research communications
H-pyrazol-1-yl)acetate
of ethyl 2-(3-amino-5-oxo-2-tosyl-2,5-dihydro-1aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, C14H17N3O5S, the five-membered ring is essentially planar. The substituents at the nitrogen atoms subtend a C—N—N—S torsion angle of −95.52 (6)°. The amino group forms an intramolecular hydrogen bond to a sulfonyl oxygen atom; two intermolecular hydrogen bonds from the amino group, to the other S=O group and to the oxo substituent, form a layer structure parallel to the ab plane. The confirms that the title compound is N- rather than O-alkylated.
Keywords: pyrazole; tosyl; hydrogen bond; crystal structure.
CCDC reference: 2082046
1. Chemical context
Recently we have been attempting to develop synthetic strategies for heterocyclic ring systems containing N-sulfonylamino- and N-sulfonyl moieties. The products may be biologically active, displaying for instance anti-viral activity (Azzam et al., 2017, 2019, 2020; Zhu et al., 2013; Elgemeie et al., 2017, 2019). Also, some of our reported N-arylsulfonylpyrazole derivatives (Elgemeie et al., 1998, 2013; Elgemeie & Hanfy, 1999) proved to be inhibitors of the NS2B-NS3 virus and the enzyme cathepsin B16 (Myers et al., 2007; Sidique et al., 2009). In a continuation of our research investigating new approaches to other new derivatives of N-sulfonylpyrazoles, seeking various scaffolds for use as encouraging chemotherapeutics (Zhang et al., 2020; Elgemeie & Jones, 2002), we have now synthesized the N1-substituted derivative of N-sulfonylpyrazole 1 (the structure of which we have reported; Elgemeie et al., 2013).
The reaction of 1 with ethyl bromoacetate 2 in dry N,N-dimethylformamide containing anhydrous potassium carbonate at room temperature afforded a product for which two possible isomeric structures, the N-alkylated or O-alkylated N-sulfonylpyrazoles 3 or 4, were feasible. The 1H NMR spectrum of the product showed four singlet signals at δ = 2.41, 4.31, 4.40 and 7.15 ppm assigned to CH3, pyrazole-CH, CH2 and NH2 protons, along with triplet and quartet signals at δ = 1.17 and 4.09 ppm, assigned to ethyl groups. The spectroscopic data cannot differentiate between structures 3 and 4. We therefore determined the X-ray structure of this product, which proved to be the N-alkylated-N-sulfonylpyrazole 4.
2. Structural commentary
The molecule of compound 4 is shown in Fig. 1. Molecular dimensions, a selection of which are presented in Table 1, may be considered normal (e.g. the N1—N2 bond length corresponds to a single bond and these atoms display a pyramidal geometry). The substituents S1 and C6 of the five-membered ring, which is effectively planar (r.m.s. deviation 0.026 Å) lie significantly outside the ring plane [by 1.2344 (8) and 0.8468 (19) Å, respectively] in opposite directions; the corresponding torsion angle C6—N1—N2—S1 is −95.52 (6)°. The side chain at N1 exhibits an extended conformation. An intramolecular hydrogen bond is formed from the amino group to the sulfonyl oxygen atom O4 (Table 2). The ring planes subtend an interplanar angle of 57.01 (3)°.
|
3. Supramolecular features
The molecules of 4 are linked by two classical hydrogen bonds, from the NH2 hydrogen atoms H01 and H02 to the acceptors O5=S1 and O1=C5, to form layers parallel to the ab plane (Fig. 2, Table 2). The hydrogen atom H02 is thus involved in a three-centre hydrogen bond, taking the above-mentioned intramolecular interaction into account. The additional `weak' interactions H6B⋯O4 (within the layers; operator −x + 2, y − , −z + ) and H8B⋯O1 (between layers; operator −x + 1, −y + 1, −z) are not shown in the Figure. The shortest distance between ring centroids is 3.97 Å for the ring C10–C15 (operator 2 − x, 1 − y, 1 − z).
4. Database survey
A database search (CSD Version 5.41) for the same ring system as in 4, and bearing the same substituents at C5 (oxo) and C3 (amino), gave eight hits involving uncharged species. However, none of these was substituted at both ring nitrogen atoms. Two (our previous structures: Elgemeie et al., 1998, 2013) have a hydrogen atom at N1, while the other six have a hydrogen at N2; the other N-substituents are 9-thioxanthenyl (DOJKIW; Kimura, 1986), C(=S)NHEt (LUPDUW; Pitucha et al., 2010), C(=O)NHCH2COOEt (MAVJUK) and C(=O)NH-nBu (MAVKAX; Pitucha et al., 2011), C(=O)NHCH(Ph)CH3 (TIRVAT; Kaczor et al., 2013) and C(O)NH-1-naphthyl (VOQGOZ; Kaczor et al., 2014). It is notable that the X—N—N—X (X = H or substituent atom) torsion angles are very variable; in four cases the absolute value lies between 0 and 11°, whereas for the bulky substituents in DOJKIW and VOQGOZ the values are 63.7 and 32.1°, respectively.
5. Synthesis and crystallization
A mixture of 5-amino-1-tosyl-1,2-dihydro-3H-pyrazol-3-one 1 (0.01 mol), ethyl bromoacetate 2 (0.01 mol) and anhydrous potassium carbonate (0.01 mol) in N,N-dimethylformamide (5 mL) was stirred at room temperature for 3 h. The mixture was poured onto ice–water; the solid thus formed was filtered off and recrystallized from ethanol to give pale yellow crystals in 64% yield, m.p. = 415–416 K. IR (KBr, cm−1): ν 3460, 3297 (NH2), 1752 (ester C=O), 1700 (ring C=O); 1H NMR (DMSO-d6): δ = 1.17 (t, 3H, J = 7.2 Hz, CH3), 2.41 (s, 3H, CH3), 4.09 (q, 2H, J = 7.2 Hz, CH2), 4.31 (s, 1H, CH pyrazole), 4.40 (s, 2H, CH2), 7.15 (s, 2H, NH2), 7.45 (d, 2H, J = 8.4 Hz, Ar), 7.73 (d, 2H, J = 8.4 Hz, Ar). Analysis: calculated C14H17N3O5S (339.36); C, 49.55; H, 5.05; N, 12.38; S, 9.45. Found: C, 49.38; H, 5.23; N, 12.59; S, 9.27%.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms of the NH2 group were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethylene = 0.99 Å). The Uiso(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent Ueq value of the parent carbon atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2082046
https://doi.org/10.1107/S2056989021004795/zl5011sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021004795/zl5011Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021004795/zl5011Isup3.cml
Cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).C14H17N3O5S | F(000) = 712 |
Mr = 339.36 | Dx = 1.360 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1398 (2) Å | Cell parameters from 78897 reflections |
b = 11.1525 (2) Å | θ = 2.2–36.1° |
c = 16.3795 (3) Å | µ = 0.22 mm−1 |
β = 97.081 (2)° | T = 100 K |
V = 1656.85 (6) Å3 | Tablet, colourless |
Z = 4 | 0.24 × 0.20 × 0.08 mm |
XtaLAB Synergy, Single source at offset/far, HyPix diffractometer | 7466 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 6502 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.040 |
ω scans | θmax = 35.9°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −14→15 |
Tmin = 0.805, Tmax = 1.000 | k = −17→18 |
128543 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: mixed |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0543P)2 + 0.3217P] where P = (Fo2 + 2Fc2)/3 |
7466 reflections | (Δ/σ)max = 0.001 |
218 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 0.4791 (0.0031) x - 2.3604 (0.0036) y + 15.9693 (0.0013) z = 2.0024 (0.0032) * 0.0342 (0.0004) N1 * -0.0209 (0.0004) N2 * -0.0003 (0.0004) C3 * 0.0215 (0.0004) C4 * -0.0345 (0.0004) C5 -0.8468 (0.0010) C6 0.0094 (0.0011) N3 -0.1626 (0.0011) O1 1.2344 (0.0008) S1 Rms deviation of fitted atoms = 0.0255 7.3350 (0.0016) x - 0.2526 (0.0037) y + 8.0701 (0.0042) z = 9.4209 (0.0022) Angle to previous plane (with approximate esd) = 57.006 ( 0.025 ) * -0.0031 (0.0005) C10 * -0.0009 (0.0005) C11 * 0.0057 (0.0006) C12 * -0.0065 (0.0005) C13 * 0.0025 (0.0005) C14 * 0.0022 (0.0005) C15 -0.0668 (0.0010) S1 -0.0236 (0.0012) C16 Rms deviation of fitted atoms = 0.0040 |
x | y | z | Uiso*/Ueq | ||
N1 | 0.71924 (7) | 0.51318 (5) | 0.22496 (4) | 0.01525 (10) | |
N2 | 0.80727 (6) | 0.61874 (5) | 0.23976 (3) | 0.01313 (9) | |
C3 | 0.70693 (7) | 0.71323 (6) | 0.25200 (4) | 0.01349 (10) | |
C4 | 0.56556 (7) | 0.67098 (6) | 0.24288 (4) | 0.01709 (11) | |
H4 | 0.479736 | 0.716052 | 0.249768 | 0.021* | |
C5 | 0.56954 (8) | 0.54779 (6) | 0.22128 (4) | 0.01753 (12) | |
O1 | 0.47057 (7) | 0.47513 (6) | 0.19955 (4) | 0.02624 (12) | |
N3 | 0.75894 (7) | 0.82301 (5) | 0.27039 (4) | 0.01797 (11) | |
H01 | 0.6933 (15) | 0.8832 (12) | 0.2762 (8) | 0.029 (3)* | |
H02 | 0.8476 (15) | 0.8402 (12) | 0.2619 (8) | 0.029 (3)* | |
C6 | 0.75926 (9) | 0.43604 (6) | 0.15959 (4) | 0.01874 (12) | |
H6A | 0.692061 | 0.366114 | 0.153801 | 0.022* | |
H6B | 0.860733 | 0.405756 | 0.174982 | 0.022* | |
C7 | 0.75148 (8) | 0.50043 (6) | 0.07754 (4) | 0.01746 (12) | |
C8 | 0.81058 (10) | 0.48513 (7) | −0.05858 (5) | 0.02349 (14) | |
H8A | 0.884230 | 0.550504 | −0.056465 | 0.028* | |
H8B | 0.712342 | 0.518726 | −0.078401 | 0.028* | |
O2 | 0.70022 (8) | 0.59873 (5) | 0.06371 (4) | 0.02588 (12) | |
O3 | 0.80980 (7) | 0.43200 (5) | 0.02284 (3) | 0.02152 (11) | |
C9 | 0.84936 (12) | 0.38700 (8) | −0.11506 (5) | 0.02858 (17) | |
H9A | 0.856512 | 0.420399 | −0.169766 | 0.043* | |
H9B | 0.772657 | 0.325136 | −0.119119 | 0.043* | |
H9C | 0.944187 | 0.351494 | −0.093111 | 0.043* | |
S1 | 0.94519 (2) | 0.59188 (2) | 0.31853 (2) | 0.01400 (4) | |
O4 | 1.02319 (6) | 0.70299 (5) | 0.33031 (4) | 0.02030 (10) | |
O5 | 1.01852 (6) | 0.48758 (5) | 0.29250 (3) | 0.01987 (10) | |
C10 | 0.85810 (7) | 0.55582 (6) | 0.40445 (4) | 0.01440 (10) | |
C11 | 0.83563 (9) | 0.43557 (6) | 0.42138 (4) | 0.01902 (12) | |
H11 | 0.869968 | 0.374683 | 0.387917 | 0.023* | |
C12 | 0.76214 (9) | 0.40563 (7) | 0.48806 (5) | 0.02152 (13) | |
H12 | 0.747436 | 0.323625 | 0.500452 | 0.026* | |
C13 | 0.70971 (8) | 0.49456 (7) | 0.53699 (4) | 0.01845 (12) | |
C14 | 0.73476 (9) | 0.61451 (7) | 0.51909 (5) | 0.02110 (13) | |
H14 | 0.700833 | 0.675486 | 0.552637 | 0.025* | |
C15 | 0.80858 (9) | 0.64644 (6) | 0.45295 (4) | 0.01932 (12) | |
H15 | 0.824955 | 0.728372 | 0.441058 | 0.023* | |
C16 | 0.62816 (9) | 0.46037 (9) | 0.60792 (5) | 0.02581 (15) | |
H16A | 0.699167 | 0.440717 | 0.655867 | 0.039* | |
H16B | 0.565744 | 0.390460 | 0.592686 | 0.039* | |
H16C | 0.566462 | 0.527646 | 0.621388 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0188 (2) | 0.0120 (2) | 0.0151 (2) | −0.00278 (17) | 0.00269 (18) | −0.00152 (17) |
N2 | 0.0136 (2) | 0.0110 (2) | 0.0147 (2) | −0.00006 (16) | 0.00156 (16) | −0.00001 (16) |
C3 | 0.0135 (2) | 0.0126 (2) | 0.0146 (2) | 0.00057 (18) | 0.00261 (18) | 0.00023 (18) |
C4 | 0.0130 (2) | 0.0188 (3) | 0.0197 (3) | −0.0009 (2) | 0.0032 (2) | −0.0015 (2) |
C5 | 0.0173 (3) | 0.0193 (3) | 0.0161 (3) | −0.0050 (2) | 0.0029 (2) | −0.0004 (2) |
O1 | 0.0242 (3) | 0.0283 (3) | 0.0262 (3) | −0.0140 (2) | 0.0030 (2) | −0.0038 (2) |
N3 | 0.0167 (2) | 0.0115 (2) | 0.0261 (3) | −0.00030 (18) | 0.0040 (2) | −0.00131 (19) |
C6 | 0.0296 (3) | 0.0122 (2) | 0.0145 (3) | 0.0014 (2) | 0.0028 (2) | −0.0007 (2) |
C7 | 0.0228 (3) | 0.0151 (3) | 0.0142 (3) | 0.0014 (2) | 0.0011 (2) | −0.0009 (2) |
C8 | 0.0373 (4) | 0.0182 (3) | 0.0157 (3) | 0.0052 (3) | 0.0060 (3) | 0.0023 (2) |
O2 | 0.0418 (3) | 0.0172 (2) | 0.0188 (2) | 0.0097 (2) | 0.0042 (2) | 0.00153 (18) |
O3 | 0.0327 (3) | 0.0179 (2) | 0.0144 (2) | 0.0073 (2) | 0.00453 (19) | 0.00122 (17) |
C9 | 0.0462 (5) | 0.0220 (3) | 0.0196 (3) | 0.0069 (3) | 0.0121 (3) | 0.0011 (3) |
S1 | 0.01253 (7) | 0.01380 (7) | 0.01577 (7) | 0.00071 (4) | 0.00218 (5) | 0.00157 (5) |
O4 | 0.0162 (2) | 0.0189 (2) | 0.0251 (2) | −0.00522 (17) | −0.00029 (18) | 0.00314 (18) |
O5 | 0.0189 (2) | 0.0205 (2) | 0.0210 (2) | 0.00769 (18) | 0.00564 (18) | 0.00221 (18) |
C10 | 0.0165 (3) | 0.0128 (2) | 0.0139 (2) | 0.00007 (19) | 0.00173 (19) | −0.00002 (19) |
C11 | 0.0266 (3) | 0.0136 (3) | 0.0178 (3) | 0.0004 (2) | 0.0068 (2) | 0.0007 (2) |
C12 | 0.0293 (4) | 0.0174 (3) | 0.0188 (3) | −0.0025 (2) | 0.0070 (3) | 0.0021 (2) |
C13 | 0.0172 (3) | 0.0239 (3) | 0.0141 (3) | −0.0017 (2) | 0.0014 (2) | −0.0004 (2) |
C14 | 0.0251 (3) | 0.0207 (3) | 0.0182 (3) | 0.0013 (2) | 0.0052 (2) | −0.0039 (2) |
C15 | 0.0255 (3) | 0.0142 (3) | 0.0187 (3) | 0.0004 (2) | 0.0045 (2) | −0.0026 (2) |
C16 | 0.0223 (3) | 0.0393 (4) | 0.0165 (3) | −0.0045 (3) | 0.0053 (2) | 0.0009 (3) |
N1—C5 | 1.4157 (9) | C13—C14 | 1.3944 (11) |
N1—N2 | 1.4296 (8) | C13—C16 | 1.5046 (10) |
N1—C6 | 1.4549 (9) | C14—C15 | 1.3913 (11) |
N2—C3 | 1.4273 (8) | C4—H4 | 0.9500 |
N2—S1 | 1.7154 (6) | N3—H01 | 0.913 (13) |
C3—N3 | 1.3343 (8) | N3—H02 | 0.861 (13) |
C3—C4 | 1.3661 (9) | C6—H6A | 0.9900 |
C4—C5 | 1.4203 (10) | C6—H6B | 0.9900 |
C5—O1 | 1.2337 (8) | C8—H8A | 0.9900 |
C6—C7 | 1.5177 (10) | C8—H8B | 0.9900 |
C7—O2 | 1.2027 (8) | C9—H9A | 0.9800 |
C7—O3 | 1.3367 (9) | C9—H9B | 0.9800 |
C8—O3 | 1.4601 (9) | C9—H9C | 0.9800 |
C8—C9 | 1.5033 (11) | C11—H11 | 0.9500 |
S1—O4 | 1.4308 (6) | C12—H12 | 0.9500 |
S1—O5 | 1.4334 (5) | C14—H14 | 0.9500 |
S1—C10 | 1.7470 (7) | C15—H15 | 0.9500 |
C10—C11 | 1.3899 (9) | C16—H16A | 0.9800 |
C10—C15 | 1.3950 (9) | C16—H16B | 0.9800 |
C11—C12 | 1.3914 (10) | C16—H16C | 0.9800 |
C12—C13 | 1.3966 (11) | ||
C5—N1—N2 | 107.67 (5) | C3—C4—H4 | 126.0 |
C5—N1—C6 | 117.34 (6) | C5—C4—H4 | 126.0 |
N2—N1—C6 | 115.11 (5) | C3—N3—H01 | 118.5 (8) |
C3—N2—N1 | 105.89 (5) | C3—N3—H02 | 119.0 (9) |
C3—N2—S1 | 116.65 (4) | H01—N3—H02 | 119.8 (12) |
N1—N2—S1 | 109.25 (4) | N1—C6—H6A | 109.1 |
N3—C3—C4 | 130.31 (6) | C7—C6—H6A | 109.1 |
N3—C3—N2 | 119.47 (6) | N1—C6—H6B | 109.1 |
C4—C3—N2 | 110.21 (6) | C7—C6—H6B | 109.1 |
C3—C4—C5 | 107.94 (6) | H6A—C6—H6B | 107.8 |
O1—C5—N1 | 120.24 (7) | O3—C8—H8A | 110.3 |
O1—C5—C4 | 131.82 (7) | C9—C8—H8A | 110.3 |
N1—C5—C4 | 107.90 (6) | O3—C8—H8B | 110.3 |
N1—C6—C7 | 112.54 (6) | C9—C8—H8B | 110.3 |
O2—C7—O3 | 124.92 (7) | H8A—C8—H8B | 108.5 |
O2—C7—C6 | 124.94 (7) | C8—C9—H9A | 109.5 |
O3—C7—C6 | 110.15 (6) | C8—C9—H9B | 109.5 |
O3—C8—C9 | 107.14 (6) | H9A—C9—H9B | 109.5 |
C7—O3—C8 | 115.33 (6) | C8—C9—H9C | 109.5 |
O4—S1—O5 | 119.96 (4) | H9A—C9—H9C | 109.5 |
O4—S1—N2 | 104.95 (3) | H9B—C9—H9C | 109.5 |
O5—S1—N2 | 104.19 (3) | C10—C11—H11 | 120.5 |
O4—S1—C10 | 111.08 (3) | C12—C11—H11 | 120.5 |
O5—S1—C10 | 109.21 (3) | C11—C12—H12 | 119.6 |
N2—S1—C10 | 106.30 (3) | C13—C12—H12 | 119.6 |
C11—C10—C15 | 121.27 (6) | C15—C14—H14 | 119.4 |
C11—C10—S1 | 118.43 (5) | C13—C14—H14 | 119.4 |
C15—C10—S1 | 120.27 (5) | C14—C15—H15 | 120.6 |
C10—C11—C12 | 119.05 (6) | C10—C15—H15 | 120.6 |
C11—C12—C13 | 120.87 (7) | C13—C16—H16A | 109.5 |
C14—C13—C12 | 118.93 (6) | C13—C16—H16B | 109.5 |
C14—C13—C16 | 121.02 (7) | H16A—C16—H16B | 109.5 |
C12—C13—C16 | 120.05 (7) | C13—C16—H16C | 109.5 |
C15—C14—C13 | 121.14 (7) | H16A—C16—H16C | 109.5 |
C14—C15—C10 | 118.72 (7) | H16B—C16—H16C | 109.5 |
C5—N1—N2—C3 | 5.12 (7) | C3—N2—S1—O4 | −58.13 (5) |
C6—N1—N2—C3 | 138.08 (6) | N1—N2—S1—O4 | −178.12 (4) |
C5—N1—N2—S1 | 131.52 (5) | C3—N2—S1—O5 | 174.95 (5) |
C6—N1—N2—S1 | −95.52 (6) | N1—N2—S1—O5 | 54.96 (5) |
N1—N2—C3—N3 | 177.46 (6) | C3—N2—S1—C10 | 59.64 (5) |
S1—N2—C3—N3 | 55.69 (7) | N1—N2—S1—C10 | −60.35 (5) |
N1—N2—C3—C4 | −1.86 (7) | O4—S1—C10—C11 | −151.48 (6) |
S1—N2—C3—C4 | −123.63 (5) | O5—S1—C10—C11 | −16.96 (7) |
N3—C3—C4—C5 | 178.65 (7) | N2—S1—C10—C11 | 94.90 (6) |
N2—C3—C4—C5 | −2.13 (8) | O4—S1—C10—C15 | 30.51 (7) |
N2—N1—C5—O1 | 171.51 (6) | O5—S1—C10—C15 | 165.03 (6) |
C6—N1—C5—O1 | 39.75 (9) | N2—S1—C10—C15 | −83.11 (6) |
N2—N1—C5—C4 | −6.48 (7) | C15—C10—C11—C12 | 0.06 (11) |
C6—N1—C5—C4 | −138.24 (6) | S1—C10—C11—C12 | −177.93 (6) |
C3—C4—C5—O1 | −172.33 (8) | C10—C11—C12—C13 | 0.78 (12) |
C3—C4—C5—N1 | 5.35 (8) | C11—C12—C13—C14 | −1.31 (12) |
C5—N1—C6—C7 | 69.88 (8) | C11—C12—C13—C16 | 178.92 (7) |
N2—N1—C6—C7 | −58.40 (8) | C12—C13—C14—C15 | 1.01 (12) |
N1—C6—C7—O2 | −9.23 (11) | C16—C13—C14—C15 | −179.22 (7) |
N1—C6—C7—O3 | 170.80 (6) | C13—C14—C15—C10 | −0.20 (11) |
O2—C7—O3—C8 | 0.85 (12) | C11—C10—C15—C14 | −0.35 (11) |
C6—C7—O3—C8 | −179.18 (6) | S1—C10—C15—C14 | 177.60 (6) |
C9—C8—O3—C7 | −168.27 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H01···O1i | 0.913 (13) | 1.897 (13) | 2.7884 (8) | 164.7 (12) |
N3—H02···O4 | 0.861 (13) | 2.394 (13) | 2.8291 (8) | 111.8 (10) |
N3—H02···O5ii | 0.861 (13) | 2.294 (13) | 3.0139 (8) | 141.3 (12) |
C6—H6B···O4iii | 0.99 | 2.50 | 3.2642 (9) | 133 |
C8—H8B···O1iv | 0.99 | 2.43 | 3.2663 (11) | 142 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z. |
References
Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 30023–30026. CAS Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. Vol. 11, 3389–3399. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099–1131. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385–386. Google Scholar
Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136–138. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Elgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250–o1252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90–92. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kaczor, A. A., Wróbel, T., Karczmarzyk, Z., Wysocki, W., Fruzinski, A., Brodacka, M., Matosiuk, D. & Pitucha, M. (2014). Lett. Org. Chem. 11, 40–48. Web of Science CrossRef CAS Google Scholar
Kaczor, A. A., Wróbel, T., Karczmarzyk, Z., Wysocki, W., Mendyk, E., Poso, A., Matosiuk, D. & Pitucha, M. (2013). J. Mol. Struct. 1051, 188–196. Web of Science CSD CrossRef CAS Google Scholar
Kimura, M. (1986). Bull. Chem. Soc. Jpn, 59, 121–125. CSD CrossRef CAS Web of Science Google Scholar
Myers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761–4766. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pitucha, M., Kosikowska, U., Urszula, L. & Malm, A. (2011). Med. Chem. 7, 697–703. Web of Science CrossRef CAS PubMed Google Scholar
Pitucha, M., Mazur, L., Kosikowska, U., Pachuta-Stec, A., Malm, A., Popiołek, Ł. & Rzączyńska, Z. (2010). Heteroat. Chem. 21, 215–221. CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sidique, S., Shiryaev, S. A., Ratnikov, B. I., Herath, A., Su, Y., Strongin, A. Y. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 5773–5777. Web of Science CrossRef PubMed CAS Google Scholar
Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Zhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 2020, 1154–1159. Web of Science CSD CrossRef CAS Google Scholar
Zhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146–4149. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.