C4101.97 (17)C3—B1—C5—K1i2.19 (17)
K1ii—B1—C3—C414.8 (2)C1—B1—C5—K1i122.76 (14)
C5—B1—C3—K1i2.19 (17)K1—B1—C5—K1i84.67 (6)
C1—B1—C3—K1i122.31 (13)K1ii—B1—C5—K1i164.83 (9)
K1—B1—C3—K1i79.28 (7)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y+1, z+1/2.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBinger, P., Benedikt, G., Rotermund, G. W. & Köster, R. (1968). Liebigs Ann. Chem. 717, 21–40.  CrossRef CAS Google Scholar
First citationBönnemann, H. & Korall, B. (1992). Angew. Chem. Int. Ed. Engl. 31, 1490–1492.  Google Scholar
First citationBrown, C. A. & Hubbard, J. L. (1979). J. Am. Chem. Soc. 101, 3964–3966.  CrossRef CAS Web of Science Google Scholar
First citationBrown, C. A. & Krishnamurthy, S. (1978). J. Organomet. Chem. 156, 111–121.  CrossRef CAS Web of Science Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, X., Liu, S., Du, B., Meyers, E. A. & Shore, S. G. (2007). Eur. J. Inorg. Chem. pp. 5563–5570.  Web of Science CSD CrossRef Google Scholar
First citationClegg, W., Kleditzsch, S., Mulvey, R. E. & O'Shaughnessy, P. (1998). J. Organomet. Chem. 558, 193–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrigsby, W. J. & Power, P. P. (1996). J. Am. Chem. Soc. 118, 7981–7988.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaywood, J. & Wheatley, A. E. H. (2009). Eur. J. Inorg. Chem. pp. 5010–5016.  Web of Science CSD CrossRef Google Scholar
First citationIto, Y., Katsuki, T. & Yamaguchi, M. (1985). Tetrahedron Lett. 26, 4643–4646.  CrossRef CAS Web of Science Google Scholar
First citationJones, P. G., Freytag, M., Fecker, A. C. & Walter, M. D. (2021). CSD Communication (CCDC-2056070). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc270hvm.  Google Scholar
First citationKrieck, S., Görls, H. & Westerhausen, M. (2010). Inorg. Chem. Commun. 13, 1466–1469.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuznetsov, V. G. & Shkrabkina, M. M. (1962). J. Struct. Chem. 3, 532–537.  CrossRef Google Scholar
First citationMaekawa, M., Römelt, M., Daniliuc, C. G., Jones, P. G., White, P. S., Neese, F. & Walter, M. D. (2012). Chem. Sci. 3, 2972–2979.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPfirrmann, S., Limberg, C. & Ziemer, B. (2008). Dalton Trans. pp. 6689–6691.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSmith, J. M., Lachicotte, R. J. & Holland, P. J. (2003). J. Am. Chem. Soc. 125, 15752–15753.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWalter, M. D., Grunenberg, J. & White, P. S. (2011). Chem. Sci. 2, 2120–2130.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoon, N. M., Yang, H. S. & Hwang, Y. S. (1987). Bull. Korean Chem. Soc. 8, 285–291.  CAS Google Scholar
First citationYoon, N. M., Yang, H. S. & Hwang, Y. S. (1989). Bull. Korean Chem. Soc. 10, 205–206.  CAS Google Scholar
First citationZiegler, K. & Lehmkuhl, H. (1963). German Patent DE 1157620.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds