research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-[(E)-2-(5-chloro-2-hy­dr­oxy­phen­yl)hydrazin-1-yl­­idene]naphthalen-2(1H)-one

crossmark logo

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Département de Chimie, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria, cFaculté de Technologie, Université Mohamed Boudiaf M'sila, Algeria, and dLaboratoire de Chimie et Systémique Organométallique (LCSOM), Institut de Chimie, Université de Strasbourg, UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France
*Correspondence e-mail: bougueriahassiba@gmail.com, nesrine.benarous@umc.edu.dz

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 10 May 2021; accepted 25 May 2021; online 28 May 2021)

The title compound, C16H11ClN2O2, was obtained by diazo­tization of 2-amino-4-chloro­phenol followed by a coupling reaction with β-naphthol. There are two mol­ecules (A and B) in the asymmetric unit. The crystal structure features only one type of inter­molecular inter­action, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N—N— moiety exhibit an s-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in mol­ecule A and 10.35 (2)° in mol­ecule B. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (32.1%), C⋯H/H⋯C (23.1%), Cl⋯H/H⋯Cl (15.2%), O⋯H/H⋯O (12.8%) and C⋯C (9%) contacts.

1. Chemical context

Azo compounds are one of the most frequently used compounds in organic chemistry, mainly due to their relatively simple preparation methods. They have therefore been widely used in industry, particularly as dyes for textiles (Ramugade et al., 2019[Ramugade, S. H., Warde, U. S. & Sekar, N. (2019). Dyes Pigments, 170, 107626.]), printing (Benkhaya et al., 2020[Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271-e03296.]; Choi et al., 2019[Choi, S., Cho, K. H., Namgoong, J. W., Kim, J. Y., Yoo, E. S., Lee, W., Jung, J. W. & Choi, J. (2019). Dyes Pigments, 163, 381-392.]), cosmetics (Guerra et al., 2018[Guerra, E., Alvarez-Rivera, G., Llompart, M. & Garcia-Jares, C. (2018). Talanta, 188, 251-258.]) and food additives (Wu et al., 2019[Wu, W., Duan, R., Geng, F., Hu, X., Gan, N. & Li, H. (2019). Food Chem. 284, 180-187.]). Apart from their use as colourants, azo compounds have attracted a lot of attention from chemists as their potential applications are important in coordination chemistry (Asha & Mandal, 2018[Asha, P. & Mandal, S. (2018). Cryst. Growth Des. 18, 4937-4944.]), metal–organic frameworks (MOFs) (Huang et al., 2017[Huang, H., Sato, H. & Aida, T. (2017). J. Am. Chem. Soc. 139, 8784-8787.]), covalent–organic frameworks (COFs) (Chandra et al., 2014[Chandra, S., Kundu, T., Kandambeth, S., BabaRao, R., Marathe, Y., Kunjir, S. M. & Banerjee, R. (2014). J. Am. Chem. Soc. 136, 6570-6573.]) and catalysis (Choudhary et al., 2017[Choudhary, A., Singh, O., Singh, U. P. & Ghosh, K. (2017). Inorg. Chim. Acta, 464, 195-203.]). In addition, they have found many applications in different fields such as non-linear optics (Dudek et al., 2020[Dudek, M., Tarnowicz-Staniak, N., Deiana, M., Pokładek, Z., Samoć, M. & Matczyszyn, K. (2020). RSC Adv. 10, 40489-40507.]), optical storage (Kovalchuk et al., 2020[Kovalchuk, A. I., Kobzar, Y. L., Tkachenko, I. M., Kurioz, Y. I., Tereshchenko, O. G., Shekera, O. V., Nazarenko, V. G. & Shevchenko, V. V. (2020). ACS Appl. Polym. Mater. 2, 455-463.]), photoluminescence (He et al., 2019[He, Y., Li, J., Li, J., Zhu, C. & Guo, J. (2019). ACS Appl. Polym. Mater. 1, 746-754.]), chemosensors (Akram et al., 2020[Akram, D., Elhaty, I. A. & AlNeyadi, S. S. (2020). Chemosensors, 8, 16-28.]) and magnetism (Nandi et al., 2021[Nandi, N. B., Purkayastha, A., Roy, S., Kłak, J., Ganguly, R., Alkorta, I. & Misra, T. K. (2021). New J. Chem. 45, 2742-2753.]). They are used not only in physics but also in the biomedical and pharmacological fields as they can offer new therapeutic properties such as anti­viral (Chhetri et al., 2021[Chhetri, A., Chettri, S., Rai, P., Sinha, B. & Brahman, D. (2021). J. Mol. Struct. 1224, 129178-129186.]), anti­microbial (Kyei et al., 2020[Kyei, S. K., Akaranta, O. & Darko, G. (2020). Sci. Afr. 8, e00406-e00419.]), anti-inflammatory and anti­oxidant (Unnisa et al., 2020[Unnisa, A., Abouzied, A. S., Baratam, A., Chenchu Lakshmi, K. N. V., Hussain, T., Kunduru, R. D., Banu, H., Bushra Fatima, S., Hussian, A. & Selvarajan, K. K. (2020). Arab. J. Chem. 13, 8638-8649.]). On the other hand, azo-naphthol derivatives form a widely studied class of azo compounds. Considerable research has been devoted to the development of new dyes prepared by the azo coupling reaction, which occurs between diazo­nium salts and 1- or 2-naphthols (Shalini Rosalyn et al., 2007[Shalini Rosalyn, P. D., Senthil, S., Kannan, P., Vinitha, G. & Ramalingam, A. (2007). J. Phys. Chem. Solids, 68, 1812-1820.]; Bougueria et al., 2013a[Bougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1335-o1336.]; Gusev et al., 2018[Gusev, V. Y., Radushev, A. V., Chekanova, L. G., Baigacheva, E. V., Manylova, K. O. & Gogoshvili, V. O. (2018). Russ. J. Appl. Chem. 91, 573-582.]). Following our inter­est in this area, we describe here the crystal structure of a novel azo compound derived from β-naphthol and 2-amino-4-chloro­phenol, viz. 1-[(E)-2-(5-chloro-2-hy­droxy­phen­yl)hydrazin-1-yl­idene]naphthalen-2(1H)-one.

[Scheme 1]

2. Structural commentary

The asymmetric unit of title compound contains two crystallographically independent mol­ecules (A and B) in which the N1A—N2A, N1B—N2B, C8A—O1A and C8B—O1B bond lengths are 1.307 (5), 1.307 (5), 1.262 (7) and 1.271 (7) Å, respectively, which indicates that the dye compound has crystallized in its neutral hydrazo tautomeric form (Fig. 1[link]); this is common when there is a OH group in the ortho-position corresponding to the azo group. Bond lengths and angles are within normal ranges and are comparable to those observed in related structures (Bougueria et al., 2014[Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. K. & Bouaoud, S. E. (2014). Acta Cryst. E70, o225.]; Chetioui et al., 2013a[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1322-o1323.]). The conformational differences between mol­ecules A and B are highlighted in an overlay diagram shown in Fig. 2[link]. The naphthol and phenol rings attached to the hydrazo group are almost coplanar, subtending a dihedral angle of 13.11 (2)° in mol­ecule A and 10.35 (2)° in mol­ecule B, indicating significant electron delocalization within the mol­ecules. The mol­ecular structures of A and B are each stabilized by two intra­molecular N—H⋯O hydrogen bonds with S(6) and S(5) motifs and involving the hydrogen atoms from the hydrazo groups (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1A 0.89 (4) 1.86 (5) 2.550 (7) 133 (4)
N1A—H1A⋯O2A 0.89 (4) 2.35 (5) 2.666 (6) 101 (4)
N1B—H1B⋯O1B 0.88 (4) 1.91 (5) 2.584 (6) 132 (4)
N1B—H1B⋯O2B 0.88 (4) 2.34 (4) 2.673 (6) 103 (4)
O2A—H2A⋯O1Bi 0.84 (5) 1.85 (5) 2.674 (6) 168 (5)
O2B—H2B⋯O1A 0.85 (6) 1.82 (6) 2.656 (7) 173 (6)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the two independent mol­ecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
Overlay image of the two mol­ecules in the asymmetric unit of the title compound.

3. Supra­molecular features

In the crystal, the presence of hydroxyl groups leads indeed to the formation of inter­molecular O—H⋯O hydrogen bonds, generating infinite zigzag chains along the c-axis direction (Table 1[link], Fig. 3[link]). No significant ππ stacking inter­actions were observed, despite the presence of aromatic rings in the mol­ecules.

[Figure 3]
Figure 3
A partial packing diagram of the title compound showing a zigzag chain formation along the c axis.

4. Analysis of the Hirshfeld surfaces

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was undertaken using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated. The Hirshfeld (HS) surfaces of the title compound mapped over dnorm are given in Fig. 4[link]. The normalized contact distance, dnorm, varies from red to blue to white depending on the contact distances relative the sum of the van der Waals radius The intense red spots labelled 1 and 2 are related to the presence of O—H⋯O hydrogen bonds in the crystal structure. Weak contacts are highlighted by red circles. More significant contacts and their percentage contributions to the Hirshfeld surface are given in Table 2[link]. The two-dimensional fingerprint plots are shown in Fig. 5[link]. They reveal that the main contributions to the HS are from H⋯H (32.1%), C⋯H/H⋯C (23.1%), Cl⋯H/H⋯Cl (15.2%), O⋯H/H⋯O (12.8%, Fig. 6[link]a) and C⋯C (9%, Fig. 6[link]b) contacts.

Table 2
Percentage contributions of various contacts to the Hirshfeld surface

Contact Percentage contribution
H⋯H 32.1
C⋯H/H⋯C 23.1
Cl⋯H/H⋯Cl 15.2
O⋯H/H⋯O 12.8
C⋯C 9
Cl⋯C/C⋯Cl 2.2
O⋯O 0.9
C⋯O/O⋯C 1.2
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm for the title compound in the range −0.728 to +1.258 arbitrary units.
[Figure 5]
Figure 5
The full fingerprint plot for title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and C⋯C contacts.
[Figure 6]
Figure 6
Hirshfeld surface mapped over dnorm for the title compound showing: (a) O⋯H/H⋯O contacts and (b) C⋯C contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD version 2020.3.0, update of February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that several examples of structurally similar azo-naphthol compounds were prepared using different aromatic primary amine, viz. (E)-1-[2-(2-cyano­phen­yl)diazen-2-ium-1-yl]naphthalen-2-olate (Bougueria et al., 2013b[Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. K. (2013b). Acta Cryst. E69, o1175-o1176.]), (E)-1-(4-fluoro­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazenium (Bou­gueria et al., 2017[Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. E. & Merazig, M. (2017). IUCrData, 2, x170039.]), 4-[(2-aphthalen-1-yl)diazen­yl]benzene­sulfonamide (Benosmane et al., 2012[Benosmane, A., Bougueria, H., Bouchoul, A. K. & Bouaoud, S. E. (2012). J. Chem. Bio. Phys. Sci. 2, 114-122.]), 1-(3-acetyl­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium (Bougueria et al., 2013c[Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. K. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1052.]), (E)-1-(3-chloro­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium (Benosmane et al., 2013[Benosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. K. (2013). Acta Cryst. E69, o1021.]), (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol (Chetioui et al., 2013b[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1250.]).

6. Synthesis and crystallization

The title compound was synthesized according to a reported method (Wang et al., 2003[Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77-86.]). A solution of hydro­chloric acid (12 mmol, in 6 mL of water) was added to 2-amino-4-chloro­phenol (12 mmol) at 273 K. Sodium nitrite solution (24 mmol, in 8 mL of water) was added dropwise to the cooled mixture and stirred for 20 min. To the formed diazo­nium chloride was added dropwise an aqueous solution of 2-naphthol (12 mmol in 100 mL of water) containing hydroxide sodium (16 mL). The produced mixture was allowed to stir for 1 h at 278 K. The resulting red precipitate was filtered and washed with water several times. The crude azo dye was recrystallized from hot ethanol giving a pure azo dye in a good yield (80.0%). Single crystals suitable for X-ray analysis, were obtained by dissolving the compound in a minimum amount of THF/H2O (1/1 v/v) at room temperature. To confirm the formula of the compound, an elementary analysis was carried out: calculated for C16H11N2OCl, C 64.33%, N 9.38%, H 3.71%, found C 64.41%, N 8.45%, H 3.70%. The IR spectra (KBr pellet) were recorded using a Shimadzu FTIR 8000 series Fourier transform spectrometer in the range 4000 to 400 cm−1. IR (cm−1): ν(C=O): 1596.91, ν(C=C): 1500, ν(C=N): 1490.43, ν(C—Cl): 745.10, ν (C—C): 1400, ν(C—H): 2921.31. NMR spectra of CDCl3 solutions were recorded on a Bruker Advance 400 spectrometer at 400 MHz. 1H NMR δ (ppm) 7.031–8.209 (9H, aromatic group protons), 12.414 (singlet, 1H, OH phenol) and 14.38 (singlet, 1H, N—H⋯O). 13C NMR δ (ppm) 156.86 (C=O), 150.49 (C=N), (109.49–136.92) (C—H).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of hydroxyl and hydrazo groups were localized in a difference-Fourier map and refined with O—H = 0.84 (1) Å and N—H = 0.88 (1) Å, respectively, and with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). The other hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula C16H11ClN2O2
Mr 298.72
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 32.830 (4), 4.4049 (5), 18.844 (2)
β (°) 90.130 (3)
V3) 2725.1 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.3 × 0.2 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.610, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13940, 6168, 4497
Rint 0.063
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.082, 0.97
No. of reflections 6168
No. of parameters 392
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.27
Absolute structure Flack x determined using 1605 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (3)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-[(E)-2-(5-Chloro-2-hydroxyphenyl)hydrazin-1-ylidene]naphthalen-2(1H)-one top
Crystal data top
C16H11ClN2O2F(000) = 1232
Mr = 298.72Dx = 1.456 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 32.830 (4) ÅCell parameters from 13940 reflections
b = 4.4049 (5) Åθ = 1.6–28.0°
c = 18.844 (2) ŵ = 0.29 mm1
β = 90.130 (3)°T = 173 K
V = 2725.1 (6) Å3Plate, red
Z = 80.3 × 0.2 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
4497 reflections with I > 2σ(I)
φ and ω scansRint = 0.063
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
θmax = 28.0°, θmin = 1.6°
Tmin = 0.610, Tmax = 0.746h = 4242
13940 measured reflectionsk = 55
6168 independent reflectionsl = 2324
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0325P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.34 e Å3
6168 reflectionsΔρmin = 0.27 e Å3
392 parametersAbsolute structure: Flack x determined using 1605 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. (2013)
6 restraintsAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.33793 (5)0.0030 (4)0.79791 (9)0.0327 (5)
Cl1B0.66132 (5)1.4840 (4)0.55207 (9)0.0397 (5)
O1B0.54584 (14)0.4608 (10)0.2885 (2)0.0302 (12)
O1A0.45074 (14)1.0202 (9)0.5356 (3)0.0293 (12)
O2A0.48688 (13)0.5655 (11)0.6906 (2)0.0325 (11)
H2A0.5072 (14)0.541 (14)0.717 (3)0.049*
N1A0.41552 (14)0.7116 (10)0.6321 (2)0.0214 (11)
H1A0.4385 (10)0.795 (11)0.616 (3)0.026*
N2A0.38083 (14)0.8261 (10)0.6109 (2)0.0238 (11)
O2B0.51014 (13)0.9509 (10)0.4415 (2)0.0325 (11)
H2B0.4928 (17)0.978 (14)0.474 (3)0.049*
C3A0.45484 (18)0.2251 (13)0.7736 (3)0.0275 (14)
H3A0.4802480.1762580.7949360.033*
C4A0.41959 (19)0.0909 (14)0.7992 (3)0.0264 (14)
H4A0.4206160.0501990.8372890.032*
N1B0.58132 (14)0.7832 (11)0.3851 (2)0.0225 (11)
H1B0.5580 (9)0.721 (11)0.367 (3)0.027*
C5A0.38280 (18)0.1682 (13)0.7677 (3)0.0263 (14)
N2B0.61607 (14)0.6715 (10)0.3637 (2)0.0202 (10)
C11A0.33655 (18)1.3521 (14)0.4820 (3)0.0285 (14)
C6A0.38021 (16)0.3698 (12)0.7126 (3)0.0210 (13)
H6A0.3546330.4178840.6917390.025*
C1A0.41578 (19)0.5025 (12)0.6878 (3)0.0198 (14)
C12A0.33986 (18)1.1471 (13)0.5398 (3)0.0243 (13)
C2A0.45390 (17)0.4265 (14)0.7182 (3)0.0231 (13)
C9A0.41010 (19)1.3450 (13)0.4640 (3)0.0282 (14)
H9A0.4330881.4169940.4385200.034*
C7A0.3799 (2)1.0286 (13)0.5580 (3)0.0180 (15)
C1B0.58115 (19)0.9956 (12)0.4404 (3)0.0215 (14)
C8A0.41619 (17)1.1280 (12)0.5204 (3)0.0221 (12)
C11B0.66111 (19)0.1491 (14)0.2370 (3)0.0270 (13)
C10A0.3725 (2)1.4493 (14)0.4463 (3)0.0293 (15)
H10A0.3700641.5922010.4087110.035*
C7B0.6165 (2)0.4648 (13)0.3122 (3)0.0204 (15)
C6B0.61767 (17)1.1186 (13)0.4666 (3)0.0252 (14)
H6B0.6431101.0609650.4468600.030*
C9B0.58710 (19)0.1460 (14)0.2176 (3)0.0302 (15)
H9B0.5642990.0714720.1918260.036*
C8B0.58115 (17)0.3618 (13)0.2735 (3)0.0245 (13)
C2B0.54441 (18)1.0792 (14)0.4703 (3)0.0238 (13)
C3B0.54349 (18)1.2819 (13)0.5257 (3)0.0271 (14)
H3B0.5181671.3371030.5462790.033*
C4B0.5795 (2)1.4071 (15)0.5518 (3)0.0302 (15)
H4B0.5790681.5481000.5898900.036*
C13B0.69225 (19)0.4422 (14)0.3309 (4)0.0320 (15)
H13B0.6900620.5777890.3698840.038*
C14A0.2675 (2)1.1832 (16)0.5571 (4)0.0446 (18)
H14A0.2437931.1308250.5832820.054*
C5B0.61592 (16)1.3217 (13)0.5209 (3)0.0226 (13)
C15A0.2637 (2)1.3754 (17)0.4983 (4)0.0453 (19)
H15A0.2376751.4446710.4835370.054*
C13A0.30454 (19)1.0684 (15)0.5779 (4)0.0318 (15)
H13A0.3063320.9368230.6177700.038*
C10B0.6250 (2)0.0474 (14)0.2012 (4)0.0352 (17)
H10B0.6278720.0967700.1640730.042*
C12B0.65732 (17)0.3528 (14)0.2939 (3)0.0245 (13)
C16A0.2976 (2)1.4619 (15)0.4627 (4)0.0407 (19)
H16A0.2951691.5988380.4239400.049*
C14B0.72996 (19)0.3336 (16)0.3108 (3)0.0366 (16)
H14B0.7535070.3926770.3367180.044*
C15B0.7339 (2)0.1396 (18)0.2533 (4)0.0439 (18)
H15B0.7601320.0729600.2386670.053*
C16B0.6999 (2)0.0451 (16)0.2179 (4)0.0404 (19)
H16B0.7026200.0936720.1796030.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0279 (10)0.0326 (10)0.0379 (12)0.0041 (7)0.0076 (7)0.0030 (7)
Cl1B0.0341 (11)0.0507 (13)0.0343 (12)0.0168 (8)0.0114 (7)0.0005 (8)
O1B0.019 (2)0.040 (3)0.032 (3)0.0019 (18)0.007 (2)0.007 (2)
O1A0.019 (2)0.037 (3)0.033 (3)0.0005 (19)0.001 (2)0.000 (2)
O2A0.017 (2)0.043 (3)0.038 (3)0.001 (2)0.005 (2)0.008 (2)
N1A0.014 (3)0.023 (3)0.027 (3)0.002 (2)0.000 (2)0.004 (2)
N2A0.020 (2)0.025 (3)0.026 (3)0.000 (2)0.007 (2)0.004 (2)
O2B0.020 (2)0.045 (3)0.032 (3)0.008 (2)0.0028 (19)0.010 (2)
C3A0.025 (3)0.030 (4)0.027 (3)0.006 (3)0.005 (2)0.001 (3)
C4A0.033 (4)0.025 (3)0.021 (3)0.009 (3)0.001 (3)0.004 (3)
N1B0.018 (3)0.029 (3)0.020 (3)0.003 (2)0.005 (2)0.001 (2)
C5A0.029 (3)0.022 (3)0.028 (3)0.004 (3)0.007 (3)0.003 (3)
N2B0.019 (2)0.024 (3)0.017 (2)0.002 (2)0.0003 (19)0.004 (2)
C11A0.029 (3)0.031 (3)0.026 (3)0.005 (3)0.008 (3)0.006 (3)
C6A0.021 (3)0.017 (3)0.025 (3)0.001 (2)0.003 (2)0.006 (3)
C1A0.022 (3)0.017 (3)0.020 (3)0.005 (2)0.003 (3)0.000 (2)
C12A0.027 (3)0.022 (3)0.023 (3)0.000 (3)0.004 (2)0.001 (3)
C2A0.019 (3)0.023 (3)0.028 (3)0.001 (3)0.002 (2)0.004 (3)
C9A0.035 (4)0.020 (3)0.030 (4)0.001 (3)0.007 (3)0.001 (3)
C7A0.023 (3)0.012 (3)0.019 (3)0.000 (2)0.002 (2)0.001 (3)
C1B0.022 (4)0.022 (4)0.021 (3)0.001 (3)0.003 (3)0.003 (2)
C8A0.027 (3)0.018 (3)0.021 (3)0.005 (3)0.000 (2)0.006 (3)
C11B0.030 (3)0.026 (3)0.025 (3)0.007 (3)0.002 (2)0.004 (3)
C10A0.041 (4)0.024 (3)0.023 (3)0.004 (3)0.002 (3)0.000 (3)
C7B0.021 (3)0.023 (4)0.018 (3)0.001 (3)0.003 (2)0.007 (3)
C6B0.023 (3)0.031 (3)0.022 (3)0.001 (3)0.002 (2)0.006 (3)
C9B0.035 (4)0.038 (4)0.018 (3)0.003 (3)0.008 (3)0.005 (3)
C8B0.027 (3)0.027 (3)0.020 (3)0.004 (3)0.002 (2)0.005 (3)
C2B0.021 (3)0.027 (3)0.023 (3)0.005 (3)0.003 (2)0.003 (3)
C3B0.025 (3)0.030 (4)0.026 (3)0.000 (3)0.005 (2)0.004 (3)
C4B0.037 (4)0.033 (3)0.021 (3)0.008 (3)0.003 (3)0.002 (3)
C13B0.024 (3)0.038 (4)0.034 (4)0.000 (3)0.001 (3)0.001 (3)
C14A0.023 (3)0.053 (5)0.058 (5)0.000 (3)0.004 (3)0.004 (4)
C5B0.020 (3)0.026 (3)0.022 (3)0.008 (2)0.009 (2)0.008 (3)
C15A0.026 (4)0.049 (5)0.061 (5)0.012 (3)0.017 (3)0.004 (4)
C13A0.024 (3)0.037 (4)0.035 (4)0.001 (3)0.001 (3)0.000 (3)
C10B0.049 (5)0.035 (4)0.022 (3)0.005 (3)0.001 (3)0.008 (3)
C12B0.023 (3)0.028 (3)0.022 (3)0.004 (3)0.002 (3)0.008 (3)
C16A0.044 (5)0.041 (4)0.037 (4)0.009 (3)0.019 (3)0.001 (3)
C14B0.021 (3)0.048 (4)0.041 (4)0.002 (3)0.004 (3)0.007 (4)
C15B0.026 (4)0.055 (5)0.051 (5)0.012 (3)0.008 (3)0.010 (4)
C16B0.041 (4)0.040 (4)0.040 (4)0.011 (3)0.008 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl1A—C5A1.751 (6)C1B—C6B1.405 (8)
Cl1B—C5B1.753 (6)C1B—C2B1.383 (8)
O1B—C8B1.271 (7)C11B—C10B1.433 (9)
O1A—C8A1.262 (7)C11B—C12B1.405 (8)
O2A—H2A0.834 (14)C11B—C16B1.402 (9)
O2A—C2A1.350 (7)C10A—H10A0.9500
N1A—H1A0.891 (14)C7B—C8B1.443 (9)
N1A—N2A1.307 (5)C7B—C12B1.469 (9)
N1A—C1A1.397 (7)C6B—H6B0.9500
N2A—C7A1.338 (7)C6B—C5B1.360 (8)
O2B—H2B0.842 (14)C9B—H9B0.9500
O2B—C2B1.370 (7)C9B—C8B1.433 (8)
C3A—H3A0.9500C9B—C10B1.355 (9)
C3A—C4A1.388 (8)C2B—C3B1.373 (8)
C3A—C2A1.370 (8)C3B—H3B0.9500
C4A—H4A0.9500C3B—C4B1.393 (8)
C4A—C5A1.387 (8)C4B—H4B0.9500
N1B—H1B0.885 (14)C4B—C5B1.382 (8)
N1B—N2B1.307 (5)C13B—H13B0.9500
N1B—C1B1.400 (7)C13B—C12B1.397 (8)
C5A—C6A1.369 (8)C13B—C14B1.381 (9)
N2B—C7B1.329 (7)C14A—H14A0.9500
C11A—C12A1.420 (8)C14A—C15A1.399 (10)
C11A—C10A1.426 (9)C14A—C13A1.374 (9)
C11A—C16A1.413 (9)C15A—H15A0.9500
C6A—H6A0.9500C15A—C16A1.356 (10)
C6A—C1A1.387 (8)C13A—H13A0.9500
C1A—C2A1.415 (8)C10B—H10B0.9500
C12A—C7A1.454 (9)C16A—H16A0.9500
C12A—C13A1.409 (9)C14B—H14B0.9500
C9A—H9A0.9500C14B—C15B1.386 (10)
C9A—C8A1.443 (8)C15B—H15B0.9500
C9A—C10A1.359 (8)C15B—C16B1.364 (10)
C7A—C8A1.455 (9)C16B—H16B0.9500
C2A—O2A—H2A111 (5)N2B—C7B—C12B114.4 (6)
N2A—N1A—H1A119 (4)C8B—C7B—C12B120.6 (5)
N2A—N1A—C1A119.2 (5)C1B—C6B—H6B120.6
C1A—N1A—H1A121 (4)C5B—C6B—C1B118.8 (5)
N1A—N2A—C7A120.2 (5)C5B—C6B—H6B120.6
C2B—O2B—H2B102 (5)C8B—C9B—H9B119.8
C4A—C3A—H3A119.2C10B—C9B—H9B119.8
C2A—C3A—H3A119.2C10B—C9B—C8B120.5 (6)
C2A—C3A—C4A121.6 (6)O1B—C8B—C7B120.9 (6)
C3A—C4A—H4A120.9O1B—C8B—C9B121.2 (5)
C5A—C4A—C3A118.2 (6)C9B—C8B—C7B118.0 (5)
C5A—C4A—H4A120.9O2B—C2B—C1B116.4 (5)
N2B—N1B—H1B121 (4)O2B—C2B—C3B123.3 (5)
N2B—N1B—C1B119.1 (5)C3B—C2B—C1B120.3 (5)
C1B—N1B—H1B120 (4)C2B—C3B—H3B119.8
C4A—C5A—Cl1A119.1 (5)C2B—C3B—C4B120.3 (5)
C6A—C5A—Cl1A118.4 (5)C4B—C3B—H3B119.8
C6A—C5A—C4A122.5 (5)C3B—C4B—H4B120.7
N1B—N2B—C7B119.6 (5)C5B—C4B—C3B118.6 (6)
C12A—C11A—C10A119.4 (5)C5B—C4B—H4B120.7
C16A—C11A—C12A118.9 (6)C12B—C13B—H13B120.0
C16A—C11A—C10A121.6 (6)C14B—C13B—H13B120.0
C5A—C6A—H6A120.7C14B—C13B—C12B120.1 (6)
C5A—C6A—C1A118.5 (5)C15A—C14A—H14A119.2
C1A—C6A—H6A120.7C13A—C14A—H14A119.2
N1A—C1A—C2A117.6 (5)C13A—C14A—C15A121.6 (7)
C6A—C1A—N1A121.8 (5)C6B—C5B—Cl1B118.9 (5)
C6A—C1A—C2A120.6 (5)C6B—C5B—C4B122.2 (5)
C11A—C12A—C7A118.5 (5)C4B—C5B—Cl1B118.9 (5)
C13A—C12A—C11A119.1 (6)C14A—C15A—H15A120.3
C13A—C12A—C7A122.4 (5)C16A—C15A—C14A119.5 (6)
O2A—C2A—C3A124.8 (5)C16A—C15A—H15A120.3
O2A—C2A—C1A116.5 (5)C12A—C13A—H13A120.2
C3A—C2A—C1A118.7 (5)C14A—C13A—C12A119.6 (7)
C8A—C9A—H9A119.0C14A—C13A—H13A120.2
C10A—C9A—H9A119.0C11B—C10B—H10B118.2
C10A—C9A—C8A122.0 (6)C9B—C10B—C11B123.5 (6)
N2A—C7A—C12A115.7 (6)C9B—C10B—H10B118.2
N2A—C7A—C8A123.1 (6)C11B—C12B—C7B118.5 (5)
C12A—C7A—C8A121.2 (5)C13B—C12B—C11B119.1 (5)
N1B—C1B—C6B121.0 (5)C13B—C12B—C7B122.4 (6)
C2B—C1B—N1B119.1 (5)C11A—C16A—H16A119.4
C2B—C1B—C6B119.9 (5)C15A—C16A—C11A121.2 (7)
O1A—C8A—C9A122.6 (5)C15A—C16A—H16A119.4
O1A—C8A—C7A120.9 (6)C13B—C14B—H14B119.5
C9A—C8A—C7A116.5 (5)C13B—C14B—C15B120.9 (6)
C12B—C11B—C10B119.0 (5)C15B—C14B—H14B119.5
C16B—C11B—C10B121.9 (6)C14B—C15B—H15B120.3
C16B—C11B—C12B119.1 (6)C16B—C15B—C14B119.5 (6)
C11A—C10A—H10A118.8C16B—C15B—H15B120.3
C9A—C10A—C11A122.3 (6)C11B—C16B—H16B119.4
C9A—C10A—H10A118.8C15B—C16B—C11B121.2 (7)
N2B—C7B—C8B125.0 (6)C15B—C16B—H16B119.4
Cl1A—C5A—C6A—C1A179.1 (4)C1B—C6B—C5B—C4B1.0 (8)
N1A—N2A—C7A—C12A178.5 (5)C1B—C2B—C3B—C4B0.6 (9)
N1A—N2A—C7A—C8A1.3 (8)C8A—C9A—C10A—C11A0.0 (10)
N1A—C1A—C2A—O2A0.4 (8)C10A—C11A—C12A—C7A3.7 (8)
N1A—C1A—C2A—C3A179.1 (5)C10A—C11A—C12A—C13A175.7 (6)
N2A—N1A—C1A—C6A12.3 (8)C10A—C11A—C16A—C15A177.9 (6)
N2A—N1A—C1A—C2A168.4 (5)C10A—C9A—C8A—O1A177.1 (6)
N2A—C7A—C8A—O1A1.4 (9)C10A—C9A—C8A—C7A0.6 (8)
N2A—C7A—C8A—C9A179.3 (5)C6B—C1B—C2B—O2B179.6 (5)
O2B—C2B—C3B—C4B179.1 (6)C6B—C1B—C2B—C3B0.1 (9)
C3A—C4A—C5A—Cl1A178.9 (4)C8B—C7B—C12B—C11B1.5 (8)
C3A—C4A—C5A—C6A0.2 (9)C8B—C7B—C12B—C13B178.8 (6)
C4A—C3A—C2A—O2A180.0 (6)C8B—C9B—C10B—C11B0.4 (10)
C4A—C3A—C2A—C1A1.3 (9)C2B—C1B—C6B—C5B0.7 (8)
C4A—C5A—C6A—C1A0.4 (8)C2B—C3B—C4B—C5B0.3 (9)
N1B—N2B—C7B—C8B4.1 (9)C3B—C4B—C5B—Cl1B178.6 (5)
N1B—N2B—C7B—C12B178.9 (5)C3B—C4B—C5B—C6B0.6 (9)
N1B—C1B—C6B—C5B179.3 (5)C13B—C14B—C15B—C16B2.7 (11)
N1B—C1B—C2B—O2B1.7 (8)C14A—C15A—C16A—C11A2.5 (11)
N1B—C1B—C2B—C3B178.6 (5)C15A—C14A—C13A—C12A0.6 (11)
C5A—C6A—C1A—N1A179.6 (5)C13A—C12A—C7A—N2A3.6 (8)
C5A—C6A—C1A—C2A1.1 (8)C13A—C12A—C7A—C8A176.3 (6)
N2B—N1B—C1B—C6B8.3 (8)C13A—C14A—C15A—C16A2.9 (11)
N2B—N1B—C1B—C2B170.3 (5)C10B—C11B—C12B—C7B3.0 (9)
N2B—C7B—C8B—O1B2.2 (9)C10B—C11B—C12B—C13B177.2 (6)
N2B—C7B—C8B—C9B177.5 (5)C10B—C11B—C16B—C15B178.7 (6)
N2B—C7B—C12B—C11B175.8 (5)C10B—C9B—C8B—O1B178.6 (6)
N2B—C7B—C12B—C13B4.0 (8)C10B—C9B—C8B—C7B1.2 (8)
C11A—C12A—C7A—N2A177.1 (5)C12B—C11B—C10B—C9B2.6 (10)
C11A—C12A—C7A—C8A3.1 (8)C12B—C11B—C16B—C15B0.4 (10)
C11A—C12A—C13A—C14A2.1 (9)C12B—C7B—C8B—O1B179.1 (5)
C6A—C1A—C2A—O2A179.7 (5)C12B—C7B—C8B—C9B0.6 (8)
C6A—C1A—C2A—C3A1.5 (9)C12B—C13B—C14B—C15B1.1 (10)
C1A—N1A—N2A—C7A179.4 (5)C16A—C11A—C12A—C7A178.2 (6)
C12A—C11A—C10A—C9A2.3 (9)C16A—C11A—C12A—C13A2.4 (9)
C12A—C11A—C16A—C15A0.1 (10)C16A—C11A—C10A—C9A179.7 (6)
C12A—C7A—C8A—O1A178.8 (5)C14B—C13B—C12B—C11B0.8 (9)
C12A—C7A—C8A—C9A0.9 (8)C14B—C13B—C12B—C7B179.0 (6)
C2A—C3A—C4A—C5A0.7 (9)C14B—C15B—C16B—C11B2.3 (11)
C7A—C12A—C13A—C14A178.6 (6)C16B—C11B—C10B—C9B179.1 (6)
C1B—N1B—N2B—C7B178.5 (5)C16B—C11B—C12B—C7B178.7 (6)
C1B—C6B—C5B—Cl1B178.2 (4)C16B—C11B—C12B—C13B1.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1A0.89 (4)1.86 (5)2.550 (7)133 (4)
N1A—H1A···O2A0.89 (4)2.35 (5)2.666 (6)101 (4)
N1B—H1B···O1B0.88 (4)1.91 (5)2.584 (6)132 (4)
N1B—H1B···O2B0.88 (4)2.34 (4)2.673 (6)103 (4)
O2A—H2A···O1Bi0.84 (5)1.85 (5)2.674 (6)168 (5)
O2B—H2B···O1A0.85 (6)1.82 (6)2.656 (7)173 (6)
Symmetry code: (i) x, y+1, z+1/2.
Percentage contributions of various contacts to the Hirshfeld surface top
ContactPercentage contribution
H···H32.1
C···H/H···C23.1
Cl···H/H···Cl15.2
O···H/H···O12.8
C···C9
Cl···C/C···Cl2.2
O···O0.9
C···O/O···C1.2
 

Acknowledgements

The authors would like to thank Professor L. Ouahab, University of Rennes (France), for performing the elementary analysis and obtaining the NMR spectra (13C,1H).

References

First citationAkram, D., Elhaty, I. A. & AlNeyadi, S. S. (2020). Chemosensors, 8, 16–28.  CrossRef CAS Google Scholar
First citationAsha, P. & Mandal, S. (2018). Cryst. Growth Des. 18, 4937–4944.  Google Scholar
First citationBenkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271–e03296.  CrossRef PubMed Google Scholar
First citationBenosmane, A., Bougueria, H., Bouchoul, A. K. & Bouaoud, S. E. (2012). J. Chem. Bio. Phys. Sci. 2, 114–122.  CAS Google Scholar
First citationBenosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. K. (2013). Acta Cryst. E69, o1021.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. K. (2013b). Acta Cryst. E69, o1175–o1176.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. K. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1052.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1335–o1336.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Mili, A., Benosmane, A., Bouchoul, A. K. & Bouaoud, S. E. (2014). Acta Cryst. E70, o225.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Chetioui, S., Mili, A., Bouaoud, S. E. & Merazig, M. (2017). IUCrData, 2, x170039.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S., Kundu, T., Kandambeth, S., BabaRao, R., Marathe, Y., Kunjir, S. M. & Banerjee, R. (2014). J. Am. Chem. Soc. 136, 6570–6573.  CrossRef CAS PubMed Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1322–o1323.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1250.  CSD CrossRef IUCr Journals Google Scholar
First citationChhetri, A., Chettri, S., Rai, P., Sinha, B. & Brahman, D. (2021). J. Mol. Struct. 1224, 129178–129186.  CrossRef CAS PubMed Google Scholar
First citationChoi, S., Cho, K. H., Namgoong, J. W., Kim, J. Y., Yoo, E. S., Lee, W., Jung, J. W. & Choi, J. (2019). Dyes Pigments, 163, 381–392.  CrossRef CAS Google Scholar
First citationChoudhary, A., Singh, O., Singh, U. P. & Ghosh, K. (2017). Inorg. Chim. Acta, 464, 195–203.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDudek, M., Tarnowicz-Staniak, N., Deiana, M., Pokładek, Z., Samoć, M. & Matczyszyn, K. (2020). RSC Adv. 10, 40489–40507.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerra, E., Alvarez-Rivera, G., Llompart, M. & Garcia-Jares, C. (2018). Talanta, 188, 251–258.  CrossRef CAS PubMed Google Scholar
First citationGusev, V. Y., Radushev, A. V., Chekanova, L. G., Baigacheva, E. V., Manylova, K. O. & Gogoshvili, V. O. (2018). Russ. J. Appl. Chem. 91, 573–582.  CrossRef CAS Google Scholar
First citationHe, Y., Li, J., Li, J., Zhu, C. & Guo, J. (2019). ACS Appl. Polym. Mater. 1, 746–754.  CrossRef CAS Google Scholar
First citationHuang, H., Sato, H. & Aida, T. (2017). J. Am. Chem. Soc. 139, 8784–8787.  CSD CrossRef CAS PubMed Google Scholar
First citationKovalchuk, A. I., Kobzar, Y. L., Tkachenko, I. M., Kurioz, Y. I., Tereshchenko, O. G., Shekera, O. V., Nazarenko, V. G. & Shevchenko, V. V. (2020). ACS Appl. Polym. Mater. 2, 455–463.  CrossRef CAS Google Scholar
First citationKyei, S. K., Akaranta, O. & Darko, G. (2020). Sci. Afr. 8, e00406–e00419.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNandi, N. B., Purkayastha, A., Roy, S., Kłak, J., Ganguly, R., Alkorta, I. & Misra, T. K. (2021). New J. Chem. 45, 2742–2753.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamugade, S. H., Warde, U. S. & Sekar, N. (2019). Dyes Pigments, 170, 107626.  CrossRef Google Scholar
First citationShalini Rosalyn, P. D., Senthil, S., Kannan, P., Vinitha, G. & Ramalingam, A. (2007). J. Phys. Chem. Solids, 68, 1812–1820.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationUnnisa, A., Abouzied, A. S., Baratam, A., Chenchu Lakshmi, K. N. V., Hussain, T., Kunduru, R. D., Banu, H., Bushra Fatima, S., Hussian, A. & Selvarajan, K. K. (2020). Arab. J. Chem. 13, 8638–8649.  CrossRef CAS Google Scholar
First citationWang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77–86.  Web of Science CrossRef CAS Google Scholar
First citationWu, W., Duan, R., Geng, F., Hu, X., Gan, N. & Li, H. (2019). Food Chem. 284, 180–187.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds