research communications
E)-2-(5-chloro-2-hydroxyphenyl)hydrazin-1-ylidene]naphthalen-2(1H)-one
and Hirshfeld surface analysis of 1-[(aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Département de Chimie, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria, cFaculté de Technologie, Université Mohamed Boudiaf M'sila, Algeria, and dLaboratoire de Chimie et Systémique Organométallique (LCSOM), Institut de Chimie, Université de Strasbourg, UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France
*Correspondence e-mail: bougueriahassiba@gmail.com, nesrine.benarous@umc.edu.dz
The title compound, C16H11ClN2O2, was obtained by diazotization of 2-amino-4-chlorophenol followed by a coupling reaction with β-naphthol. There are two molecules (A and B) in the The features only one type of intermolecular interaction, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N—N— moiety exhibit an s-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in molecule A and 10.35 (2)° in molecule B. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (32.1%), C⋯H/H⋯C (23.1%), Cl⋯H/H⋯Cl (15.2%), O⋯H/H⋯O (12.8%) and C⋯C (9%) contacts.
CCDC reference: 2085853
1. Chemical context
et al., 2019), printing (Benkhaya et al., 2020; Choi et al., 2019), cosmetics (Guerra et al., 2018) and food additives (Wu et al., 2019). Apart from their use as colourants, have attracted a lot of attention from chemists as their potential applications are important in coordination chemistry (Asha & Mandal, 2018), metal–organic frameworks (MOFs) (Huang et al., 2017), covalent–organic frameworks (COFs) (Chandra et al., 2014) and catalysis (Choudhary et al., 2017). In addition, they have found many applications in different fields such as non-linear optics (Dudek et al., 2020), optical storage (Kovalchuk et al., 2020), (He et al., 2019), chemosensors (Akram et al., 2020) and magnetism (Nandi et al., 2021). They are used not only in physics but also in the biomedical and pharmacological fields as they can offer new therapeutic properties such as antiviral (Chhetri et al., 2021), antimicrobial (Kyei et al., 2020), anti-inflammatory and antioxidant (Unnisa et al., 2020). On the other hand, azo-naphthol derivatives form a widely studied class of Considerable research has been devoted to the development of new dyes prepared by the azo coupling reaction, which occurs between diazonium salts and 1- or 2-naphthols (Shalini Rosalyn et al., 2007; Bougueria et al., 2013a; Gusev et al., 2018). Following our interest in this area, we describe here the of a novel azo compound derived from β-naphthol and 2-amino-4-chlorophenol, viz. 1-[(E)-2-(5-chloro-2-hydroxyphenyl)hydrazin-1-ylidene]naphthalen-2(1H)-one.
are one of the most frequently used compounds in organic chemistry, mainly due to their relatively simple preparation methods. They have therefore been widely used in industry, particularly as dyes for textiles (Ramugade2. Structural commentary
The A and B) in which the N1A—N2A, N1B—N2B, C8A—O1A and C8B—O1B bond lengths are 1.307 (5), 1.307 (5), 1.262 (7) and 1.271 (7) Å, respectively, which indicates that the dye compound has crystallized in its neutral hydrazo tautomeric form (Fig. 1); this is common when there is a OH group in the ortho-position corresponding to the azo group. Bond lengths and angles are within normal ranges and are comparable to those observed in related structures (Bougueria et al., 2014; Chetioui et al., 2013a). The conformational differences between molecules A and B are highlighted in an overlay diagram shown in Fig. 2. The naphthol and phenol rings attached to the hydrazo group are almost coplanar, subtending a dihedral angle of 13.11 (2)° in molecule A and 10.35 (2)° in molecule B, indicating significant electron delocalization within the molecules. The molecular structures of A and B are each stabilized by two intramolecular N—H⋯O hydrogen bonds with S(6) and S(5) motifs and involving the hydrogen atoms from the hydrazo groups (Table 1, Fig. 1).
of title compound contains two crystallographically independent molecules (3. Supramolecular features
In the crystal, the presence of hydroxyl groups leads indeed to the formation of intermolecular O—H⋯O hydrogen bonds, generating infinite zigzag chains along the c-axis direction (Table 1, Fig. 3). No significant π–π stacking interactions were observed, despite the presence of aromatic rings in the molecules.
4. Analysis of the Hirshfeld surfaces
A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was undertaken using CrystalExplorer17 (Turner et al., 2017) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated. The Hirshfeld (HS) surfaces of the title compound mapped over dnorm are given in Fig. 4. The normalized contact distance, dnorm, varies from red to blue to white depending on the contact distances relative the sum of the van der Waals radius The intense red spots labelled 1 and 2 are related to the presence of O—H⋯O hydrogen bonds in the Weak contacts are highlighted by red circles. More significant contacts and their percentage contributions to the Hirshfeld surface are given in Table 2. The two-dimensional fingerprint plots are shown in Fig. 5. They reveal that the main contributions to the HS are from H⋯H (32.1%), C⋯H/H⋯C (23.1%), Cl⋯H/H⋯Cl (15.2%), O⋯H/H⋯O (12.8%, Fig. 6a) and C⋯C (9%, Fig. 6b) contacts.
|
5. Database survey
A search of the Cambridge Structural Database (CSD version 2020.3.0, update of February 2021; Groom et al., 2016) revealed that several examples of structurally similar azo-naphthol compounds were prepared using different aromatic primary amine, viz. (E)-1-[2-(2-cyanophenyl)diazen-2-ium-1-yl]naphthalen-2-olate (Bougueria et al., 2013b), (E)-1-(4-fluorophenyl)-2-(2-oxidonaphthalen-1-yl)diazenium (Bougueria et al., 2017), 4-[(2-aphthalen-1-yl)diazenyl]benzenesulfonamide (Benosmane et al., 2012), 1-(3-acetylphenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium (Bougueria et al., 2013c), (E)-1-(3-chlorophenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium (Benosmane et al., 2013), (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-ol (Chetioui et al., 2013b).
6. Synthesis and crystallization
The title compound was synthesized according to a reported method (Wang et al., 2003). A solution of hydrochloric acid (12 mmol, in 6 mL of water) was added to 2-amino-4-chlorophenol (12 mmol) at 273 K. Sodium nitrite solution (24 mmol, in 8 mL of water) was added dropwise to the cooled mixture and stirred for 20 min. To the formed diazonium chloride was added dropwise an aqueous solution of 2-naphthol (12 mmol in 100 mL of water) containing hydroxide sodium (16 mL). The produced mixture was allowed to stir for 1 h at 278 K. The resulting red precipitate was filtered and washed with water several times. The crude azo dye was recrystallized from hot ethanol giving a pure azo dye in a good yield (80.0%). Single crystals suitable for X-ray analysis, were obtained by dissolving the compound in a minimum amount of THF/H2O (1/1 v/v) at room temperature. To confirm the formula of the compound, an elementary analysis was carried out: calculated for C16H11N2OCl, C 64.33%, N 9.38%, H 3.71%, found C 64.41%, N 8.45%, H 3.70%. The IR spectra (KBr pellet) were recorded using a Shimadzu FTIR 8000 series in the range 4000 to 400 cm−1. IR (cm−1): ν(C=O): 1596.91, ν(C=C): 1500, ν(C=N): 1490.43, ν(C—Cl): 745.10, ν (C—C): 1400, ν(C—H): 2921.31. NMR spectra of CDCl3 solutions were recorded on a Bruker Advance 400 spectrometer at 400 MHz. 1H NMR δ (ppm) 7.031–8.209 (9H, aromatic group protons), 12.414 (singlet, 1H, OH phenol) and 14.38 (singlet, 1H, N—H⋯O). 13C NMR δ (ppm) 156.86 (C=O), 150.49 (C=N), (109.49–136.92) (C—H).
7. details
Crystal data, data collection and structure . The hydrogen atoms of hydroxyl and hydrazo groups were localized in a difference-Fourier map and refined with O—H = 0.84 (1) Å and N—H = 0.88 (1) Å, respectively, and with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). The other hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 3
|
Supporting information
CCDC reference: 2085853
https://doi.org/10.1107/S2056989021005491/zn2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005491/zn2007Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021005491/zn2007Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C16H11ClN2O2 | F(000) = 1232 |
Mr = 298.72 | Dx = 1.456 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 32.830 (4) Å | Cell parameters from 13940 reflections |
b = 4.4049 (5) Å | θ = 1.6–28.0° |
c = 18.844 (2) Å | µ = 0.29 mm−1 |
β = 90.130 (3)° | T = 173 K |
V = 2725.1 (6) Å3 | Plate, red |
Z = 8 | 0.3 × 0.2 × 0.06 mm |
Bruker APEXII CCD diffractometer | 4497 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.063 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | θmax = 28.0°, θmin = 1.6° |
Tmin = 0.610, Tmax = 0.746 | h = −42→42 |
13940 measured reflections | k = −5→5 |
6168 independent reflections | l = −23→24 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0325P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max < 0.001 |
S = 0.97 | Δρmax = 0.34 e Å−3 |
6168 reflections | Δρmin = −0.27 e Å−3 |
392 parameters | Absolute structure: Flack x determined using 1605 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. (2013) |
6 restraints | Absolute structure parameter: −0.02 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Cl1A | 0.33793 (5) | −0.0030 (4) | 0.79791 (9) | 0.0327 (5) | |
Cl1B | 0.66132 (5) | 1.4840 (4) | 0.55207 (9) | 0.0397 (5) | |
O1B | 0.54584 (14) | 0.4608 (10) | 0.2885 (2) | 0.0302 (12) | |
O1A | 0.45074 (14) | 1.0202 (9) | 0.5356 (3) | 0.0293 (12) | |
O2A | 0.48688 (13) | 0.5655 (11) | 0.6906 (2) | 0.0325 (11) | |
H2A | 0.5072 (14) | 0.541 (14) | 0.717 (3) | 0.049* | |
N1A | 0.41552 (14) | 0.7116 (10) | 0.6321 (2) | 0.0214 (11) | |
H1A | 0.4385 (10) | 0.795 (11) | 0.616 (3) | 0.026* | |
N2A | 0.38083 (14) | 0.8261 (10) | 0.6109 (2) | 0.0238 (11) | |
O2B | 0.51014 (13) | 0.9509 (10) | 0.4415 (2) | 0.0325 (11) | |
H2B | 0.4928 (17) | 0.978 (14) | 0.474 (3) | 0.049* | |
C3A | 0.45484 (18) | 0.2251 (13) | 0.7736 (3) | 0.0275 (14) | |
H3A | 0.480248 | 0.176258 | 0.794936 | 0.033* | |
C4A | 0.41959 (19) | 0.0909 (14) | 0.7992 (3) | 0.0264 (14) | |
H4A | 0.420616 | −0.050199 | 0.837289 | 0.032* | |
N1B | 0.58132 (14) | 0.7832 (11) | 0.3851 (2) | 0.0225 (11) | |
H1B | 0.5580 (9) | 0.721 (11) | 0.367 (3) | 0.027* | |
C5A | 0.38280 (18) | 0.1682 (13) | 0.7677 (3) | 0.0263 (14) | |
N2B | 0.61607 (14) | 0.6715 (10) | 0.3637 (2) | 0.0202 (10) | |
C11A | 0.33655 (18) | 1.3521 (14) | 0.4820 (3) | 0.0285 (14) | |
C6A | 0.38021 (16) | 0.3698 (12) | 0.7126 (3) | 0.0210 (13) | |
H6A | 0.354633 | 0.417884 | 0.691739 | 0.025* | |
C1A | 0.41578 (19) | 0.5025 (12) | 0.6878 (3) | 0.0198 (14) | |
C12A | 0.33986 (18) | 1.1471 (13) | 0.5398 (3) | 0.0243 (13) | |
C2A | 0.45390 (17) | 0.4265 (14) | 0.7182 (3) | 0.0231 (13) | |
C9A | 0.41010 (19) | 1.3450 (13) | 0.4640 (3) | 0.0282 (14) | |
H9A | 0.433088 | 1.416994 | 0.438520 | 0.034* | |
C7A | 0.3799 (2) | 1.0286 (13) | 0.5580 (3) | 0.0180 (15) | |
C1B | 0.58115 (19) | 0.9956 (12) | 0.4404 (3) | 0.0215 (14) | |
C8A | 0.41619 (17) | 1.1280 (12) | 0.5204 (3) | 0.0221 (12) | |
C11B | 0.66111 (19) | 0.1491 (14) | 0.2370 (3) | 0.0270 (13) | |
C10A | 0.3725 (2) | 1.4493 (14) | 0.4463 (3) | 0.0293 (15) | |
H10A | 0.370064 | 1.592201 | 0.408711 | 0.035* | |
C7B | 0.6165 (2) | 0.4648 (13) | 0.3122 (3) | 0.0204 (15) | |
C6B | 0.61767 (17) | 1.1186 (13) | 0.4666 (3) | 0.0252 (14) | |
H6B | 0.643110 | 1.060965 | 0.446860 | 0.030* | |
C9B | 0.58710 (19) | 0.1460 (14) | 0.2176 (3) | 0.0302 (15) | |
H9B | 0.564299 | 0.071472 | 0.191826 | 0.036* | |
C8B | 0.58115 (17) | 0.3618 (13) | 0.2735 (3) | 0.0245 (13) | |
C2B | 0.54441 (18) | 1.0792 (14) | 0.4703 (3) | 0.0238 (13) | |
C3B | 0.54349 (18) | 1.2819 (13) | 0.5257 (3) | 0.0271 (14) | |
H3B | 0.518167 | 1.337103 | 0.546279 | 0.033* | |
C4B | 0.5795 (2) | 1.4071 (15) | 0.5518 (3) | 0.0302 (15) | |
H4B | 0.579068 | 1.548100 | 0.589890 | 0.036* | |
C13B | 0.69225 (19) | 0.4422 (14) | 0.3309 (4) | 0.0320 (15) | |
H13B | 0.690062 | 0.577789 | 0.369884 | 0.038* | |
C14A | 0.2675 (2) | 1.1832 (16) | 0.5571 (4) | 0.0446 (18) | |
H14A | 0.243793 | 1.130825 | 0.583282 | 0.054* | |
C5B | 0.61592 (16) | 1.3217 (13) | 0.5209 (3) | 0.0226 (13) | |
C15A | 0.2637 (2) | 1.3754 (17) | 0.4983 (4) | 0.0453 (19) | |
H15A | 0.237675 | 1.444671 | 0.483537 | 0.054* | |
C13A | 0.30454 (19) | 1.0684 (15) | 0.5779 (4) | 0.0318 (15) | |
H13A | 0.306332 | 0.936823 | 0.617770 | 0.038* | |
C10B | 0.6250 (2) | 0.0474 (14) | 0.2012 (4) | 0.0352 (17) | |
H10B | 0.627872 | −0.096770 | 0.164073 | 0.042* | |
C12B | 0.65732 (17) | 0.3528 (14) | 0.2939 (3) | 0.0245 (13) | |
C16A | 0.2976 (2) | 1.4619 (15) | 0.4627 (4) | 0.0407 (19) | |
H16A | 0.295169 | 1.598838 | 0.423940 | 0.049* | |
C14B | 0.72996 (19) | 0.3336 (16) | 0.3108 (3) | 0.0366 (16) | |
H14B | 0.753507 | 0.392677 | 0.336718 | 0.044* | |
C15B | 0.7339 (2) | 0.1396 (18) | 0.2533 (4) | 0.0439 (18) | |
H15B | 0.760132 | 0.072960 | 0.238667 | 0.053* | |
C16B | 0.6999 (2) | 0.0451 (16) | 0.2179 (4) | 0.0404 (19) | |
H16B | 0.702620 | −0.093672 | 0.179603 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1A | 0.0279 (10) | 0.0326 (10) | 0.0379 (12) | −0.0041 (7) | 0.0076 (7) | 0.0030 (7) |
Cl1B | 0.0341 (11) | 0.0507 (13) | 0.0343 (12) | −0.0168 (8) | −0.0114 (7) | −0.0005 (8) |
O1B | 0.019 (2) | 0.040 (3) | 0.032 (3) | 0.0019 (18) | −0.007 (2) | −0.007 (2) |
O1A | 0.019 (2) | 0.037 (3) | 0.033 (3) | 0.0005 (19) | −0.001 (2) | 0.000 (2) |
O2A | 0.017 (2) | 0.043 (3) | 0.038 (3) | −0.001 (2) | −0.005 (2) | 0.008 (2) |
N1A | 0.014 (3) | 0.023 (3) | 0.027 (3) | −0.002 (2) | 0.000 (2) | −0.004 (2) |
N2A | 0.020 (2) | 0.025 (3) | 0.026 (3) | 0.000 (2) | −0.007 (2) | −0.004 (2) |
O2B | 0.020 (2) | 0.045 (3) | 0.032 (3) | −0.008 (2) | 0.0028 (19) | −0.010 (2) |
C3A | 0.025 (3) | 0.030 (4) | 0.027 (3) | 0.006 (3) | −0.005 (2) | −0.001 (3) |
C4A | 0.033 (4) | 0.025 (3) | 0.021 (3) | 0.009 (3) | 0.001 (3) | 0.004 (3) |
N1B | 0.018 (3) | 0.029 (3) | 0.020 (3) | 0.003 (2) | −0.005 (2) | 0.001 (2) |
C5A | 0.029 (3) | 0.022 (3) | 0.028 (3) | 0.004 (3) | 0.007 (3) | −0.003 (3) |
N2B | 0.019 (2) | 0.024 (3) | 0.017 (2) | 0.002 (2) | −0.0003 (19) | 0.004 (2) |
C11A | 0.029 (3) | 0.031 (3) | 0.026 (3) | 0.005 (3) | −0.008 (3) | −0.006 (3) |
C6A | 0.021 (3) | 0.017 (3) | 0.025 (3) | −0.001 (2) | −0.003 (2) | −0.006 (3) |
C1A | 0.022 (3) | 0.017 (3) | 0.020 (3) | 0.005 (2) | −0.003 (3) | 0.000 (2) |
C12A | 0.027 (3) | 0.022 (3) | 0.023 (3) | 0.000 (3) | −0.004 (2) | −0.001 (3) |
C2A | 0.019 (3) | 0.023 (3) | 0.028 (3) | 0.001 (3) | −0.002 (2) | −0.004 (3) |
C9A | 0.035 (4) | 0.020 (3) | 0.030 (4) | 0.001 (3) | 0.007 (3) | 0.001 (3) |
C7A | 0.023 (3) | 0.012 (3) | 0.019 (3) | 0.000 (2) | −0.002 (2) | −0.001 (3) |
C1B | 0.022 (4) | 0.022 (4) | 0.021 (3) | −0.001 (3) | −0.003 (3) | 0.003 (2) |
C8A | 0.027 (3) | 0.018 (3) | 0.021 (3) | −0.005 (3) | 0.000 (2) | −0.006 (3) |
C11B | 0.030 (3) | 0.026 (3) | 0.025 (3) | 0.007 (3) | 0.002 (2) | 0.004 (3) |
C10A | 0.041 (4) | 0.024 (3) | 0.023 (3) | 0.004 (3) | −0.002 (3) | 0.000 (3) |
C7B | 0.021 (3) | 0.023 (4) | 0.018 (3) | −0.001 (3) | −0.003 (2) | 0.007 (3) |
C6B | 0.023 (3) | 0.031 (3) | 0.022 (3) | 0.001 (3) | −0.002 (2) | 0.006 (3) |
C9B | 0.035 (4) | 0.038 (4) | 0.018 (3) | −0.003 (3) | −0.008 (3) | −0.005 (3) |
C8B | 0.027 (3) | 0.027 (3) | 0.020 (3) | 0.004 (3) | −0.002 (2) | 0.005 (3) |
C2B | 0.021 (3) | 0.027 (3) | 0.023 (3) | −0.005 (3) | −0.003 (2) | 0.003 (3) |
C3B | 0.025 (3) | 0.030 (4) | 0.026 (3) | 0.000 (3) | 0.005 (2) | −0.004 (3) |
C4B | 0.037 (4) | 0.033 (3) | 0.021 (3) | −0.008 (3) | −0.003 (3) | −0.002 (3) |
C13B | 0.024 (3) | 0.038 (4) | 0.034 (4) | 0.000 (3) | −0.001 (3) | 0.001 (3) |
C14A | 0.023 (3) | 0.053 (5) | 0.058 (5) | 0.000 (3) | −0.004 (3) | −0.004 (4) |
C5B | 0.020 (3) | 0.026 (3) | 0.022 (3) | −0.008 (2) | −0.009 (2) | 0.008 (3) |
C15A | 0.026 (4) | 0.049 (5) | 0.061 (5) | 0.012 (3) | −0.017 (3) | 0.004 (4) |
C13A | 0.024 (3) | 0.037 (4) | 0.035 (4) | 0.001 (3) | −0.001 (3) | 0.000 (3) |
C10B | 0.049 (5) | 0.035 (4) | 0.022 (3) | 0.005 (3) | −0.001 (3) | −0.008 (3) |
C12B | 0.023 (3) | 0.028 (3) | 0.022 (3) | 0.004 (3) | 0.002 (3) | 0.008 (3) |
C16A | 0.044 (5) | 0.041 (4) | 0.037 (4) | 0.009 (3) | −0.019 (3) | 0.001 (3) |
C14B | 0.021 (3) | 0.048 (4) | 0.041 (4) | 0.002 (3) | −0.004 (3) | 0.007 (4) |
C15B | 0.026 (4) | 0.055 (5) | 0.051 (5) | 0.012 (3) | 0.008 (3) | 0.010 (4) |
C16B | 0.041 (4) | 0.040 (4) | 0.040 (4) | 0.011 (3) | 0.008 (3) | −0.002 (3) |
Cl1A—C5A | 1.751 (6) | C1B—C6B | 1.405 (8) |
Cl1B—C5B | 1.753 (6) | C1B—C2B | 1.383 (8) |
O1B—C8B | 1.271 (7) | C11B—C10B | 1.433 (9) |
O1A—C8A | 1.262 (7) | C11B—C12B | 1.405 (8) |
O2A—H2A | 0.834 (14) | C11B—C16B | 1.402 (9) |
O2A—C2A | 1.350 (7) | C10A—H10A | 0.9500 |
N1A—H1A | 0.891 (14) | C7B—C8B | 1.443 (9) |
N1A—N2A | 1.307 (5) | C7B—C12B | 1.469 (9) |
N1A—C1A | 1.397 (7) | C6B—H6B | 0.9500 |
N2A—C7A | 1.338 (7) | C6B—C5B | 1.360 (8) |
O2B—H2B | 0.842 (14) | C9B—H9B | 0.9500 |
O2B—C2B | 1.370 (7) | C9B—C8B | 1.433 (8) |
C3A—H3A | 0.9500 | C9B—C10B | 1.355 (9) |
C3A—C4A | 1.388 (8) | C2B—C3B | 1.373 (8) |
C3A—C2A | 1.370 (8) | C3B—H3B | 0.9500 |
C4A—H4A | 0.9500 | C3B—C4B | 1.393 (8) |
C4A—C5A | 1.387 (8) | C4B—H4B | 0.9500 |
N1B—H1B | 0.885 (14) | C4B—C5B | 1.382 (8) |
N1B—N2B | 1.307 (5) | C13B—H13B | 0.9500 |
N1B—C1B | 1.400 (7) | C13B—C12B | 1.397 (8) |
C5A—C6A | 1.369 (8) | C13B—C14B | 1.381 (9) |
N2B—C7B | 1.329 (7) | C14A—H14A | 0.9500 |
C11A—C12A | 1.420 (8) | C14A—C15A | 1.399 (10) |
C11A—C10A | 1.426 (9) | C14A—C13A | 1.374 (9) |
C11A—C16A | 1.413 (9) | C15A—H15A | 0.9500 |
C6A—H6A | 0.9500 | C15A—C16A | 1.356 (10) |
C6A—C1A | 1.387 (8) | C13A—H13A | 0.9500 |
C1A—C2A | 1.415 (8) | C10B—H10B | 0.9500 |
C12A—C7A | 1.454 (9) | C16A—H16A | 0.9500 |
C12A—C13A | 1.409 (9) | C14B—H14B | 0.9500 |
C9A—H9A | 0.9500 | C14B—C15B | 1.386 (10) |
C9A—C8A | 1.443 (8) | C15B—H15B | 0.9500 |
C9A—C10A | 1.359 (8) | C15B—C16B | 1.364 (10) |
C7A—C8A | 1.455 (9) | C16B—H16B | 0.9500 |
C2A—O2A—H2A | 111 (5) | N2B—C7B—C12B | 114.4 (6) |
N2A—N1A—H1A | 119 (4) | C8B—C7B—C12B | 120.6 (5) |
N2A—N1A—C1A | 119.2 (5) | C1B—C6B—H6B | 120.6 |
C1A—N1A—H1A | 121 (4) | C5B—C6B—C1B | 118.8 (5) |
N1A—N2A—C7A | 120.2 (5) | C5B—C6B—H6B | 120.6 |
C2B—O2B—H2B | 102 (5) | C8B—C9B—H9B | 119.8 |
C4A—C3A—H3A | 119.2 | C10B—C9B—H9B | 119.8 |
C2A—C3A—H3A | 119.2 | C10B—C9B—C8B | 120.5 (6) |
C2A—C3A—C4A | 121.6 (6) | O1B—C8B—C7B | 120.9 (6) |
C3A—C4A—H4A | 120.9 | O1B—C8B—C9B | 121.2 (5) |
C5A—C4A—C3A | 118.2 (6) | C9B—C8B—C7B | 118.0 (5) |
C5A—C4A—H4A | 120.9 | O2B—C2B—C1B | 116.4 (5) |
N2B—N1B—H1B | 121 (4) | O2B—C2B—C3B | 123.3 (5) |
N2B—N1B—C1B | 119.1 (5) | C3B—C2B—C1B | 120.3 (5) |
C1B—N1B—H1B | 120 (4) | C2B—C3B—H3B | 119.8 |
C4A—C5A—Cl1A | 119.1 (5) | C2B—C3B—C4B | 120.3 (5) |
C6A—C5A—Cl1A | 118.4 (5) | C4B—C3B—H3B | 119.8 |
C6A—C5A—C4A | 122.5 (5) | C3B—C4B—H4B | 120.7 |
N1B—N2B—C7B | 119.6 (5) | C5B—C4B—C3B | 118.6 (6) |
C12A—C11A—C10A | 119.4 (5) | C5B—C4B—H4B | 120.7 |
C16A—C11A—C12A | 118.9 (6) | C12B—C13B—H13B | 120.0 |
C16A—C11A—C10A | 121.6 (6) | C14B—C13B—H13B | 120.0 |
C5A—C6A—H6A | 120.7 | C14B—C13B—C12B | 120.1 (6) |
C5A—C6A—C1A | 118.5 (5) | C15A—C14A—H14A | 119.2 |
C1A—C6A—H6A | 120.7 | C13A—C14A—H14A | 119.2 |
N1A—C1A—C2A | 117.6 (5) | C13A—C14A—C15A | 121.6 (7) |
C6A—C1A—N1A | 121.8 (5) | C6B—C5B—Cl1B | 118.9 (5) |
C6A—C1A—C2A | 120.6 (5) | C6B—C5B—C4B | 122.2 (5) |
C11A—C12A—C7A | 118.5 (5) | C4B—C5B—Cl1B | 118.9 (5) |
C13A—C12A—C11A | 119.1 (6) | C14A—C15A—H15A | 120.3 |
C13A—C12A—C7A | 122.4 (5) | C16A—C15A—C14A | 119.5 (6) |
O2A—C2A—C3A | 124.8 (5) | C16A—C15A—H15A | 120.3 |
O2A—C2A—C1A | 116.5 (5) | C12A—C13A—H13A | 120.2 |
C3A—C2A—C1A | 118.7 (5) | C14A—C13A—C12A | 119.6 (7) |
C8A—C9A—H9A | 119.0 | C14A—C13A—H13A | 120.2 |
C10A—C9A—H9A | 119.0 | C11B—C10B—H10B | 118.2 |
C10A—C9A—C8A | 122.0 (6) | C9B—C10B—C11B | 123.5 (6) |
N2A—C7A—C12A | 115.7 (6) | C9B—C10B—H10B | 118.2 |
N2A—C7A—C8A | 123.1 (6) | C11B—C12B—C7B | 118.5 (5) |
C12A—C7A—C8A | 121.2 (5) | C13B—C12B—C11B | 119.1 (5) |
N1B—C1B—C6B | 121.0 (5) | C13B—C12B—C7B | 122.4 (6) |
C2B—C1B—N1B | 119.1 (5) | C11A—C16A—H16A | 119.4 |
C2B—C1B—C6B | 119.9 (5) | C15A—C16A—C11A | 121.2 (7) |
O1A—C8A—C9A | 122.6 (5) | C15A—C16A—H16A | 119.4 |
O1A—C8A—C7A | 120.9 (6) | C13B—C14B—H14B | 119.5 |
C9A—C8A—C7A | 116.5 (5) | C13B—C14B—C15B | 120.9 (6) |
C12B—C11B—C10B | 119.0 (5) | C15B—C14B—H14B | 119.5 |
C16B—C11B—C10B | 121.9 (6) | C14B—C15B—H15B | 120.3 |
C16B—C11B—C12B | 119.1 (6) | C16B—C15B—C14B | 119.5 (6) |
C11A—C10A—H10A | 118.8 | C16B—C15B—H15B | 120.3 |
C9A—C10A—C11A | 122.3 (6) | C11B—C16B—H16B | 119.4 |
C9A—C10A—H10A | 118.8 | C15B—C16B—C11B | 121.2 (7) |
N2B—C7B—C8B | 125.0 (6) | C15B—C16B—H16B | 119.4 |
Cl1A—C5A—C6A—C1A | −179.1 (4) | C1B—C6B—C5B—C4B | 1.0 (8) |
N1A—N2A—C7A—C12A | −178.5 (5) | C1B—C2B—C3B—C4B | 0.6 (9) |
N1A—N2A—C7A—C8A | 1.3 (8) | C8A—C9A—C10A—C11A | 0.0 (10) |
N1A—C1A—C2A—O2A | 0.4 (8) | C10A—C11A—C12A—C7A | −3.7 (8) |
N1A—C1A—C2A—C3A | 179.1 (5) | C10A—C11A—C12A—C13A | 175.7 (6) |
N2A—N1A—C1A—C6A | 12.3 (8) | C10A—C11A—C16A—C15A | −177.9 (6) |
N2A—N1A—C1A—C2A | −168.4 (5) | C10A—C9A—C8A—O1A | 177.1 (6) |
N2A—C7A—C8A—O1A | 1.4 (9) | C10A—C9A—C8A—C7A | −0.6 (8) |
N2A—C7A—C8A—C9A | 179.3 (5) | C6B—C1B—C2B—O2B | 179.6 (5) |
O2B—C2B—C3B—C4B | −179.1 (6) | C6B—C1B—C2B—C3B | −0.1 (9) |
C3A—C4A—C5A—Cl1A | 178.9 (4) | C8B—C7B—C12B—C11B | 1.5 (8) |
C3A—C4A—C5A—C6A | 0.2 (9) | C8B—C7B—C12B—C13B | −178.8 (6) |
C4A—C3A—C2A—O2A | 180.0 (6) | C8B—C9B—C10B—C11B | −0.4 (10) |
C4A—C3A—C2A—C1A | 1.3 (9) | C2B—C1B—C6B—C5B | −0.7 (8) |
C4A—C5A—C6A—C1A | −0.4 (8) | C2B—C3B—C4B—C5B | −0.3 (9) |
N1B—N2B—C7B—C8B | 4.1 (9) | C3B—C4B—C5B—Cl1B | 178.6 (5) |
N1B—N2B—C7B—C12B | −178.9 (5) | C3B—C4B—C5B—C6B | −0.6 (9) |
N1B—C1B—C6B—C5B | −179.3 (5) | C13B—C14B—C15B—C16B | −2.7 (11) |
N1B—C1B—C2B—O2B | −1.7 (8) | C14A—C15A—C16A—C11A | 2.5 (11) |
N1B—C1B—C2B—C3B | 178.6 (5) | C15A—C14A—C13A—C12A | 0.6 (11) |
C5A—C6A—C1A—N1A | −179.6 (5) | C13A—C12A—C7A—N2A | 3.6 (8) |
C5A—C6A—C1A—C2A | 1.1 (8) | C13A—C12A—C7A—C8A | −176.3 (6) |
N2B—N1B—C1B—C6B | 8.3 (8) | C13A—C14A—C15A—C16A | −2.9 (11) |
N2B—N1B—C1B—C2B | −170.3 (5) | C10B—C11B—C12B—C7B | −3.0 (9) |
N2B—C7B—C8B—O1B | −2.2 (9) | C10B—C11B—C12B—C13B | 177.2 (6) |
N2B—C7B—C8B—C9B | 177.5 (5) | C10B—C11B—C16B—C15B | −178.7 (6) |
N2B—C7B—C12B—C11B | −175.8 (5) | C10B—C9B—C8B—O1B | 178.6 (6) |
N2B—C7B—C12B—C13B | 4.0 (8) | C10B—C9B—C8B—C7B | −1.2 (8) |
C11A—C12A—C7A—N2A | −177.1 (5) | C12B—C11B—C10B—C9B | 2.6 (10) |
C11A—C12A—C7A—C8A | 3.1 (8) | C12B—C11B—C16B—C15B | −0.4 (10) |
C11A—C12A—C13A—C14A | 2.1 (9) | C12B—C7B—C8B—O1B | −179.1 (5) |
C6A—C1A—C2A—O2A | 179.7 (5) | C12B—C7B—C8B—C9B | 0.6 (8) |
C6A—C1A—C2A—C3A | −1.5 (9) | C12B—C13B—C14B—C15B | 1.1 (10) |
C1A—N1A—N2A—C7A | 179.4 (5) | C16A—C11A—C12A—C7A | 178.2 (6) |
C12A—C11A—C10A—C9A | 2.3 (9) | C16A—C11A—C12A—C13A | −2.4 (9) |
C12A—C11A—C16A—C15A | 0.1 (10) | C16A—C11A—C10A—C9A | −179.7 (6) |
C12A—C7A—C8A—O1A | −178.8 (5) | C14B—C13B—C12B—C11B | 0.8 (9) |
C12A—C7A—C8A—C9A | −0.9 (8) | C14B—C13B—C12B—C7B | −179.0 (6) |
C2A—C3A—C4A—C5A | −0.7 (9) | C14B—C15B—C16B—C11B | 2.3 (11) |
C7A—C12A—C13A—C14A | −178.6 (6) | C16B—C11B—C10B—C9B | −179.1 (6) |
C1B—N1B—N2B—C7B | 178.5 (5) | C16B—C11B—C12B—C7B | 178.7 (6) |
C1B—C6B—C5B—Cl1B | −178.2 (4) | C16B—C11B—C12B—C13B | −1.1 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1A | 0.89 (4) | 1.86 (5) | 2.550 (7) | 133 (4) |
N1A—H1A···O2A | 0.89 (4) | 2.35 (5) | 2.666 (6) | 101 (4) |
N1B—H1B···O1B | 0.88 (4) | 1.91 (5) | 2.584 (6) | 132 (4) |
N1B—H1B···O2B | 0.88 (4) | 2.34 (4) | 2.673 (6) | 103 (4) |
O2A—H2A···O1Bi | 0.84 (5) | 1.85 (5) | 2.674 (6) | 168 (5) |
O2B—H2B···O1A | 0.85 (6) | 1.82 (6) | 2.656 (7) | 173 (6) |
Symmetry code: (i) x, −y+1, z+1/2. |
Contact | Percentage contribution |
H···H | 32.1 |
C···H/H···C | 23.1 |
Cl···H/H···Cl | 15.2 |
O···H/H···O | 12.8 |
C···C | 9 |
Cl···C/C···Cl | 2.2 |
O···O | 0.9 |
C···O/O···C | 1.2 |
Acknowledgements
The authors would like to thank Professor L. Ouahab, University of Rennes (France), for performing the elementary analysis and obtaining the NMR spectra (13C,1H).
References
Akram, D., Elhaty, I. A. & AlNeyadi, S. S. (2020). Chemosensors, 8, 16–28. CrossRef CAS Google Scholar
Asha, P. & Mandal, S. (2018). Cryst. Growth Des. 18, 4937–4944. Google Scholar
Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271–e03296. CrossRef PubMed Google Scholar
Benosmane, A., Bougueria, H., Bouchoul, A. K. & Bouaoud, S. E. (2012). J. Chem. Bio. Phys. Sci. 2, 114–122. CAS Google Scholar
Benosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. K. (2013). Acta Cryst. E69, o1021. CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. K. (2013b). Acta Cryst. E69, o1175–o1176. CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. K. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1052. CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1335–o1336. CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. K. & Bouaoud, S. E. (2014). Acta Cryst. E70, o225. CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. E. & Merazig, M. (2017). IUCrData, 2, x170039. Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, S., Kundu, T., Kandambeth, S., BabaRao, R., Marathe, Y., Kunjir, S. M. & Banerjee, R. (2014). J. Am. Chem. Soc. 136, 6570–6573. CrossRef CAS PubMed Google Scholar
Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1322–o1323. CSD CrossRef IUCr Journals Google Scholar
Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1250. CSD CrossRef IUCr Journals Google Scholar
Chhetri, A., Chettri, S., Rai, P., Sinha, B. & Brahman, D. (2021). J. Mol. Struct. 1224, 129178–129186. CrossRef CAS PubMed Google Scholar
Choi, S., Cho, K. H., Namgoong, J. W., Kim, J. Y., Yoo, E. S., Lee, W., Jung, J. W. & Choi, J. (2019). Dyes Pigments, 163, 381–392. CrossRef CAS Google Scholar
Choudhary, A., Singh, O., Singh, U. P. & Ghosh, K. (2017). Inorg. Chim. Acta, 464, 195–203. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dudek, M., Tarnowicz-Staniak, N., Deiana, M., Pokładek, Z., Samoć, M. & Matczyszyn, K. (2020). RSC Adv. 10, 40489–40507. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerra, E., Alvarez-Rivera, G., Llompart, M. & Garcia-Jares, C. (2018). Talanta, 188, 251–258. CrossRef CAS PubMed Google Scholar
Gusev, V. Y., Radushev, A. V., Chekanova, L. G., Baigacheva, E. V., Manylova, K. O. & Gogoshvili, V. O. (2018). Russ. J. Appl. Chem. 91, 573–582. CrossRef CAS Google Scholar
He, Y., Li, J., Li, J., Zhu, C. & Guo, J. (2019). ACS Appl. Polym. Mater. 1, 746–754. CrossRef CAS Google Scholar
Huang, H., Sato, H. & Aida, T. (2017). J. Am. Chem. Soc. 139, 8784–8787. CSD CrossRef CAS PubMed Google Scholar
Kovalchuk, A. I., Kobzar, Y. L., Tkachenko, I. M., Kurioz, Y. I., Tereshchenko, O. G., Shekera, O. V., Nazarenko, V. G. & Shevchenko, V. V. (2020). ACS Appl. Polym. Mater. 2, 455–463. CrossRef CAS Google Scholar
Kyei, S. K., Akaranta, O. & Darko, G. (2020). Sci. Afr. 8, e00406–e00419. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nandi, N. B., Purkayastha, A., Roy, S., Kłak, J., Ganguly, R., Alkorta, I. & Misra, T. K. (2021). New J. Chem. 45, 2742–2753. CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ramugade, S. H., Warde, U. S. & Sekar, N. (2019). Dyes Pigments, 170, 107626. CrossRef Google Scholar
Shalini Rosalyn, P. D., Senthil, S., Kannan, P., Vinitha, G. & Ramalingam, A. (2007). J. Phys. Chem. Solids, 68, 1812–1820. CrossRef CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Unnisa, A., Abouzied, A. S., Baratam, A., Chenchu Lakshmi, K. N. V., Hussain, T., Kunduru, R. D., Banu, H., Bushra Fatima, S., Hussian, A. & Selvarajan, K. K. (2020). Arab. J. Chem. 13, 8638–8649. CrossRef CAS Google Scholar
Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77–86. Web of Science CrossRef CAS Google Scholar
Wu, W., Duan, R., Geng, F., Hu, X., Gan, N. & Li, H. (2019). Food Chem. 284, 180–187. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.