research communications
Tetrakis[μ2-1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-olato]tetrakis(μ3-2-methylpropan-2-olato)octacopper(I)
aChemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, [Cu8(C4H9O)4(C4F9O)4], crystallizes in the monoclinic P21/n and contains a self-assembly of two C16H18Cu4F18O4 units linked by bridging tert-butyl groups [Cu—O bonds of length 2.3779 (15) and 2.4248 (15) Å], generating a centrosymmetric dimer. The asymmetrical unit, C16H18Cu4F18O4, contains an almost square-planar arrangement of the four Cu atoms linked by bridging tert-butyl and perfluorinated tert-butyl groups with Cu—Cu distances ranging from 2.7108 (4) to 2.7612 (4) Å and Cu —Cu—Cu angle values close to 90° [ranging from 89.459 (10)° to 90.025 (11)°]. These dimers are further linked by weak C—H⋯F and F⋯F interactions. As is commonly encountered in perfluorinated tert-butyl groups, one of the CF3 groups is disordered and was refined with two equivalent conformations with occupancies of 0.74 (3) and 0.26 (3).
CCDC reference: 2085512
1. Chemical context
The structural chemistry of perfluoroalkoxides has been the subject of much recent interest because of the increased acidity caused by perfluorination. Metal complexes of such species often show enhanced volatility, which makes them useful precursors to ceramic materials (Bradley, 1989) and other applications. Because of their interesting properties, metal complexes of these ligands have been studied extensively. Focusing on copper complexes, with suitable variants of these ligands complexes have been used to demonstrate that optically active complexes can be obtained (Cripps & Willis, 1975a,b). Further studies involving both perfluorinated and copper have demonstrated their ability to obtain heterometallic complexes containing both Cu and Ba (Purdy & George 1991; Borup et al., 1997) and in the use of such compounds in the oxycupration of tetrafluoroethylene (Ohashi et al., 2017). Of particular interest are the alkoxide complexes of copper(I), which often form cluster compounds (Purdy & George 1995; Borup et al., 1997; Purdy & George 1998; Anson et al., 2005; Lieberman et al., 2015). Within this set of compounds, there are those that form tetra-CuI squares bridged along the edges by oxygen donors (Greiser & Weiss, 1976; McGeary et al., 1992; Terry et al., 1996; Lopes et al., 1997; Nikitinsky et al., 2000; Håkansson et al., 2000; Krossing, 2012; Bellow et al., 2015). In view of the interesting chemistry exhibited by these alkoxide complexes containing CuI, the synthesis of a mixed alkoxide complex was attempted and resulting structure of the compound is reported.
2. Structural commentary
The title compound, C32H36Cu8F36O8, 1, crystallizes in the monoclinic P21/n, and contains two C16H18Cu4F18O4 units linked through a center of inversion by weaker Cu—O bonds of length 2.3779 (15) and 2.4248 (15) Å (see Figs. 1 and 2). The central building unit, C16H18Cu4F18O4, (Fig. 1) contains an almost square-planar Cu4 metallic core linked by bridging tert-butyl and perfluorinated tert-butyl groups with Cu—Cu distances ranging from 2.7108 (4) to 2.7612 (4) Å and Cu—Cu—Cu angles ranging from 89.459 (10) to 90.025 (11)° (see Table 1). The two types of ligand are arranged around the square so that each is adjacent (cis) rather than opposed (trans) with Cu—O distances ranging from 1.8758 (16) to 1.9168 (15) Å. The coordination environment of all the Cu atoms in the are different. Two of them have a two-coordinate linear geometry (Cu1 and Cu3), while two have a three-coordinate T-shaped geometry (Cu2 and Cu4). These metrical parameters are in the range found for other CuI structures with this type of core. The four oxygen donors form a plane [r.m.s. deviation of only 0.0158 (7) Å] and both Cu1 and Cu3 are in this plane while Cu2 and Cu4 deviate from this plane by 0.153 (1) and 0.129 (1) Å, respectively. Both the t-butyl and perfluorinated t-butyl groups deviate from this plane, as shown by the Cu—O—C angles which range from 118.57 (12) to 120.57 (12)° for the t-butyl groups and 125.64 (14) to 127.62 (14)° for the perfluorinated t-butyl groups, with this larger value reflecting the increased steric bulk of the latter. For both the t-butyl and perfluorinated t-butyl groups, this deviation is on the same side of the Cu4O4 plane to allow for the association of the two C16H18Cu4F18O4 units into the dimer mentioned above (see Fig. 2).
3. Supramolecular features
In addition to the weak Cu—O interactions associating the C16H18Cu4F18O4 units into dimers, there are also intradimer C—H⋯F interactions (see Table 2 and Fig. 2). These dimers are further linked by weak interdimer C—H⋯F and F⋯F interactions. While intradimer F⋯F are numerous, there are very few interdimer C—H⋯F or F⋯F interactions, which reflects the fact that this compound was originally isolated by from the reaction mixture. The overall packing is shown in Fig. 3.
|
4. Database survey
In the literature there are six examples of structures containing a square-planar Cu4O4 arrangement and they divide into two groups. In the first group, this Cu4O4 arrangement is isolated owing to the steric bulk of the O substituents [JUVKUG (McGeary et al., 1992); ZUTCIA (Terry et al., 1996); QEMCUG (Nikitinsky et al., 2000); GEQCUC (Krossing, 2012),] while in the second group these units associate into dimers [CUTBUX (Greiser & Weiss, 1976); CUTBUX01 (Håkansson et al., 2000)]. Interestingly, in these two groups, one contains a structure where all the substituents are t-butyl groups [two polymorphs of the tert-butyl derivative (Greiser & Weiss, 1976; Håkansson et al., 2000)] and thus the C16H36Cu4O4 units associate into dimers, while the other group contains a structure where all the substituents are perfluorinated t-butyl groups and this has an isolated C16F36Cu4O4 unit. Thus 1, which has two of each type in a cis arrangement, has just enough steric freedom to associate into these dimeric units.
The dimerization of 1 and those for both CUTBUX and CUTBUX01 have the same arrangement where they associate via a crystallographic center of inversion (see Fig. 2).
5. Synthesis and crystallization
Copper(I) t-butoxide (0.25 g) was mixed with perfluoro-t-butanol (1.02 g) in a small amount of dry heptane under an inert atmosphere, and stirred for 4 d. The mixture was pumped to dryness and sublimed under vacuum at 333–373 K. A portion was sealed into an NMR tube with C6D6, and the spectrum shows both normal and fluorinated t-butyl groups. After many years, the NMR tube was opened and crystals were isolated.
6. Refinement
Crystal data, data collection and structure . One of the CF3 groups was found to be disordered and was refined with two equivalent conformations with occupancies of 0.74 (3) and 0.26 (3). The H atoms were refined in idealized positions using a riding model with atomic displacement parameters of Uiso(H) = 1.5Ueq(C) for CH3, with C—H distances of 0.98 Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2085512
https://doi.org/10.1107/S2056989021005429/zn2004sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005429/zn2004Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).[Cu8(C4H9O)4(C4F9O)4] | F(000) = 1696 |
Mr = 1740.93 | Dx = 2.213 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.3302 (2) Å | Cell parameters from 9832 reflections |
b = 19.5926 (5) Å | θ = 2.6–36.3° |
c = 13.1516 (3) Å | µ = 3.36 mm−1 |
β = 101.004 (1)° | T = 100 K |
V = 2612.88 (10) Å3 | Thick needle, colorless |
Z = 2 | 0.40 × 0.24 × 0.16 mm |
Bruker APEXII CCD diffractometer | 9717 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 36.3°, θmin = 2.5° |
Tmin = 0.581, Tmax = 0.747 | h = −17→16 |
39864 measured reflections | k = −32→32 |
12618 independent reflections | l = −21→14 |
Refinement on F2 | 138 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0408P)2 + 4.799P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
12618 reflections | Δρmax = 1.25 e Å−3 |
423 parameters | Δρmin = −1.09 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.36569 (2) | 0.48167 (2) | 0.44719 (2) | 0.01322 (5) | |
Cu2 | 0.50985 (2) | 0.37115 (2) | 0.53468 (2) | 0.01558 (5) | |
Cu3 | 0.67148 (3) | 0.38356 (2) | 0.39516 (2) | 0.01552 (5) | |
Cu4 | 0.54489 (2) | 0.50343 (2) | 0.32457 (2) | 0.01505 (5) | |
C6 | 0.5539 (8) | 0.2154 (3) | 0.4265 (7) | 0.0348 (14) | 0.74 (3) |
F1 | 0.5195 (10) | 0.2498 (4) | 0.3398 (6) | 0.0482 (16) | 0.74 (3) |
F2 | 0.4463 (6) | 0.2130 (3) | 0.4711 (10) | 0.0458 (16) | 0.74 (3) |
F3 | 0.5820 (9) | 0.1514 (3) | 0.4055 (8) | 0.0457 (17) | 0.74 (3) |
C6A | 0.569 (2) | 0.2219 (11) | 0.402 (2) | 0.039 (3) | 0.26 (3) |
F1A | 0.548 (2) | 0.2606 (11) | 0.3199 (19) | 0.048 (3) | 0.26 (3) |
F2A | 0.4536 (16) | 0.2137 (10) | 0.433 (2) | 0.046 (3) | 0.26 (3) |
F3A | 0.6044 (18) | 0.1603 (9) | 0.373 (2) | 0.046 (3) | 0.26 (3) |
F4 | 0.5764 (2) | 0.24802 (10) | 0.65140 (18) | 0.0449 (5) | |
F5 | 0.6632 (2) | 0.15454 (9) | 0.61016 (19) | 0.0458 (5) | |
F6 | 0.78728 (19) | 0.23828 (10) | 0.67233 (15) | 0.0408 (4) | |
F7 | 0.84303 (18) | 0.17070 (9) | 0.48863 (17) | 0.0418 (5) | |
F8 | 0.89770 (17) | 0.27610 (9) | 0.51149 (19) | 0.0429 (5) | |
F9 | 0.7930 (3) | 0.24249 (13) | 0.36435 (18) | 0.0603 (7) | |
F10 | 0.8330 (3) | 0.33139 (11) | 0.2327 (2) | 0.0556 (6) | |
F11 | 0.93598 (18) | 0.42150 (13) | 0.29185 (16) | 0.0502 (6) | |
F12 | 0.9025 (2) | 0.39975 (13) | 0.12788 (16) | 0.0472 (5) | |
F13 | 0.8467 (2) | 0.53540 (11) | 0.18854 (17) | 0.0468 (5) | |
F14 | 0.7351 (2) | 0.49850 (11) | 0.04494 (14) | 0.0411 (4) | |
F15 | 0.6371 (2) | 0.54858 (11) | 0.15382 (17) | 0.0465 (5) | |
F16 | 0.50493 (19) | 0.43350 (13) | 0.09123 (16) | 0.0505 (6) | |
F17 | 0.5644 (2) | 0.34473 (12) | 0.18442 (16) | 0.0525 (6) | |
F18 | 0.6462 (2) | 0.36536 (12) | 0.04940 (15) | 0.0488 (5) | |
O1 | 0.35045 (14) | 0.41607 (8) | 0.54527 (12) | 0.0150 (2) | |
O2 | 0.65525 (14) | 0.32124 (7) | 0.50039 (12) | 0.0155 (3) | |
O3 | 0.68844 (15) | 0.44984 (8) | 0.29561 (11) | 0.0165 (3) | |
O4 | 0.38626 (14) | 0.54477 (7) | 0.34687 (11) | 0.0139 (2) | |
C1 | 0.22828 (19) | 0.37709 (11) | 0.53597 (18) | 0.0178 (4) | |
C2 | 0.2449 (3) | 0.32974 (15) | 0.6293 (2) | 0.0303 (5) | |
H2A | 0.317793 | 0.298079 | 0.627315 | 0.045* | |
H2B | 0.163328 | 0.303840 | 0.627592 | 0.045* | |
H2C | 0.264175 | 0.356809 | 0.693052 | 0.045* | |
C3 | 0.2035 (2) | 0.33683 (13) | 0.4354 (2) | 0.0263 (5) | |
H3A | 0.278294 | 0.306346 | 0.433756 | 0.039* | |
H3B | 0.193375 | 0.368419 | 0.376656 | 0.039* | |
H3C | 0.122870 | 0.309737 | 0.430963 | 0.039* | |
C4 | 0.1165 (2) | 0.42778 (13) | 0.5378 (2) | 0.0229 (4) | |
H4A | 0.104906 | 0.456535 | 0.475715 | 0.034* | |
H4B | 0.138111 | 0.456534 | 0.599653 | 0.034* | |
H4C | 0.034607 | 0.402801 | 0.539074 | 0.034* | |
C5 | 0.6712 (2) | 0.25132 (11) | 0.49893 (19) | 0.0203 (4) | |
C7 | 0.6734 (3) | 0.22204 (13) | 0.6093 (2) | 0.0307 (5) | |
C8 | 0.8043 (3) | 0.23447 (14) | 0.4662 (2) | 0.0309 (5) | |
C9 | 0.7179 (2) | 0.43721 (12) | 0.19933 (16) | 0.0185 (4) | |
C10 | 0.8520 (3) | 0.39842 (17) | 0.2129 (2) | 0.0328 (6) | |
C11 | 0.7320 (3) | 0.50577 (14) | 0.1441 (2) | 0.0279 (5) | |
C12 | 0.6092 (3) | 0.39317 (16) | 0.1314 (2) | 0.0306 (5) | |
C13 | 0.2764 (2) | 0.55606 (11) | 0.26043 (16) | 0.0177 (3) | |
C14 | 0.3218 (3) | 0.60780 (16) | 0.1893 (2) | 0.0296 (5) | |
H14A | 0.397446 | 0.589458 | 0.163124 | 0.044* | |
H14B | 0.347723 | 0.650043 | 0.227719 | 0.044* | |
H14C | 0.249709 | 0.617393 | 0.130988 | 0.044* | |
C15 | 0.1606 (2) | 0.58315 (12) | 0.30501 (18) | 0.0216 (4) | |
H15A | 0.187194 | 0.624869 | 0.344617 | 0.032* | |
H15B | 0.133394 | 0.548669 | 0.350682 | 0.032* | |
H15C | 0.086657 | 0.593322 | 0.248369 | 0.032* | |
C16 | 0.2385 (3) | 0.48899 (14) | 0.2039 (2) | 0.0273 (5) | |
H16A | 0.315517 | 0.469958 | 0.180408 | 0.041* | |
H16B | 0.167918 | 0.497218 | 0.143911 | 0.041* | |
H16C | 0.207776 | 0.456652 | 0.250932 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01056 (9) | 0.01428 (10) | 0.01405 (10) | 0.00057 (8) | 0.00039 (7) | 0.00096 (8) |
Cu2 | 0.01264 (10) | 0.01438 (10) | 0.01934 (12) | 0.00278 (8) | 0.00208 (8) | 0.00314 (8) |
Cu3 | 0.01483 (10) | 0.01579 (11) | 0.01540 (11) | 0.00344 (8) | 0.00154 (8) | 0.00048 (8) |
Cu4 | 0.01328 (10) | 0.01641 (11) | 0.01549 (11) | 0.00283 (8) | 0.00280 (8) | 0.00206 (8) |
C6 | 0.032 (2) | 0.0152 (16) | 0.047 (3) | 0.0041 (15) | −0.020 (2) | −0.0064 (18) |
F1 | 0.056 (3) | 0.0304 (19) | 0.042 (2) | 0.0023 (19) | −0.030 (2) | −0.0024 (15) |
F2 | 0.0227 (14) | 0.0280 (14) | 0.079 (4) | −0.0057 (11) | −0.010 (2) | 0.001 (2) |
F3 | 0.050 (3) | 0.0174 (14) | 0.058 (3) | 0.0031 (15) | −0.020 (2) | −0.0149 (16) |
C6A | 0.032 (5) | 0.024 (5) | 0.054 (6) | −0.001 (4) | −0.010 (5) | −0.013 (5) |
F1A | 0.052 (6) | 0.031 (5) | 0.053 (7) | −0.008 (5) | −0.013 (5) | −0.013 (4) |
F2A | 0.020 (4) | 0.035 (4) | 0.075 (7) | −0.005 (3) | −0.010 (5) | −0.011 (6) |
F3A | 0.041 (5) | 0.024 (4) | 0.067 (8) | −0.002 (4) | −0.004 (5) | −0.015 (5) |
F4 | 0.0464 (11) | 0.0339 (9) | 0.0613 (13) | 0.0087 (8) | 0.0279 (10) | 0.0189 (9) |
F5 | 0.0423 (10) | 0.0165 (7) | 0.0776 (15) | 0.0008 (7) | 0.0091 (10) | 0.0158 (8) |
F6 | 0.0406 (10) | 0.0381 (9) | 0.0374 (9) | 0.0014 (8) | −0.0084 (8) | 0.0112 (8) |
F7 | 0.0334 (9) | 0.0229 (7) | 0.0666 (13) | 0.0157 (7) | 0.0029 (8) | −0.0033 (8) |
F8 | 0.0207 (7) | 0.0298 (8) | 0.0800 (15) | 0.0017 (6) | 0.0143 (8) | −0.0032 (9) |
F9 | 0.0824 (17) | 0.0595 (14) | 0.0444 (12) | 0.0375 (13) | 0.0252 (12) | −0.0002 (10) |
F10 | 0.0651 (15) | 0.0383 (11) | 0.0698 (15) | 0.0214 (10) | 0.0289 (12) | 0.0052 (10) |
F11 | 0.0250 (8) | 0.0819 (17) | 0.0421 (11) | 0.0136 (9) | 0.0026 (7) | 0.0009 (11) |
F12 | 0.0375 (10) | 0.0691 (14) | 0.0407 (10) | 0.0165 (10) | 0.0220 (8) | 0.0005 (10) |
F13 | 0.0472 (11) | 0.0495 (12) | 0.0449 (11) | −0.0181 (9) | 0.0121 (9) | 0.0044 (9) |
F14 | 0.0480 (11) | 0.0556 (12) | 0.0228 (8) | 0.0045 (9) | 0.0145 (7) | 0.0077 (8) |
F15 | 0.0577 (12) | 0.0428 (11) | 0.0435 (11) | 0.0195 (9) | 0.0212 (9) | 0.0166 (9) |
F16 | 0.0284 (9) | 0.0821 (17) | 0.0374 (10) | −0.0024 (10) | −0.0027 (7) | −0.0098 (11) |
F17 | 0.0647 (14) | 0.0565 (13) | 0.0386 (10) | −0.0348 (11) | 0.0158 (10) | −0.0149 (9) |
F18 | 0.0568 (13) | 0.0630 (14) | 0.0296 (9) | −0.0166 (11) | 0.0154 (9) | −0.0214 (9) |
O1 | 0.0096 (5) | 0.0171 (6) | 0.0180 (6) | 0.0002 (5) | 0.0017 (5) | 0.0026 (5) |
O2 | 0.0148 (6) | 0.0107 (5) | 0.0199 (7) | 0.0026 (5) | 0.0004 (5) | −0.0007 (5) |
O3 | 0.0163 (6) | 0.0205 (7) | 0.0134 (6) | 0.0037 (5) | 0.0042 (5) | 0.0009 (5) |
O4 | 0.0109 (5) | 0.0159 (6) | 0.0139 (6) | 0.0014 (5) | −0.0005 (4) | 0.0007 (5) |
C1 | 0.0110 (7) | 0.0182 (8) | 0.0244 (10) | −0.0015 (6) | 0.0035 (6) | 0.0026 (7) |
C2 | 0.0235 (11) | 0.0303 (12) | 0.0357 (13) | −0.0050 (9) | 0.0023 (9) | 0.0128 (10) |
C3 | 0.0172 (9) | 0.0272 (11) | 0.0335 (12) | −0.0022 (8) | 0.0028 (8) | −0.0092 (9) |
C4 | 0.0116 (8) | 0.0265 (10) | 0.0310 (11) | 0.0009 (7) | 0.0048 (7) | −0.0010 (9) |
C5 | 0.0153 (8) | 0.0124 (8) | 0.0298 (11) | 0.0022 (6) | −0.0047 (7) | −0.0009 (7) |
C7 | 0.0304 (12) | 0.0171 (10) | 0.0445 (15) | 0.0028 (9) | 0.0068 (11) | 0.0084 (10) |
C8 | 0.0290 (12) | 0.0221 (11) | 0.0420 (15) | 0.0116 (9) | 0.0076 (10) | −0.0020 (10) |
C9 | 0.0170 (8) | 0.0235 (9) | 0.0155 (8) | 0.0014 (7) | 0.0043 (6) | −0.0017 (7) |
C10 | 0.0242 (11) | 0.0480 (16) | 0.0288 (12) | 0.0115 (11) | 0.0113 (9) | 0.0006 (11) |
C11 | 0.0331 (12) | 0.0318 (12) | 0.0209 (10) | 0.0015 (10) | 0.0103 (9) | 0.0046 (9) |
C12 | 0.0294 (12) | 0.0389 (14) | 0.0253 (11) | −0.0094 (10) | 0.0098 (9) | −0.0126 (10) |
C13 | 0.0139 (8) | 0.0229 (9) | 0.0144 (8) | 0.0024 (7) | −0.0020 (6) | 0.0016 (7) |
C14 | 0.0236 (11) | 0.0404 (14) | 0.0238 (11) | 0.0024 (10) | 0.0017 (8) | 0.0150 (10) |
C15 | 0.0136 (8) | 0.0259 (10) | 0.0236 (10) | 0.0047 (7) | −0.0008 (7) | 0.0000 (8) |
C16 | 0.0235 (10) | 0.0328 (12) | 0.0224 (10) | 0.0004 (9) | −0.0033 (8) | −0.0094 (9) |
Cu1—O1 | 1.8488 (15) | F16—C12 | 1.359 (4) |
Cu1—O4 | 1.8496 (15) | F17—C12 | 1.313 (4) |
Cu1—Cu4 | 2.7108 (4) | F18—C12 | 1.328 (3) |
Cu1—Cu2 | 2.7526 (3) | O1—C1 | 1.460 (2) |
Cu1—Cu1i | 2.9452 (5) | O2—C5 | 1.380 (2) |
Cu1—Cu4i | 2.9816 (4) | O3—C9 | 1.380 (3) |
Cu2—O1 | 1.8956 (14) | O4—C13 | 1.461 (2) |
Cu2—O2 | 1.9168 (15) | C1—C3 | 1.519 (3) |
Cu2—O4i | 2.3779 (15) | C1—C2 | 1.522 (3) |
Cu2—Cu3 | 2.7172 (4) | C1—C4 | 1.527 (3) |
Cu3—O3 | 1.8758 (16) | C2—H2A | 0.9800 |
Cu3—O2 | 1.8770 (15) | C2—H2B | 0.9800 |
Cu3—Cu4 | 2.7612 (4) | C2—H2C | 0.9800 |
Cu4—O4 | 1.9001 (14) | C3—H3A | 0.9800 |
Cu4—O3 | 1.9137 (15) | C3—H3B | 0.9800 |
Cu4—O1i | 2.4248 (15) | C3—H3C | 0.9800 |
C6—F1 | 1.314 (6) | C4—H4A | 0.9800 |
C6—F3 | 1.329 (6) | C4—H4B | 0.9800 |
C6—F2 | 1.353 (7) | C4—H4C | 0.9800 |
C6—C5 | 1.558 (7) | C5—C8 | 1.553 (4) |
C6A—F1A | 1.302 (16) | C5—C7 | 1.556 (4) |
C6A—F3A | 1.335 (17) | C9—C11 | 1.547 (3) |
C6A—F2A | 1.342 (16) | C9—C12 | 1.556 (3) |
C6A—C5 | 1.60 (2) | C9—C10 | 1.560 (3) |
F4—C7 | 1.335 (3) | C13—C14 | 1.513 (3) |
F5—C7 | 1.327 (3) | C13—C16 | 1.524 (3) |
F6—C7 | 1.342 (3) | C13—C15 | 1.525 (3) |
F7—C8 | 1.328 (3) | C14—H14A | 0.9800 |
F8—C8 | 1.316 (4) | C14—H14B | 0.9800 |
F9—C8 | 1.332 (4) | C14—H14C | 0.9800 |
F10—C10 | 1.360 (4) | C15—H15A | 0.9800 |
F11—C10 | 1.301 (4) | C15—H15B | 0.9800 |
F12—C10 | 1.321 (3) | C15—H15C | 0.9800 |
F13—C11 | 1.348 (4) | C16—H16A | 0.9800 |
F14—C11 | 1.319 (3) | C16—H16B | 0.9800 |
F15—C11 | 1.315 (3) | C16—H16C | 0.9800 |
O1—Cu1—O4 | 177.42 (7) | C1—C2—H2C | 109.5 |
O1—Cu1—Cu4 | 133.09 (5) | H2A—C2—H2C | 109.5 |
O4—Cu1—Cu4 | 44.45 (4) | H2B—C2—H2C | 109.5 |
O1—Cu1—Cu2 | 43.35 (4) | C1—C3—H3A | 109.5 |
O4—Cu1—Cu2 | 134.21 (5) | C1—C3—H3B | 109.5 |
Cu4—Cu1—Cu2 | 89.771 (10) | H3A—C3—H3B | 109.5 |
O1—Cu1—Cu1i | 92.20 (5) | C1—C3—H3C | 109.5 |
O4—Cu1—Cu1i | 86.98 (4) | H3A—C3—H3C | 109.5 |
Cu4—Cu1—Cu1i | 63.468 (10) | H3B—C3—H3C | 109.5 |
Cu2—Cu1—Cu1i | 66.971 (10) | C1—C4—H4A | 109.5 |
O1—Cu1—Cu4i | 54.33 (5) | C1—C4—H4B | 109.5 |
O4—Cu1—Cu4i | 126.65 (5) | H4A—C4—H4B | 109.5 |
Cu4—Cu1—Cu4i | 117.900 (10) | C1—C4—H4C | 109.5 |
Cu2—Cu1—Cu4i | 67.494 (9) | H4A—C4—H4C | 109.5 |
Cu1i—Cu1—Cu4i | 54.432 (9) | H4B—C4—H4C | 109.5 |
O1—Cu2—O2 | 170.02 (7) | O2—C5—C8 | 109.21 (19) |
O1—Cu2—O4i | 85.40 (6) | O2—C5—C7 | 109.5 (2) |
O2—Cu2—O4i | 103.39 (6) | C8—C5—C7 | 108.9 (2) |
O1—Cu2—Cu3 | 131.48 (5) | O2—C5—C6 | 112.1 (3) |
O2—Cu2—Cu3 | 43.67 (5) | C8—C5—C6 | 111.2 (4) |
O4i—Cu2—Cu3 | 96.99 (4) | C7—C5—C6 | 105.9 (4) |
O1—Cu2—Cu1 | 42.03 (5) | O2—C5—C6A | 107.8 (8) |
O2—Cu2—Cu1 | 133.53 (5) | C8—C5—C6A | 100.8 (9) |
O4i—Cu2—Cu1 | 82.49 (4) | C7—C5—C6A | 120.0 (10) |
Cu3—Cu2—Cu1 | 90.025 (11) | F5—C7—F4 | 108.0 (2) |
O3—Cu3—O2 | 176.74 (7) | F5—C7—F6 | 107.0 (2) |
O3—Cu3—Cu2 | 133.20 (5) | F4—C7—F6 | 107.0 (3) |
O2—Cu3—Cu2 | 44.85 (4) | F5—C7—C5 | 112.9 (3) |
O3—Cu3—Cu4 | 43.77 (5) | F4—C7—C5 | 111.6 (2) |
O2—Cu3—Cu4 | 134.27 (5) | F6—C7—C5 | 110.1 (2) |
Cu2—Cu3—Cu4 | 89.459 (10) | F8—C8—F7 | 108.6 (2) |
O4—Cu4—O3 | 171.27 (7) | F8—C8—F9 | 107.4 (3) |
O4—Cu4—O1i | 83.99 (6) | F7—C8—F9 | 107.4 (2) |
O3—Cu4—O1i | 103.85 (6) | F8—C8—C5 | 110.7 (2) |
O4—Cu4—Cu1 | 42.97 (4) | F7—C8—C5 | 112.6 (2) |
O3—Cu4—Cu1 | 132.47 (5) | F9—C8—C5 | 109.9 (2) |
O1i—Cu4—Cu1 | 86.87 (4) | O3—C9—C11 | 109.37 (19) |
O4—Cu4—Cu3 | 132.66 (5) | O3—C9—C12 | 111.40 (18) |
O3—Cu4—Cu3 | 42.69 (5) | C11—C9—C12 | 109.5 (2) |
O1i—Cu4—Cu3 | 101.37 (4) | O3—C9—C10 | 109.20 (18) |
Cu1—Cu4—Cu3 | 89.976 (11) | C11—C9—C10 | 108.4 (2) |
O4—Cu4—Cu1i | 85.04 (4) | C12—C9—C10 | 108.9 (2) |
O3—Cu4—Cu1i | 98.69 (5) | F11—C10—F12 | 111.0 (3) |
O1i—Cu4—Cu1i | 38.27 (4) | F11—C10—F10 | 106.3 (3) |
Cu1—Cu4—Cu1i | 62.100 (10) | F12—C10—F10 | 106.0 (3) |
Cu3—Cu4—Cu1i | 73.077 (9) | F11—C10—C9 | 111.4 (2) |
F1—C6—F3 | 109.7 (5) | F12—C10—C9 | 112.3 (2) |
F1—C6—F2 | 106.6 (5) | F10—C10—C9 | 109.6 (2) |
F3—C6—F2 | 106.7 (5) | F15—C11—F14 | 108.9 (2) |
F1—C6—C5 | 110.4 (5) | F15—C11—F13 | 107.0 (3) |
F3—C6—C5 | 112.2 (5) | F14—C11—F13 | 106.8 (2) |
F2—C6—C5 | 111.0 (5) | F15—C11—C9 | 111.7 (2) |
F1A—C6A—F3A | 107.8 (15) | F14—C11—C9 | 113.1 (2) |
F1A—C6A—F2A | 107.6 (15) | F13—C11—C9 | 108.9 (2) |
F3A—C6A—F2A | 106.6 (15) | F17—C12—F18 | 108.6 (3) |
F1A—C6A—C5 | 115.6 (16) | F17—C12—F16 | 107.0 (2) |
F3A—C6A—C5 | 112.1 (15) | F18—C12—F16 | 104.6 (2) |
F2A—C6A—C5 | 106.7 (15) | F17—C12—C9 | 112.7 (2) |
C1—O1—Cu1 | 119.50 (12) | F18—C12—C9 | 114.0 (2) |
C1—O1—Cu2 | 120.00 (13) | F16—C12—C9 | 109.4 (2) |
Cu1—O1—Cu2 | 94.63 (7) | O4—C13—C14 | 107.23 (17) |
C1—O1—Cu4i | 131.39 (12) | O4—C13—C16 | 109.77 (18) |
Cu1—O1—Cu4i | 87.39 (6) | C14—C13—C16 | 110.9 (2) |
Cu2—O1—Cu4i | 94.44 (6) | O4—C13—C15 | 107.65 (17) |
C5—O2—Cu3 | 127.43 (15) | C14—C13—C15 | 111.3 (2) |
C5—O2—Cu2 | 127.62 (14) | C16—C13—C15 | 109.89 (19) |
Cu3—O2—Cu2 | 91.48 (6) | C13—C14—H14A | 109.5 |
C9—O3—Cu3 | 125.64 (14) | C13—C14—H14B | 109.5 |
C9—O3—Cu4 | 126.58 (13) | H14A—C14—H14B | 109.5 |
Cu3—O3—Cu4 | 93.54 (7) | C13—C14—H14C | 109.5 |
C13—O4—Cu1 | 118.57 (12) | H14A—C14—H14C | 109.5 |
C13—O4—Cu4 | 120.57 (12) | H14B—C14—H14C | 109.5 |
Cu1—O4—Cu4 | 92.58 (6) | C13—C15—H15A | 109.5 |
C13—O4—Cu2i | 126.23 (12) | C13—C15—H15B | 109.5 |
Cu1—O4—Cu2i | 95.43 (6) | H15A—C15—H15B | 109.5 |
Cu4—O4—Cu2i | 95.84 (6) | C13—C15—H15C | 109.5 |
O1—C1—C3 | 110.11 (18) | H15A—C15—H15C | 109.5 |
O1—C1—C2 | 106.79 (17) | H15B—C15—H15C | 109.5 |
C3—C1—C2 | 111.1 (2) | C13—C16—H16A | 109.5 |
O1—C1—C4 | 107.63 (17) | C13—C16—H16B | 109.5 |
C3—C1—C4 | 110.42 (19) | H16A—C16—H16B | 109.5 |
C2—C1—C4 | 110.7 (2) | C13—C16—H16C | 109.5 |
C1—C2—H2A | 109.5 | H16A—C16—H16C | 109.5 |
C1—C2—H2B | 109.5 | H16B—C16—H16C | 109.5 |
H2A—C2—H2B | 109.5 | ||
Cu4—Cu1—O1—C1 | −125.98 (13) | F3A—C6A—C5—C7 | −74.5 (14) |
Cu2—Cu1—O1—C1 | −128.47 (17) | F2A—C6A—C5—C7 | 41.9 (15) |
Cu1i—Cu1—O1—C1 | 179.20 (14) | O2—C5—C7—F5 | 168.0 (2) |
Cu4i—Cu1—O1—C1 | 137.28 (16) | C8—C5—C7—F5 | −72.7 (3) |
Cu4—Cu1—O1—Cu2 | 2.49 (10) | C6—C5—C7—F5 | 46.9 (4) |
Cu1i—Cu1—O1—Cu2 | −52.33 (5) | C6A—C5—C7—F5 | 42.5 (9) |
Cu4i—Cu1—O1—Cu2 | −94.24 (6) | O2—C5—C7—F4 | 46.1 (3) |
Cu4—Cu1—O1—Cu4i | 96.74 (6) | C8—C5—C7—F4 | 165.4 (2) |
Cu2—Cu1—O1—Cu4i | 94.24 (6) | C6—C5—C7—F4 | −74.9 (4) |
Cu1i—Cu1—O1—Cu4i | 41.91 (3) | C6A—C5—C7—F4 | −79.4 (9) |
O4i—Cu2—O1—C1 | −148.00 (15) | O2—C5—C7—F6 | −72.5 (2) |
Cu3—Cu2—O1—C1 | 116.72 (13) | C8—C5—C7—F6 | 46.8 (3) |
Cu1—Cu2—O1—C1 | 128.12 (17) | C6—C5—C7—F6 | 166.4 (3) |
O4i—Cu2—O1—Cu1 | 83.88 (6) | C6A—C5—C7—F6 | 162.0 (9) |
Cu3—Cu2—O1—Cu1 | −11.39 (9) | O2—C5—C8—F8 | 41.7 (3) |
O4i—Cu2—O1—Cu4i | −3.86 (5) | C7—C5—C8—F8 | −77.8 (3) |
Cu3—Cu2—O1—Cu4i | −99.13 (5) | C6—C5—C8—F8 | 165.9 (4) |
Cu1—Cu2—O1—Cu4i | −87.74 (6) | C6A—C5—C8—F8 | 155.1 (10) |
Cu2—Cu3—O2—C5 | 142.06 (19) | O2—C5—C8—F7 | 163.5 (2) |
Cu4—Cu3—O2—C5 | 144.91 (14) | C7—C5—C8—F7 | 44.0 (3) |
Cu4—Cu3—O2—Cu2 | 2.85 (9) | C6—C5—C8—F7 | −72.3 (4) |
Cu2—Cu3—O3—C9 | −143.51 (14) | C6A—C5—C8—F7 | −83.1 (10) |
Cu4—Cu3—O3—C9 | −141.18 (19) | O2—C5—C8—F9 | −76.8 (3) |
Cu2—Cu3—O3—Cu4 | −2.33 (10) | C7—C5—C8—F9 | 163.7 (2) |
Cu4—Cu1—O4—C13 | 127.18 (16) | C6—C5—C8—F9 | 47.4 (4) |
Cu2—Cu1—O4—C13 | 128.10 (12) | C6A—C5—C8—F9 | 36.6 (10) |
Cu1i—Cu1—O4—C13 | −178.62 (14) | Cu3—O3—C9—C11 | −176.25 (15) |
Cu4i—Cu1—O4—C13 | −138.56 (12) | Cu4—O3—C9—C11 | 54.9 (2) |
Cu2—Cu1—O4—Cu4 | 0.92 (9) | Cu3—O3—C9—C12 | 62.5 (2) |
Cu1i—Cu1—O4—Cu4 | 54.20 (5) | Cu4—O3—C9—C12 | −66.3 (2) |
Cu4i—Cu1—O4—Cu4 | 94.26 (6) | Cu3—O3—C9—C10 | −57.8 (2) |
Cu4—Cu1—O4—Cu2i | −96.12 (6) | Cu4—O3—C9—C10 | 173.43 (17) |
Cu2—Cu1—O4—Cu2i | −95.20 (6) | O3—C9—C10—F11 | −38.9 (3) |
Cu1i—Cu1—O4—Cu2i | −41.92 (4) | C11—C9—C10—F11 | 80.2 (3) |
Cu4i—Cu1—O4—Cu2i | −1.86 (7) | C12—C9—C10—F11 | −160.7 (2) |
Cu1—O1—C1—C3 | 61.2 (2) | O3—C9—C10—F12 | −164.0 (2) |
Cu2—O1—C1—C3 | −54.5 (2) | C11—C9—C10—F12 | −44.9 (3) |
Cu4i—O1—C1—C3 | 176.65 (14) | C12—C9—C10—F12 | 74.2 (3) |
Cu1—O1—C1—C2 | −178.04 (16) | O3—C9—C10—F10 | 78.5 (3) |
Cu2—O1—C1—C2 | 66.3 (2) | C11—C9—C10—F10 | −162.4 (2) |
Cu4i—O1—C1—C2 | −62.6 (2) | C12—C9—C10—F10 | −43.3 (3) |
Cu1—O1—C1—C4 | −59.2 (2) | O3—C9—C11—F15 | −44.5 (3) |
Cu2—O1—C1—C4 | −174.88 (14) | C12—C9—C11—F15 | 77.9 (3) |
Cu4i—O1—C1—C4 | 56.2 (2) | C10—C9—C11—F15 | −163.5 (2) |
Cu3—O2—C5—C8 | 50.8 (2) | O3—C9—C11—F14 | −167.8 (2) |
Cu2—O2—C5—C8 | 179.87 (16) | C12—C9—C11—F14 | −45.5 (3) |
Cu3—O2—C5—C7 | 169.91 (15) | C10—C9—C11—F14 | 73.2 (3) |
Cu2—O2—C5—C7 | −61.0 (2) | O3—C9—C11—F13 | 73.6 (2) |
Cu3—O2—C5—C6 | −72.9 (5) | C12—C9—C11—F13 | −164.1 (2) |
Cu2—O2—C5—C6 | 56.3 (5) | C10—C9—C11—F13 | −45.4 (3) |
Cu3—O2—C5—C6A | −57.9 (10) | O3—C9—C12—F17 | −39.8 (3) |
Cu2—O2—C5—C6A | 71.2 (10) | C11—C9—C12—F17 | −161.0 (2) |
F1—C6—C5—O2 | 42.4 (6) | C10—C9—C12—F17 | 80.7 (3) |
F3—C6—C5—O2 | 165.1 (4) | O3—C9—C12—F18 | −164.2 (2) |
F2—C6—C5—O2 | −75.6 (5) | C11—C9—C12—F18 | 74.7 (3) |
F1—C6—C5—C8 | −80.1 (5) | C10—C9—C12—F18 | −43.7 (3) |
F3—C6—C5—C8 | 42.6 (5) | O3—C9—C12—F16 | 79.1 (3) |
F2—C6—C5—C8 | 161.9 (4) | C11—C9—C12—F16 | −42.0 (3) |
F1—C6—C5—C7 | 161.7 (4) | C10—C9—C12—F16 | −160.4 (2) |
F3—C6—C5—C7 | −75.5 (5) | Cu1—O4—C13—C14 | −178.10 (16) |
F2—C6—C5—C7 | 43.7 (4) | Cu4—O4—C13—C14 | −65.7 (2) |
F1A—C6A—C5—O2 | 35.3 (16) | Cu2i—O4—C13—C14 | 59.7 (2) |
F3A—C6A—C5—O2 | 159.3 (10) | Cu1—O4—C13—C16 | −57.5 (2) |
F2A—C6A—C5—O2 | −84.4 (13) | Cu4—O4—C13—C16 | 54.9 (2) |
F1A—C6A—C5—C8 | −79.1 (14) | Cu2i—O4—C13—C16 | −179.71 (14) |
F3A—C6A—C5—C8 | 44.9 (13) | Cu1—O4—C13—C15 | 62.1 (2) |
F2A—C6A—C5—C8 | 161.2 (11) | Cu4—O4—C13—C15 | 174.48 (14) |
F1A—C6A—C5—C7 | 161.5 (11) | Cu2i—O4—C13—C15 | −60.1 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···F2 | 0.98 | 2.51 | 3.457 (7) | 164 |
C3—H3A···F2A | 0.98 | 2.56 | 3.539 (18) | 173 |
C14—H14A···F15 | 0.98 | 2.63 | 3.571 (3) | 162 |
C14—H14B···F4i | 0.98 | 2.58 | 3.554 (4) | 173 |
C15—H15A···O2i | 0.98 | 2.58 | 3.438 (3) | 146 |
C15—H15C···F3Aii | 0.98 | 2.64 | 3.581 (18) | 161 |
C16—H16A···F16 | 0.98 | 2.57 | 3.536 (3) | 170 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.
References
Anson, C. E., Langer, R., Ponikiewski, L. & Rothenberger, A. (2005). Inorg. Chim. Acta, 358, 3967–3973. CSD CrossRef CAS Google Scholar
Bellow, J. A., Yousif, M., Fang, D., Kratz, E. G. G., Cisneros, G. A. & Groysman, S. (2015). Inorg. Chem. 54, 5624–5633. CSD CrossRef CAS PubMed Google Scholar
Borup, B., Streib, W. E. & Caulton, K. G. (1997). Inorg. Chem. 36, 5058–5063. CSD CrossRef CAS Google Scholar
Bradley, D. C. (1989). Chem. Rev. 89, 1317–1322. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cripps, W. S. & Willis, C. J. (1975a). Can. J. Chem. 53, 817–825. CrossRef CAS Google Scholar
Cripps, W. S. & Willis, C. J. (1975b). Can. J. Chem. 53, 809–816. CrossRef CAS Google Scholar
Greiser, T. & Weiss, E. (1976). Chem. Ber. 109, 3142–3146. CSD CrossRef CAS Google Scholar
Håkansson, M., Lopes, C. & Jagner, S. (2000). Inorg. Chim. Acta, 304, 178–183. Google Scholar
Krossing, I. (2012). Private Communication (refcode GEQCUC). CCDC, Cambridge, England. Google Scholar
Lieberman, C. M., Vreshch, V. D., Filatov, A. S. & Dikarev, E. V. (2015). Inorg. Chim. Acta, 424, 156–161. CSD CrossRef CAS Google Scholar
Lopes, C., Håkansson, M. & Jagner, S. (1997). Inorg. Chem. 36, 3232–3236. CSD CrossRef PubMed CAS Google Scholar
McGeary, M. J., Wedlich, R. C., Coan, P. S., Folting, K. & Caulton, K. G. (1992). Polyhedron, 11, 2459–2473. CSD CrossRef CAS Google Scholar
Nikitinsky, A. V., Bochkarev, L. N. & Khorshev, S. Y. (2000). Russ. Chem. Bull. pp. 1273–1281. Google Scholar
Ohashi, M., Adachi, T., Ishida, N., Kikushima, K. & Ogoshi, S. (2017). Angew. Chem. Int. Ed. 56, 11911–11915. CSD CrossRef CAS Google Scholar
Purdy, A. P. & George, C. F. (1991). Inorg. Chem. 30, 1969–1970. CSD CrossRef CAS Google Scholar
Purdy, A. P. & George, C. F. (1995). Polyhedron, 14, 761–769. CSD CrossRef CAS Google Scholar
Purdy, A. P. & George, C. F. (1998). Polyhedron, 17, 4041–4048. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Terry, K. W., Lugmair, C. G., Gantzel, P. K. & Tilley, T. D. (1996). Chem. Mater. 8, 274–280. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.