research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[μ2-1,1,1,3,3,3-hexa­fluoro-2-(tri­fluoro­meth­yl)propan-2-olato]tetra­kis­(μ3-2-methyl­propan-2-olato)octa­copper(I)

crossmark logo

aChemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 14 December 2020; accepted 24 May 2021; online 28 May 2021)

The title compound, [Cu8(C4H9O)4(C4F9O)4], crystallizes in the monoclinic space group, P21/n and contains a self-assembly of two C16H18Cu4F18O4 units linked by bridging tert-butyl groups [Cu—O bonds of length 2.3779 (15) and 2.4248 (15) Å], generating a centrosymmetric dimer. The asymmetrical unit, C16H18Cu4F18O4, contains an almost square-planar arrangement of the four Cu atoms linked by bridging tert-butyl and perfluorinated tert-butyl groups with Cu—Cu distances ranging from 2.7108 (4) to 2.7612 (4) Å and Cu —Cu—Cu angle values close to 90° [ranging from 89.459 (10)° to 90.025 (11)°]. These dimers are further linked by weak C—H⋯F and F⋯F inter­actions. As is commonly encountered in perfluorinated tert-butyl groups, one of the CF3 groups is disordered and was refined with two equivalent conformations with occupancies of 0.74 (3) and 0.26 (3).

1. Chemical context

The structural chemistry of perfluoro­alkoxides has been the subject of much recent inter­est because of the increased acidity caused by perfluorination. Metal complexes of such species often show enhanced volatility, which makes them useful precursors to ceramic materials (Bradley, 1989[Bradley, D. C. (1989). Chem. Rev. 89, 1317-1322.]) and other applications. Because of their inter­esting properties, metal complexes of these ligands have been studied extensively. Focusing on copper complexes, with suitable variants of these ligands complexes have been used to demonstrate that optically active complexes can be obtained (Cripps & Willis, 1975a[Cripps, W. S. & Willis, C. J. (1975a). Can. J. Chem. 53, 817-825.],b[Cripps, W. S. & Willis, C. J. (1975b). Can. J. Chem. 53, 809-816.]). Further studies involving both perfluorinated alkoxides and copper have demonstrated their ability to obtain heterometallic complexes containing both Cu and Ba (Purdy & George 1991[Purdy, A. P. & George, C. F. (1991). Inorg. Chem. 30, 1969-1970.]; Borup et al., 1997[Borup, B., Streib, W. E. & Caulton, K. G. (1997). Inorg. Chem. 36, 5058-5063.]) and in the use of such compounds in the oxycupration of tetra­fluoro­ethyl­ene (Ohashi et al., 2017[Ohashi, M., Adachi, T., Ishida, N., Kikushima, K. & Ogoshi, S. (2017). Angew. Chem. Int. Ed. 56, 11911-11915.]). Of particular inter­est are the alkoxide complexes of copper(I), which often form cluster compounds (Purdy & George 1995[Purdy, A. P. & George, C. F. (1995). Polyhedron, 14, 761-769.]; Borup et al., 1997[Borup, B., Streib, W. E. & Caulton, K. G. (1997). Inorg. Chem. 36, 5058-5063.]; Purdy & George 1998[Purdy, A. P. & George, C. F. (1998). Polyhedron, 17, 4041-4048.]; Anson et al., 2005[Anson, C. E., Langer, R., Ponikiewski, L. & Rothenberger, A. (2005). Inorg. Chim. Acta, 358, 3967-3973.]; Lieberman et al., 2015[Lieberman, C. M., Vreshch, V. D., Filatov, A. S. & Dikarev, E. V. (2015). Inorg. Chim. Acta, 424, 156-161.]). Within this set of compounds, there are those that form tetra-CuI squares bridged along the edges by oxygen donors (Greiser & Weiss, 1976[Greiser, T. & Weiss, E. (1976). Chem. Ber. 109, 3142-3146.]; McGeary et al., 1992[McGeary, M. J., Wedlich, R. C., Coan, P. S., Folting, K. & Caulton, K. G. (1992). Polyhedron, 11, 2459-2473.]; Terry et al., 1996[Terry, K. W., Lugmair, C. G., Gantzel, P. K. & Tilley, T. D. (1996). Chem. Mater. 8, 274-280.]; Lopes et al., 1997[Lopes, C., Håkansson, M. & Jagner, S. (1997). Inorg. Chem. 36, 3232-3236.]; Nikitinsky et al., 2000[Nikitinsky, A. V., Bochkarev, L. N. & Khorshev, S. Y. (2000). Russ. Chem. Bull. pp. 1273-1281.]; Håkansson et al., 2000[Håkansson, M., Lopes, C. & Jagner, S. (2000). Inorg. Chim. Acta, 304, 178-183.]; Krossing, 2012[Krossing, I. (2012). Private Communication (refcode GEQCUC). CCDC, Cambridge, England.]; Bellow et al., 2015[Bellow, J. A., Yousif, M., Fang, D., Kratz, E. G. G., Cisneros, G. A. & Groysman, S. (2015). Inorg. Chem. 54, 5624-5633.]). In view of the inter­esting chemistry exhibited by these alkoxide complexes containing CuI, the synthesis of a mixed alkoxide complex was attempted and resulting structure of the compound is reported.

[Scheme 1]

2. Structural commentary

The title compound, C32H36Cu8F36O8, 1, crystallizes in the monoclinic space group, P21/n, and contains two C16H18Cu4F18O4 units linked through a center of inversion by weaker Cu—O bonds of length 2.3779 (15) and 2.4248 (15) Å (see Figs. 1[link] and 2[link]). The central building unit, C16H18Cu4F18O4, (Fig. 1[link]) contains an almost square-planar Cu4 metallic core linked by bridging tert-butyl and perfluorinated tert-butyl groups with Cu—Cu distances ranging from 2.7108 (4) to 2.7612 (4) Å and Cu—Cu—Cu angles ranging from 89.459 (10) to 90.025 (11)° (see Table 1[link]). The two types of ligand are arranged around the square so that each is adjacent (cis) rather than opposed (trans) with Cu—O distances ranging from 1.8758 (16) to 1.9168 (15) Å. The coordination environment of all the Cu atoms in the asymmetric unit are different. Two of them have a two-coordinate linear geometry (Cu1 and Cu3), while two have a three-coordinate T-shaped geometry (Cu2 and Cu4). These metrical parameters are in the range found for other CuI structures with this type of core. The four oxygen donors form a plane [r.m.s. deviation of only 0.0158 (7) Å] and both Cu1 and Cu3 are in this plane while Cu2 and Cu4 deviate from this plane by 0.153 (1) and 0.129 (1) Å, respectively. Both the t-butyl and perfluorinated t-butyl groups deviate from this plane, as shown by the Cu—O—C angles which range from 118.57 (12) to 120.57 (12)° for the t-butyl groups and 125.64 (14) to 127.62 (14)° for the perfluorinated t-butyl groups, with this larger value reflecting the increased steric bulk of the latter. For both the t-butyl and perfluorinated t-butyl groups, this deviation is on the same side of the Cu4O4 plane to allow for the association of the two C16H18Cu4F18O4 units into the dimer mentioned above (see Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.8488 (15) Cu2—O4i 2.3779 (15)
Cu1—O4 1.8496 (15) Cu2—Cu3 2.7172 (4)
Cu1—Cu4 2.7108 (4) Cu3—O3 1.8758 (16)
Cu1—Cu2 2.7526 (3) Cu3—O2 1.8770 (15)
Cu1—Cu1i 2.9452 (5) Cu3—Cu4 2.7612 (4)
Cu1—Cu4i 2.9816 (4) Cu4—O4 1.9001 (14)
Cu2—O1 1.8956 (14) Cu4—O3 1.9137 (15)
Cu2—O2 1.9168 (15) Cu4—O1i 2.4248 (15)
       
O1—Cu1—O4 177.42 (7) O3—Cu3—O2 176.74 (7)
O1—Cu2—O2 170.02 (7) O4—Cu4—O3 171.27 (7)
O1—Cu2—O4i 85.40 (6) O4—Cu4—O1i 83.99 (6)
O2—Cu2—O4i 103.39 (6) O3—Cu4—O1i 103.85 (6)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Mol­ecular diagram for the major component of 1 showing the atom labeling. Atomic displacement parameters are at the 30% level.
[Figure 2]
Figure 2
Diagram for 1 showing the association of two units into centrosymmetric dimers by weak Cu—O bonds. Hydrogen atoms omitted for clarity. Atomic displacement parameters are at the 30% level.

3. Supra­molecular features

In addition to the weak Cu—O inter­actions associating the C16H18Cu4F18O4 units into dimers, there are also intra­dimer C—H⋯F inter­actions (see Table 2[link] and Fig. 2[link]). These dimers are further linked by weak inter­dimer C—H⋯F and F⋯F inter­actions. While intra­dimer F⋯F are numerous, there are very few inter­dimer C—H⋯F or F⋯F inter­actions, which reflects the fact that this compound was originally isolated by sublimation from the reaction mixture. The overall packing is shown in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯F2 0.98 2.51 3.457 (7) 164
C3—H3A⋯F2A 0.98 2.56 3.539 (18) 173
C14—H14A⋯F15 0.98 2.63 3.571 (3) 162
C14—H14B⋯F4i 0.98 2.58 3.554 (4) 173
C15—H15A⋯O2i 0.98 2.58 3.438 (3) 146
C15—H15C⋯F3Aii 0.98 2.64 3.581 (18) 161
C16—H16A⋯F16 0.98 2.57 3.536 (3) 170
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing diagram viewed along the a axis.

4. Database survey

In the literature there are six examples of structures containing a square-planar Cu4O4 arrangement and they divide into two groups. In the first group, this Cu4O4 arrangement is isolated owing to the steric bulk of the O substituents [JUVKUG (McGeary et al., 1992[McGeary, M. J., Wedlich, R. C., Coan, P. S., Folting, K. & Caulton, K. G. (1992). Polyhedron, 11, 2459-2473.]); ZUTCIA (Terry et al., 1996[Terry, K. W., Lugmair, C. G., Gantzel, P. K. & Tilley, T. D. (1996). Chem. Mater. 8, 274-280.]); QEMCUG (Nikitinsky et al., 2000[Nikitinsky, A. V., Bochkarev, L. N. & Khorshev, S. Y. (2000). Russ. Chem. Bull. pp. 1273-1281.]); GEQCUC (Krossing, 2012[Krossing, I. (2012). Private Communication (refcode GEQCUC). CCDC, Cambridge, England.]),] while in the second group these units associate into dimers [CUTBUX (Greiser & Weiss, 1976[Greiser, T. & Weiss, E. (1976). Chem. Ber. 109, 3142-3146.]); CUTBUX01 (Håkansson et al., 2000[Håkansson, M., Lopes, C. & Jagner, S. (2000). Inorg. Chim. Acta, 304, 178-183.])]. Inter­estingly, in these two groups, one contains a structure where all the substituents are t-butyl groups [two polymorphs of the tert-butyl derivative (Greiser & Weiss, 1976[Greiser, T. & Weiss, E. (1976). Chem. Ber. 109, 3142-3146.]; Håkansson et al., 2000[Håkansson, M., Lopes, C. & Jagner, S. (2000). Inorg. Chim. Acta, 304, 178-183.])] and thus the C16H36Cu4O4 units associate into dimers, while the other group contains a structure where all the substituents are perfluorinated t-butyl groups and this has an isolated C16F36Cu4O4 unit. Thus 1, which has two of each type in a cis arrangement, has just enough steric freedom to associate into these dimeric units.

The dimerization of 1 and those for both CUTBUX and CUTBUX01 have the same arrangement where they associate via a crystallographic center of inversion (see Fig. 2[link]).

5. Synthesis and crystallization

Copper(I) t-butoxide (0.25 g) was mixed with perfluoro-t-butanol (1.02 g) in a small amount of dry heptane under an inert atmosphere, and stirred for 4 d. The mixture was pumped to dryness and sublimed under vacuum at 333–373 K. A portion was sealed into an NMR tube with C6D6, and the spectrum shows both normal and fluorinated t-butyl groups. After many years, the NMR tube was opened and crystals were isolated.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One of the CF3 groups was found to be disordered and was refined with two equivalent conformations with occupancies of 0.74 (3) and 0.26 (3). The H atoms were refined in idealized positions using a riding model with atomic displacement parameters of Uiso(H) = 1.5Ueq(C) for CH3, with C—H distances of 0.98 Å.

Table 3
Experimental details

Crystal data
Chemical formula [Cu8(C4H9O)4(C4F9O)4]
Mr 1740.93
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.3302 (2), 19.5926 (5), 13.1516 (3)
β (°) 101.004 (1)
V3) 2612.88 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.36
Crystal size (mm) 0.40 × 0.24 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.581, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 39864, 12618, 9717
Rint 0.032
(sin θ/λ)max−1) 0.834
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.02
No. of reflections 12618
No. of parameters 423
No. of restraints 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.09
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Tetrakis[µ2-1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-olato]tetrakis(µ3-2-methylpropan-2-olato)octacopper(I) top
Crystal data top
[Cu8(C4H9O)4(C4F9O)4]F(000) = 1696
Mr = 1740.93Dx = 2.213 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.3302 (2) ÅCell parameters from 9832 reflections
b = 19.5926 (5) Åθ = 2.6–36.3°
c = 13.1516 (3) ŵ = 3.36 mm1
β = 101.004 (1)°T = 100 K
V = 2612.88 (10) Å3Thick needle, colorless
Z = 20.40 × 0.24 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
9717 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 36.3°, θmin = 2.5°
Tmin = 0.581, Tmax = 0.747h = 1716
39864 measured reflectionsk = 3232
12618 independent reflectionsl = 2114
Refinement top
Refinement on F2138 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0408P)2 + 4.799P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
12618 reflectionsΔρmax = 1.25 e Å3
423 parametersΔρmin = 1.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.36569 (2)0.48167 (2)0.44719 (2)0.01322 (5)
Cu20.50985 (2)0.37115 (2)0.53468 (2)0.01558 (5)
Cu30.67148 (3)0.38356 (2)0.39516 (2)0.01552 (5)
Cu40.54489 (2)0.50343 (2)0.32457 (2)0.01505 (5)
C60.5539 (8)0.2154 (3)0.4265 (7)0.0348 (14)0.74 (3)
F10.5195 (10)0.2498 (4)0.3398 (6)0.0482 (16)0.74 (3)
F20.4463 (6)0.2130 (3)0.4711 (10)0.0458 (16)0.74 (3)
F30.5820 (9)0.1514 (3)0.4055 (8)0.0457 (17)0.74 (3)
C6A0.569 (2)0.2219 (11)0.402 (2)0.039 (3)0.26 (3)
F1A0.548 (2)0.2606 (11)0.3199 (19)0.048 (3)0.26 (3)
F2A0.4536 (16)0.2137 (10)0.433 (2)0.046 (3)0.26 (3)
F3A0.6044 (18)0.1603 (9)0.373 (2)0.046 (3)0.26 (3)
F40.5764 (2)0.24802 (10)0.65140 (18)0.0449 (5)
F50.6632 (2)0.15454 (9)0.61016 (19)0.0458 (5)
F60.78728 (19)0.23828 (10)0.67233 (15)0.0408 (4)
F70.84303 (18)0.17070 (9)0.48863 (17)0.0418 (5)
F80.89770 (17)0.27610 (9)0.51149 (19)0.0429 (5)
F90.7930 (3)0.24249 (13)0.36435 (18)0.0603 (7)
F100.8330 (3)0.33139 (11)0.2327 (2)0.0556 (6)
F110.93598 (18)0.42150 (13)0.29185 (16)0.0502 (6)
F120.9025 (2)0.39975 (13)0.12788 (16)0.0472 (5)
F130.8467 (2)0.53540 (11)0.18854 (17)0.0468 (5)
F140.7351 (2)0.49850 (11)0.04494 (14)0.0411 (4)
F150.6371 (2)0.54858 (11)0.15382 (17)0.0465 (5)
F160.50493 (19)0.43350 (13)0.09123 (16)0.0505 (6)
F170.5644 (2)0.34473 (12)0.18442 (16)0.0525 (6)
F180.6462 (2)0.36536 (12)0.04940 (15)0.0488 (5)
O10.35045 (14)0.41607 (8)0.54527 (12)0.0150 (2)
O20.65525 (14)0.32124 (7)0.50039 (12)0.0155 (3)
O30.68844 (15)0.44984 (8)0.29561 (11)0.0165 (3)
O40.38626 (14)0.54477 (7)0.34687 (11)0.0139 (2)
C10.22828 (19)0.37709 (11)0.53597 (18)0.0178 (4)
C20.2449 (3)0.32974 (15)0.6293 (2)0.0303 (5)
H2A0.3177930.2980790.6273150.045*
H2B0.1633280.3038400.6275920.045*
H2C0.2641750.3568090.6930520.045*
C30.2035 (2)0.33683 (13)0.4354 (2)0.0263 (5)
H3A0.2782940.3063460.4337560.039*
H3B0.1933750.3684190.3766560.039*
H3C0.1228700.3097370.4309630.039*
C40.1165 (2)0.42778 (13)0.5378 (2)0.0229 (4)
H4A0.1049060.4565350.4757150.034*
H4B0.1381110.4565340.5996530.034*
H4C0.0346070.4028010.5390740.034*
C50.6712 (2)0.25132 (11)0.49893 (19)0.0203 (4)
C70.6734 (3)0.22204 (13)0.6093 (2)0.0307 (5)
C80.8043 (3)0.23447 (14)0.4662 (2)0.0309 (5)
C90.7179 (2)0.43721 (12)0.19933 (16)0.0185 (4)
C100.8520 (3)0.39842 (17)0.2129 (2)0.0328 (6)
C110.7320 (3)0.50577 (14)0.1441 (2)0.0279 (5)
C120.6092 (3)0.39317 (16)0.1314 (2)0.0306 (5)
C130.2764 (2)0.55606 (11)0.26043 (16)0.0177 (3)
C140.3218 (3)0.60780 (16)0.1893 (2)0.0296 (5)
H14A0.3974460.5894580.1631240.044*
H14B0.3477230.6500430.2277190.044*
H14C0.2497090.6173930.1309880.044*
C150.1606 (2)0.58315 (12)0.30501 (18)0.0216 (4)
H15A0.1871940.6248690.3446170.032*
H15B0.1333940.5486690.3506820.032*
H15C0.0866570.5933220.2483690.032*
C160.2385 (3)0.48899 (14)0.2039 (2)0.0273 (5)
H16A0.3155170.4699580.1804080.041*
H16B0.1679180.4972180.1439110.041*
H16C0.2077760.4566520.2509320.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01056 (9)0.01428 (10)0.01405 (10)0.00057 (8)0.00039 (7)0.00096 (8)
Cu20.01264 (10)0.01438 (10)0.01934 (12)0.00278 (8)0.00208 (8)0.00314 (8)
Cu30.01483 (10)0.01579 (11)0.01540 (11)0.00344 (8)0.00154 (8)0.00048 (8)
Cu40.01328 (10)0.01641 (11)0.01549 (11)0.00283 (8)0.00280 (8)0.00206 (8)
C60.032 (2)0.0152 (16)0.047 (3)0.0041 (15)0.020 (2)0.0064 (18)
F10.056 (3)0.0304 (19)0.042 (2)0.0023 (19)0.030 (2)0.0024 (15)
F20.0227 (14)0.0280 (14)0.079 (4)0.0057 (11)0.010 (2)0.001 (2)
F30.050 (3)0.0174 (14)0.058 (3)0.0031 (15)0.020 (2)0.0149 (16)
C6A0.032 (5)0.024 (5)0.054 (6)0.001 (4)0.010 (5)0.013 (5)
F1A0.052 (6)0.031 (5)0.053 (7)0.008 (5)0.013 (5)0.013 (4)
F2A0.020 (4)0.035 (4)0.075 (7)0.005 (3)0.010 (5)0.011 (6)
F3A0.041 (5)0.024 (4)0.067 (8)0.002 (4)0.004 (5)0.015 (5)
F40.0464 (11)0.0339 (9)0.0613 (13)0.0087 (8)0.0279 (10)0.0189 (9)
F50.0423 (10)0.0165 (7)0.0776 (15)0.0008 (7)0.0091 (10)0.0158 (8)
F60.0406 (10)0.0381 (9)0.0374 (9)0.0014 (8)0.0084 (8)0.0112 (8)
F70.0334 (9)0.0229 (7)0.0666 (13)0.0157 (7)0.0029 (8)0.0033 (8)
F80.0207 (7)0.0298 (8)0.0800 (15)0.0017 (6)0.0143 (8)0.0032 (9)
F90.0824 (17)0.0595 (14)0.0444 (12)0.0375 (13)0.0252 (12)0.0002 (10)
F100.0651 (15)0.0383 (11)0.0698 (15)0.0214 (10)0.0289 (12)0.0052 (10)
F110.0250 (8)0.0819 (17)0.0421 (11)0.0136 (9)0.0026 (7)0.0009 (11)
F120.0375 (10)0.0691 (14)0.0407 (10)0.0165 (10)0.0220 (8)0.0005 (10)
F130.0472 (11)0.0495 (12)0.0449 (11)0.0181 (9)0.0121 (9)0.0044 (9)
F140.0480 (11)0.0556 (12)0.0228 (8)0.0045 (9)0.0145 (7)0.0077 (8)
F150.0577 (12)0.0428 (11)0.0435 (11)0.0195 (9)0.0212 (9)0.0166 (9)
F160.0284 (9)0.0821 (17)0.0374 (10)0.0024 (10)0.0027 (7)0.0098 (11)
F170.0647 (14)0.0565 (13)0.0386 (10)0.0348 (11)0.0158 (10)0.0149 (9)
F180.0568 (13)0.0630 (14)0.0296 (9)0.0166 (11)0.0154 (9)0.0214 (9)
O10.0096 (5)0.0171 (6)0.0180 (6)0.0002 (5)0.0017 (5)0.0026 (5)
O20.0148 (6)0.0107 (5)0.0199 (7)0.0026 (5)0.0004 (5)0.0007 (5)
O30.0163 (6)0.0205 (7)0.0134 (6)0.0037 (5)0.0042 (5)0.0009 (5)
O40.0109 (5)0.0159 (6)0.0139 (6)0.0014 (5)0.0005 (4)0.0007 (5)
C10.0110 (7)0.0182 (8)0.0244 (10)0.0015 (6)0.0035 (6)0.0026 (7)
C20.0235 (11)0.0303 (12)0.0357 (13)0.0050 (9)0.0023 (9)0.0128 (10)
C30.0172 (9)0.0272 (11)0.0335 (12)0.0022 (8)0.0028 (8)0.0092 (9)
C40.0116 (8)0.0265 (10)0.0310 (11)0.0009 (7)0.0048 (7)0.0010 (9)
C50.0153 (8)0.0124 (8)0.0298 (11)0.0022 (6)0.0047 (7)0.0009 (7)
C70.0304 (12)0.0171 (10)0.0445 (15)0.0028 (9)0.0068 (11)0.0084 (10)
C80.0290 (12)0.0221 (11)0.0420 (15)0.0116 (9)0.0076 (10)0.0020 (10)
C90.0170 (8)0.0235 (9)0.0155 (8)0.0014 (7)0.0043 (6)0.0017 (7)
C100.0242 (11)0.0480 (16)0.0288 (12)0.0115 (11)0.0113 (9)0.0006 (11)
C110.0331 (12)0.0318 (12)0.0209 (10)0.0015 (10)0.0103 (9)0.0046 (9)
C120.0294 (12)0.0389 (14)0.0253 (11)0.0094 (10)0.0098 (9)0.0126 (10)
C130.0139 (8)0.0229 (9)0.0144 (8)0.0024 (7)0.0020 (6)0.0016 (7)
C140.0236 (11)0.0404 (14)0.0238 (11)0.0024 (10)0.0017 (8)0.0150 (10)
C150.0136 (8)0.0259 (10)0.0236 (10)0.0047 (7)0.0008 (7)0.0000 (8)
C160.0235 (10)0.0328 (12)0.0224 (10)0.0004 (9)0.0033 (8)0.0094 (9)
Geometric parameters (Å, º) top
Cu1—O11.8488 (15)F16—C121.359 (4)
Cu1—O41.8496 (15)F17—C121.313 (4)
Cu1—Cu42.7108 (4)F18—C121.328 (3)
Cu1—Cu22.7526 (3)O1—C11.460 (2)
Cu1—Cu1i2.9452 (5)O2—C51.380 (2)
Cu1—Cu4i2.9816 (4)O3—C91.380 (3)
Cu2—O11.8956 (14)O4—C131.461 (2)
Cu2—O21.9168 (15)C1—C31.519 (3)
Cu2—O4i2.3779 (15)C1—C21.522 (3)
Cu2—Cu32.7172 (4)C1—C41.527 (3)
Cu3—O31.8758 (16)C2—H2A0.9800
Cu3—O21.8770 (15)C2—H2B0.9800
Cu3—Cu42.7612 (4)C2—H2C0.9800
Cu4—O41.9001 (14)C3—H3A0.9800
Cu4—O31.9137 (15)C3—H3B0.9800
Cu4—O1i2.4248 (15)C3—H3C0.9800
C6—F11.314 (6)C4—H4A0.9800
C6—F31.329 (6)C4—H4B0.9800
C6—F21.353 (7)C4—H4C0.9800
C6—C51.558 (7)C5—C81.553 (4)
C6A—F1A1.302 (16)C5—C71.556 (4)
C6A—F3A1.335 (17)C9—C111.547 (3)
C6A—F2A1.342 (16)C9—C121.556 (3)
C6A—C51.60 (2)C9—C101.560 (3)
F4—C71.335 (3)C13—C141.513 (3)
F5—C71.327 (3)C13—C161.524 (3)
F6—C71.342 (3)C13—C151.525 (3)
F7—C81.328 (3)C14—H14A0.9800
F8—C81.316 (4)C14—H14B0.9800
F9—C81.332 (4)C14—H14C0.9800
F10—C101.360 (4)C15—H15A0.9800
F11—C101.301 (4)C15—H15B0.9800
F12—C101.321 (3)C15—H15C0.9800
F13—C111.348 (4)C16—H16A0.9800
F14—C111.319 (3)C16—H16B0.9800
F15—C111.315 (3)C16—H16C0.9800
O1—Cu1—O4177.42 (7)C1—C2—H2C109.5
O1—Cu1—Cu4133.09 (5)H2A—C2—H2C109.5
O4—Cu1—Cu444.45 (4)H2B—C2—H2C109.5
O1—Cu1—Cu243.35 (4)C1—C3—H3A109.5
O4—Cu1—Cu2134.21 (5)C1—C3—H3B109.5
Cu4—Cu1—Cu289.771 (10)H3A—C3—H3B109.5
O1—Cu1—Cu1i92.20 (5)C1—C3—H3C109.5
O4—Cu1—Cu1i86.98 (4)H3A—C3—H3C109.5
Cu4—Cu1—Cu1i63.468 (10)H3B—C3—H3C109.5
Cu2—Cu1—Cu1i66.971 (10)C1—C4—H4A109.5
O1—Cu1—Cu4i54.33 (5)C1—C4—H4B109.5
O4—Cu1—Cu4i126.65 (5)H4A—C4—H4B109.5
Cu4—Cu1—Cu4i117.900 (10)C1—C4—H4C109.5
Cu2—Cu1—Cu4i67.494 (9)H4A—C4—H4C109.5
Cu1i—Cu1—Cu4i54.432 (9)H4B—C4—H4C109.5
O1—Cu2—O2170.02 (7)O2—C5—C8109.21 (19)
O1—Cu2—O4i85.40 (6)O2—C5—C7109.5 (2)
O2—Cu2—O4i103.39 (6)C8—C5—C7108.9 (2)
O1—Cu2—Cu3131.48 (5)O2—C5—C6112.1 (3)
O2—Cu2—Cu343.67 (5)C8—C5—C6111.2 (4)
O4i—Cu2—Cu396.99 (4)C7—C5—C6105.9 (4)
O1—Cu2—Cu142.03 (5)O2—C5—C6A107.8 (8)
O2—Cu2—Cu1133.53 (5)C8—C5—C6A100.8 (9)
O4i—Cu2—Cu182.49 (4)C7—C5—C6A120.0 (10)
Cu3—Cu2—Cu190.025 (11)F5—C7—F4108.0 (2)
O3—Cu3—O2176.74 (7)F5—C7—F6107.0 (2)
O3—Cu3—Cu2133.20 (5)F4—C7—F6107.0 (3)
O2—Cu3—Cu244.85 (4)F5—C7—C5112.9 (3)
O3—Cu3—Cu443.77 (5)F4—C7—C5111.6 (2)
O2—Cu3—Cu4134.27 (5)F6—C7—C5110.1 (2)
Cu2—Cu3—Cu489.459 (10)F8—C8—F7108.6 (2)
O4—Cu4—O3171.27 (7)F8—C8—F9107.4 (3)
O4—Cu4—O1i83.99 (6)F7—C8—F9107.4 (2)
O3—Cu4—O1i103.85 (6)F8—C8—C5110.7 (2)
O4—Cu4—Cu142.97 (4)F7—C8—C5112.6 (2)
O3—Cu4—Cu1132.47 (5)F9—C8—C5109.9 (2)
O1i—Cu4—Cu186.87 (4)O3—C9—C11109.37 (19)
O4—Cu4—Cu3132.66 (5)O3—C9—C12111.40 (18)
O3—Cu4—Cu342.69 (5)C11—C9—C12109.5 (2)
O1i—Cu4—Cu3101.37 (4)O3—C9—C10109.20 (18)
Cu1—Cu4—Cu389.976 (11)C11—C9—C10108.4 (2)
O4—Cu4—Cu1i85.04 (4)C12—C9—C10108.9 (2)
O3—Cu4—Cu1i98.69 (5)F11—C10—F12111.0 (3)
O1i—Cu4—Cu1i38.27 (4)F11—C10—F10106.3 (3)
Cu1—Cu4—Cu1i62.100 (10)F12—C10—F10106.0 (3)
Cu3—Cu4—Cu1i73.077 (9)F11—C10—C9111.4 (2)
F1—C6—F3109.7 (5)F12—C10—C9112.3 (2)
F1—C6—F2106.6 (5)F10—C10—C9109.6 (2)
F3—C6—F2106.7 (5)F15—C11—F14108.9 (2)
F1—C6—C5110.4 (5)F15—C11—F13107.0 (3)
F3—C6—C5112.2 (5)F14—C11—F13106.8 (2)
F2—C6—C5111.0 (5)F15—C11—C9111.7 (2)
F1A—C6A—F3A107.8 (15)F14—C11—C9113.1 (2)
F1A—C6A—F2A107.6 (15)F13—C11—C9108.9 (2)
F3A—C6A—F2A106.6 (15)F17—C12—F18108.6 (3)
F1A—C6A—C5115.6 (16)F17—C12—F16107.0 (2)
F3A—C6A—C5112.1 (15)F18—C12—F16104.6 (2)
F2A—C6A—C5106.7 (15)F17—C12—C9112.7 (2)
C1—O1—Cu1119.50 (12)F18—C12—C9114.0 (2)
C1—O1—Cu2120.00 (13)F16—C12—C9109.4 (2)
Cu1—O1—Cu294.63 (7)O4—C13—C14107.23 (17)
C1—O1—Cu4i131.39 (12)O4—C13—C16109.77 (18)
Cu1—O1—Cu4i87.39 (6)C14—C13—C16110.9 (2)
Cu2—O1—Cu4i94.44 (6)O4—C13—C15107.65 (17)
C5—O2—Cu3127.43 (15)C14—C13—C15111.3 (2)
C5—O2—Cu2127.62 (14)C16—C13—C15109.89 (19)
Cu3—O2—Cu291.48 (6)C13—C14—H14A109.5
C9—O3—Cu3125.64 (14)C13—C14—H14B109.5
C9—O3—Cu4126.58 (13)H14A—C14—H14B109.5
Cu3—O3—Cu493.54 (7)C13—C14—H14C109.5
C13—O4—Cu1118.57 (12)H14A—C14—H14C109.5
C13—O4—Cu4120.57 (12)H14B—C14—H14C109.5
Cu1—O4—Cu492.58 (6)C13—C15—H15A109.5
C13—O4—Cu2i126.23 (12)C13—C15—H15B109.5
Cu1—O4—Cu2i95.43 (6)H15A—C15—H15B109.5
Cu4—O4—Cu2i95.84 (6)C13—C15—H15C109.5
O1—C1—C3110.11 (18)H15A—C15—H15C109.5
O1—C1—C2106.79 (17)H15B—C15—H15C109.5
C3—C1—C2111.1 (2)C13—C16—H16A109.5
O1—C1—C4107.63 (17)C13—C16—H16B109.5
C3—C1—C4110.42 (19)H16A—C16—H16B109.5
C2—C1—C4110.7 (2)C13—C16—H16C109.5
C1—C2—H2A109.5H16A—C16—H16C109.5
C1—C2—H2B109.5H16B—C16—H16C109.5
H2A—C2—H2B109.5
Cu4—Cu1—O1—C1125.98 (13)F3A—C6A—C5—C774.5 (14)
Cu2—Cu1—O1—C1128.47 (17)F2A—C6A—C5—C741.9 (15)
Cu1i—Cu1—O1—C1179.20 (14)O2—C5—C7—F5168.0 (2)
Cu4i—Cu1—O1—C1137.28 (16)C8—C5—C7—F572.7 (3)
Cu4—Cu1—O1—Cu22.49 (10)C6—C5—C7—F546.9 (4)
Cu1i—Cu1—O1—Cu252.33 (5)C6A—C5—C7—F542.5 (9)
Cu4i—Cu1—O1—Cu294.24 (6)O2—C5—C7—F446.1 (3)
Cu4—Cu1—O1—Cu4i96.74 (6)C8—C5—C7—F4165.4 (2)
Cu2—Cu1—O1—Cu4i94.24 (6)C6—C5—C7—F474.9 (4)
Cu1i—Cu1—O1—Cu4i41.91 (3)C6A—C5—C7—F479.4 (9)
O4i—Cu2—O1—C1148.00 (15)O2—C5—C7—F672.5 (2)
Cu3—Cu2—O1—C1116.72 (13)C8—C5—C7—F646.8 (3)
Cu1—Cu2—O1—C1128.12 (17)C6—C5—C7—F6166.4 (3)
O4i—Cu2—O1—Cu183.88 (6)C6A—C5—C7—F6162.0 (9)
Cu3—Cu2—O1—Cu111.39 (9)O2—C5—C8—F841.7 (3)
O4i—Cu2—O1—Cu4i3.86 (5)C7—C5—C8—F877.8 (3)
Cu3—Cu2—O1—Cu4i99.13 (5)C6—C5—C8—F8165.9 (4)
Cu1—Cu2—O1—Cu4i87.74 (6)C6A—C5—C8—F8155.1 (10)
Cu2—Cu3—O2—C5142.06 (19)O2—C5—C8—F7163.5 (2)
Cu4—Cu3—O2—C5144.91 (14)C7—C5—C8—F744.0 (3)
Cu4—Cu3—O2—Cu22.85 (9)C6—C5—C8—F772.3 (4)
Cu2—Cu3—O3—C9143.51 (14)C6A—C5—C8—F783.1 (10)
Cu4—Cu3—O3—C9141.18 (19)O2—C5—C8—F976.8 (3)
Cu2—Cu3—O3—Cu42.33 (10)C7—C5—C8—F9163.7 (2)
Cu4—Cu1—O4—C13127.18 (16)C6—C5—C8—F947.4 (4)
Cu2—Cu1—O4—C13128.10 (12)C6A—C5—C8—F936.6 (10)
Cu1i—Cu1—O4—C13178.62 (14)Cu3—O3—C9—C11176.25 (15)
Cu4i—Cu1—O4—C13138.56 (12)Cu4—O3—C9—C1154.9 (2)
Cu2—Cu1—O4—Cu40.92 (9)Cu3—O3—C9—C1262.5 (2)
Cu1i—Cu1—O4—Cu454.20 (5)Cu4—O3—C9—C1266.3 (2)
Cu4i—Cu1—O4—Cu494.26 (6)Cu3—O3—C9—C1057.8 (2)
Cu4—Cu1—O4—Cu2i96.12 (6)Cu4—O3—C9—C10173.43 (17)
Cu2—Cu1—O4—Cu2i95.20 (6)O3—C9—C10—F1138.9 (3)
Cu1i—Cu1—O4—Cu2i41.92 (4)C11—C9—C10—F1180.2 (3)
Cu4i—Cu1—O4—Cu2i1.86 (7)C12—C9—C10—F11160.7 (2)
Cu1—O1—C1—C361.2 (2)O3—C9—C10—F12164.0 (2)
Cu2—O1—C1—C354.5 (2)C11—C9—C10—F1244.9 (3)
Cu4i—O1—C1—C3176.65 (14)C12—C9—C10—F1274.2 (3)
Cu1—O1—C1—C2178.04 (16)O3—C9—C10—F1078.5 (3)
Cu2—O1—C1—C266.3 (2)C11—C9—C10—F10162.4 (2)
Cu4i—O1—C1—C262.6 (2)C12—C9—C10—F1043.3 (3)
Cu1—O1—C1—C459.2 (2)O3—C9—C11—F1544.5 (3)
Cu2—O1—C1—C4174.88 (14)C12—C9—C11—F1577.9 (3)
Cu4i—O1—C1—C456.2 (2)C10—C9—C11—F15163.5 (2)
Cu3—O2—C5—C850.8 (2)O3—C9—C11—F14167.8 (2)
Cu2—O2—C5—C8179.87 (16)C12—C9—C11—F1445.5 (3)
Cu3—O2—C5—C7169.91 (15)C10—C9—C11—F1473.2 (3)
Cu2—O2—C5—C761.0 (2)O3—C9—C11—F1373.6 (2)
Cu3—O2—C5—C672.9 (5)C12—C9—C11—F13164.1 (2)
Cu2—O2—C5—C656.3 (5)C10—C9—C11—F1345.4 (3)
Cu3—O2—C5—C6A57.9 (10)O3—C9—C12—F1739.8 (3)
Cu2—O2—C5—C6A71.2 (10)C11—C9—C12—F17161.0 (2)
F1—C6—C5—O242.4 (6)C10—C9—C12—F1780.7 (3)
F3—C6—C5—O2165.1 (4)O3—C9—C12—F18164.2 (2)
F2—C6—C5—O275.6 (5)C11—C9—C12—F1874.7 (3)
F1—C6—C5—C880.1 (5)C10—C9—C12—F1843.7 (3)
F3—C6—C5—C842.6 (5)O3—C9—C12—F1679.1 (3)
F2—C6—C5—C8161.9 (4)C11—C9—C12—F1642.0 (3)
F1—C6—C5—C7161.7 (4)C10—C9—C12—F16160.4 (2)
F3—C6—C5—C775.5 (5)Cu1—O4—C13—C14178.10 (16)
F2—C6—C5—C743.7 (4)Cu4—O4—C13—C1465.7 (2)
F1A—C6A—C5—O235.3 (16)Cu2i—O4—C13—C1459.7 (2)
F3A—C6A—C5—O2159.3 (10)Cu1—O4—C13—C1657.5 (2)
F2A—C6A—C5—O284.4 (13)Cu4—O4—C13—C1654.9 (2)
F1A—C6A—C5—C879.1 (14)Cu2i—O4—C13—C16179.71 (14)
F3A—C6A—C5—C844.9 (13)Cu1—O4—C13—C1562.1 (2)
F2A—C6A—C5—C8161.2 (11)Cu4—O4—C13—C15174.48 (14)
F1A—C6A—C5—C7161.5 (11)Cu2i—O4—C13—C1560.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F20.982.513.457 (7)164
C3—H3A···F2A0.982.563.539 (18)173
C14—H14A···F150.982.633.571 (3)162
C14—H14B···F4i0.982.583.554 (4)173
C15—H15A···O2i0.982.583.438 (3)146
C15—H15C···F3Aii0.982.643.581 (18)161
C16—H16A···F160.982.573.536 (3)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

References

First citationAnson, C. E., Langer, R., Ponikiewski, L. & Rothenberger, A. (2005). Inorg. Chim. Acta, 358, 3967–3973.  CSD CrossRef CAS Google Scholar
First citationBellow, J. A., Yousif, M., Fang, D., Kratz, E. G. G., Cisneros, G. A. & Groysman, S. (2015). Inorg. Chem. 54, 5624–5633.  CSD CrossRef CAS PubMed Google Scholar
First citationBorup, B., Streib, W. E. & Caulton, K. G. (1997). Inorg. Chem. 36, 5058–5063.  CSD CrossRef CAS Google Scholar
First citationBradley, D. C. (1989). Chem. Rev. 89, 1317–1322.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCripps, W. S. & Willis, C. J. (1975a). Can. J. Chem. 53, 817–825.  CrossRef CAS Google Scholar
First citationCripps, W. S. & Willis, C. J. (1975b). Can. J. Chem. 53, 809–816.  CrossRef CAS Google Scholar
First citationGreiser, T. & Weiss, E. (1976). Chem. Ber. 109, 3142–3146.  CSD CrossRef CAS Google Scholar
First citationHåkansson, M., Lopes, C. & Jagner, S. (2000). Inorg. Chim. Acta, 304, 178–183.  Google Scholar
First citationKrossing, I. (2012). Private Communication (refcode GEQCUC). CCDC, Cambridge, England.  Google Scholar
First citationLieberman, C. M., Vreshch, V. D., Filatov, A. S. & Dikarev, E. V. (2015). Inorg. Chim. Acta, 424, 156–161.  CSD CrossRef CAS Google Scholar
First citationLopes, C., Håkansson, M. & Jagner, S. (1997). Inorg. Chem. 36, 3232–3236.  CSD CrossRef PubMed CAS Google Scholar
First citationMcGeary, M. J., Wedlich, R. C., Coan, P. S., Folting, K. & Caulton, K. G. (1992). Polyhedron, 11, 2459–2473.  CSD CrossRef CAS Google Scholar
First citationNikitinsky, A. V., Bochkarev, L. N. & Khorshev, S. Y. (2000). Russ. Chem. Bull. pp. 1273–1281.  Google Scholar
First citationOhashi, M., Adachi, T., Ishida, N., Kikushima, K. & Ogoshi, S. (2017). Angew. Chem. Int. Ed. 56, 11911–11915.  CSD CrossRef CAS Google Scholar
First citationPurdy, A. P. & George, C. F. (1991). Inorg. Chem. 30, 1969–1970.  CSD CrossRef CAS Google Scholar
First citationPurdy, A. P. & George, C. F. (1995). Polyhedron, 14, 761–769.  CSD CrossRef CAS Google Scholar
First citationPurdy, A. P. & George, C. F. (1998). Polyhedron, 17, 4041–4048.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerry, K. W., Lugmair, C. G., Gantzel, P. K. & Tilley, T. D. (1996). Chem. Mater. 8, 274–280.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds