research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new organic–inorganic compound, ethyl­enedi­ammonium hexa­chlorido­stannate(IV) p-anisaldehyde disolvate

crossmark logo

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Physique Chimie, Faculté des Sciences et Technologies de l'Education et de la Formation, Université Cheikh Anta Diop, Boulevard Habib, Bourguiba, BP 5036 Fann-Dakar, Senegal, and cInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
*Correspondence e-mail: andiolene@gmail.com

Edited by A. M. Chippindale, University of Reading, England (Received 31 March 2021; accepted 3 June 2021; online 8 June 2021)

The asymmetric unit of the title organic–inorganic hybrid complex [systematic name: ethane-1,2-diaminium hexa­chlorido­stannate(IV)–4-meth­oxy­benz­alde­hyde (1/2)], (C2H10N2)[SnCl6]·2C8H8O2, contains one half of an ethyl­enedi­ammonium cation, one half of an [SnCl6]2− anion and one p-anisaldehyde mol­ecule. Both the organic cation and the quasi-regular octa­hedral inorganic anion are located about inversion centres. The organic cations and [SnCl6]2− anions lie in layers parallel to the ac plane with p-anisaldehyde mol­ecules occupying the space between the layers. A network of classical N—H⋯Cl and N—H⋯O hydrogen bonds exists between the ethyl­enedi­ammonium cations and the [SnCl6]2− anions and p-anisaldehyde mol­ecules. These inter­actions, together with non-classical C—H⋯O inter­actions between the ethyl­enedi­ammonium cations and the p-anisaldehyde mol­ecules, serve to hold the structure together. The crystal studied was refined as a two-component twin.

1. Chemical context

The combination of organic and inorganic components to form organic–inorganic hybrid materials has attracted considerable attention owing to the generation of new properties that are absent in type either of building block (Boopathi et al., 2017[Boopathi, K., Babu, S. M., Jagan, R. & Ramasamy, P. (2017). J. Phys. Chem. Solids, 111, 419-430.]; Newman et al., 1989[Newman, P. R., Warren, L. F., Cunningham, P., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P. & Lowe-Ma, C. K. (1989). MRS Online Proceedings Library 173, 557-561]; Chun & Jung, 2009[Chun, H. & Jung, H. (2009). Inorg. Chem. 48, 417-419.]; Bouchene et al., 2018[Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206-211.]). Hybrid functional materials, containing both inorganic and organic components, are considered to be potential platforms for applications in extremely diverse fields, such as optics, micro-electronics, magnetism, vibrational spectroscopy, transportation, health, energy, energy storage, diagnosis, housing and the environment (Masteri-Farahani et al., 2012[Masteri-Farahani, M., Bahmanyar, M. & Mohammadikish, M. (2012). J. Nanostruct. 1, 191-197.]; Kim et al., 2020[Kim, T., Lim, J. & Song, S. (2020). Energies 13, 5572, 1-16.]; Manser et al., 2016[Manser, J. S., Christians, J. A. & Kamat, P. V. (2016). Chem. Rev. 116, 12956-13008.]; Rademeyer et al., 2007[Rademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289-m292.]). Moreover, halogenostannate hybrid compounds containing protonated amine cations have recently received considerable attention because of their inter­esting physical and chemical properties, such as magnetism, electroluminescence, photoluminescence and conductivity, which may lead to technological innovations (Aruta et al., 2005[Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. & Besagni, T. (2005). Appl. Phys. A, 81, 963-968.]; Chouaib & Kamoun, 2015[Chouaib, H. & Kamoun, S. (2015). J. Phys. Chem. Solids, 85, 218-225.]; Papavassiliou et al., 1999[Papavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265-271.]; Yin & Yo, 1998[Yin, R. Z. & Yo, C. H. (1998). Bull. Korean Chem. Soc. 19, 947-951.]). The structures of these hybrid materials have been shown to contain contain isolated or connected chains or clusters of SnX6 octa­hedra separated by amine cations (Zhou & Liu, 2012[Zhou, B. & Liu, H. (2012). Acta Cryst. E68, m782.]; Shahzadi et al., 2008[Shahzadi, S., Khan, H. N., Ali, S. & Helliwell, M. (2008). Acta Cryst. E64, m573.]; Liu, 2012[Liu, M.-L. (2012). Acta Cryst. E68, m681.]; Diop et al., 2020[Diop, M. B., Sarr, M., Cissé, S., Diop, L., Allen, G. O. & Akkurt, M. (2020). Int. J. Eng. Res. Appl. (IJERA) 10, 17-23.]). In this category of materials, the organic moieties, which balance the negative charge on the inorganic units, may also act as structure-directing agents and greatly affect the structure and dimensionality of the supra­molecular framework formed (Díaz et al., 2006[Díaz, P., Benet-Buchholz, J., Vilar, R. & White, A. J. P. (2006). Inorg. Chem. 45, 1617-1626.]; Hannon et al., 2002[Hannon, M. J., Painting, C. L., Plummer, E. A., Childs, L. J. & Alcock, N. W. (2002). Chem. Eur. J. 8, 2225-2238.]). In the present study, we report the synthesis and structural analysis of a new organic–inorganic hybrid complex, (C2H10N2)[SnCl6]·2C8H8O2.

[Scheme 1]

2. Structural commentary

The asymmetric unit comprises of one half of an ethyl­enedi­ammonium cation, one half of a hexa­chloro­stannate(IV) dianion, [SnCl6]2−, both of which lie on centres of inversion, and one mol­ecule of p-anisaldehyde (Fig. 1[link]). The environment around the tin atom in the [SnCl6]2− dianion is an almost undistorted octa­hedron in which the Sn—Cl bond lengths lie in the range 2.4100 (12) to 2.4322 (11) Å and the cis Cl—Sn—Cl bond angles lie in the range 89.36 (4) to 90.20 (4) °. The Sn—Cl2 bond involved in hydrogen bonding is slightly longer, at 2.4322 (11) Å, than the other Sn—Cl bonds [Sn—Cl1 = 2.4100 (12)Å and Sn—Cl3 = 2.4220 (11) Å]. These results are comparable to those reported by other research groups (van Megen et al., 2013[Megen, M. van, Prömper, S. & Reiss, G. J. (2013). Acta Cryst. E69, m217.]; Ali et al., 2008[Ali, B. F., Al-Far, R. & Haddad, S. F. (2008). Acta Cryst. E64, m637-m638.]; Xue & Kong 2014[Xue, R. & Kong, L. (2014). Acta Cryst. E70, m269.]).

[Figure 1]
Figure 1
The atom-numbering for the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x, −y, −z; (ii) −x + 1, −y, −z + 1.]

3. Supra­molecular features

The packed crystal structure contains sheets lying parallel to the ac plane in which each [SnCl6]2− dianion is surrounded by four ethyl­enedi­ammonium cations (Fig. 2[link]). The p-anisaldehyde mol­ecules are located in the otherwise empty space between the sheets (Fig. 3[link]). The crystal packing of the complex is supported by N—H⋯Cl and N—H⋯O hydrogen-bonding inter­actions (Table 1[link]). The NH3+ groups of the ethyl­enedi­ammonium cation act as the hydrogen-bonding donors. The D⋯A distances involving the NH3+ group and either the p-anisaldehyde mol­ecule or the [SnCl6]2− units range from 2.763 (6) Å for N1⋯O2iii to 3.404 (4) Å for N1⋯Cl3v. Non-classical inter­actions between the p-anisaldehyde mol­ecules and the ethyl­enedi­ammonium cations, C9—H9⋯O2vi at 2.62 Å, further serve to hold the structure together.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1i 0.95 3.05 3.596 (5) 118
N1—H1A⋯O2i 0.90 (2) 1.89 (3) 2.763 (6) 162 (6)
N1—H1B⋯Cl1ii 0.92 (2) 2.71 (5) 3.312 (4) 124 (5)
N1—H1B⋯Cl3iii 0.92 (2) 2.62 (4) 3.404 (4) 144 (5)
N1—H1C⋯Cl2 0.92 (2) 2.44 (3) 3.315 (5) 158 (6)
N1—H1C⋯Cl3 0.92 (2) 2.75 (6) 3.292 (4) 119 (5)
C9—H9B⋯O2iv 0.99 2.62 3.319 (7) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, -y, -z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The arrangement of the (C2H10N2)2− and [SnCl6]2− units of the title compound in the ac plane showing the N1—H1C⋯Cl2 and N1—H1A⋯O2 hydrogen bonds as dashed lines.
[Figure 3]
Figure 3
View of the title compound along the c axis showing the organic cation–inorganic anion layers separated by p-anisaldehyde mol­ecules. Hydrogen bonds are indicated by dashed lines.

4. Database survey

Organic–inorganic hybrid compounds with structures most similar to that of the title compound include: (C6H22N4)[SnCl6]Cl2·2H2O and (C8H24N4)[SnCl6]Cl2·2H2O (Bouchene et al. 2018[Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206-211.]), (C5H5BrN2)[SnCl6] (Ali et al., 2008[Ali, B. F., Al-Far, R. & Haddad, S. F. (2008). Acta Cryst. E64, m637-m638.]), (C5H7N2)2[SnCl6], and (C7H10N)2[SnCl6] (Rademeyer et al., 2007[Rademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289-m292.]) and (C8H12N)3SnBr6·Br (Chouaib & Kamoun, 2015[Chouaib, H. & Kamoun, S. (2015). J. Phys. Chem. Solids, 85, 218-225.]). These structures contain isolated or connected chains or clusters of SnX6 octa­hedra separated by the organic cations. A variety of inter­molecular hydrogen bonds, N—H⋯O, N—H⋯Cl and O—H⋯O, together with C—H⋯π inter­actions, serve to consolidate the mol­ecular structures.

5. Synthesis and crystallization

Chemicals [p-anisaldehyde, ethyl­enedi­amine and tin(II)] were purchased from Sigma-Aldrich and were used without any further purification. The solvent use for the synthesis was ethanol (96%).

Synthesis of N,N′-bis­(4-meth­oxy­benzyl­idene)ethyl­enedi­amine

The Schiff base N,N′-bis­(4-meth­oxy­benzyl­idene)ethyl­enedi­amine was prepared by condensing p-anisaldehyde (10 g; 0.0734 mol) with ethyl­enedi­amine (2.205 g; 0.0367 mol) in ethanol (30 ml) (Fig. 4[link]). The resulting mixture was heated under reflux for 6 h, filtered and left to evaporate at ambient temperature. (The reaction between p-anisaldehyde and ethyl­enedi­amine gave the same product whatever the proportions of reactants used). After a few days of slow evaporation, 4.511 g of crystals were obtained, corresponding to a yield of 82%. The compound was characterized by FT–IR (cm−1: 1639.05 (C=N); 1603, 1505, 1461 and 1448 (C=C, aromatic); 1019 (C—O, ether).

[Figure 4]
Figure 4
Synthesis of the inter­mediate N,N′-bis­(4-meth­oxy­benzyl­idene)ethyl­enedi­amine.

Synthesis of the title compound

0.3 g (0.00168 mol) of N,N′-bis (4-meth­oxy­benzyl­idene)ethyl­enedi­amine were dissolved in 30 ml of ethanol in a round-bottomed flask, followed by the addition of SnCl2 (0.638 g; 0.00168 mol) to form a yellow solution (Fig. 5[link]). The mixture was refluxed for 7 h at 353 K, filtered to remove Sn(OEt)6 and Sn(OH)2 and the resulting solution was allowed to evaporate slowly. After a few days of evaporation, light-yellow block-shaped crystals suitable for single-crystal X-ray analysis were obtained in a yield of 31%. The presence of water mol­ecules in the solvent (EtOH, 96%) causes hydrolysis of the Schiff base and oxidation of tin(II) to tin(IV). The hydrolysis reaction leads to the formation of two mol­ecules of p-anisaldehyde and one ethyl­enedi­ammonium cation.

[Figure 5]
Figure 5
Synthesis of the title compound.

The crystalline product was characterized by FT–IR (cm−1: 1659 (C=O); 3290 (N—H); 2801 (C—H, aldehyde); 1596, 1570 and 1556 (C=C, phen­yl); 1259 (C—O, ether).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. (C2H10N2)[SnCl6]·2C8H8O2 crystallizes in the space group P21/n with the monoclinic angle, β, close to 90°. The crystals formed as non-merohedral twins with about one quarter of reflections overlapping. The twin law corresponds to rotation about c*. For the crystal investigated, the relative domain sizes amounted to 0.790 (4): 0.210 (4). The structure was solved by intrinsic phasing (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). The twin law was identified from reflections with Iobs >> Icalc, and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to generate a suitable two-domain reflection file for twin refinement (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). All non-hydrogen atoms were assigned anisotropic displacement parameters. H atoms attached to C were calculated in standard geometry and treated as riding [C—H = 0.95–0.99 Å; Uiso(H) = 1.2Uiso(C) or 1.5Uiso(C-meth­yl)]. H atoms attached to N were located as local maxima in a difference-Fourier map and refined with a distance restraint N—H = 0.9 Å and an isotropic displacement parameter Uiso(H) = 1.2Uiso(N).

Table 2
Experimental details

Crystal data
Chemical formula (C2H10N2)[SnCl6]·2C8H8O2
Mr 665.80
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 6.9762 (12), 22.806 (4), 8.0394 (13)
β (°) 90.948 (4)
V3) 1278.9 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.65
Crystal size (mm) 0.17 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker D8 gonimeter with APEX CCD detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 3929, 3929, 3182
Rint 0.112
(sin θ/λ)max−1) 0.723
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.164, 1.07
No. of reflections 3929
No. of parameters 154
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.91, −2.69
Computer programs: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

Ethane-1,2-diaminium hexachloridostannate(IV)–4-methoxybenzaldehyde (1/2) top
Crystal data top
(C2H10N2)[SnCl6]·2C8H8O2F(000) = 664
Mr = 665.80Dx = 1.729 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9762 (12) ÅCell parameters from 4273 reflections
b = 22.806 (4) Åθ = 2.7–27.3°
c = 8.0394 (13) ŵ = 1.65 mm1
β = 90.948 (4)°T = 100 K
V = 1278.9 (4) Å3Block, light yellow
Z = 20.17 × 0.17 × 0.13 mm
Data collection top
Bruker D8 gonimeter with APEX CCD detector
diffractometer
3929 independent reflections
Radiation source: Incoatec microsource3182 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.112
ω scansθmax = 30.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
k = 3232
3929 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.090P)2 + 3.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.164(Δ/σ)max < 0.001
S = 1.07Δρmax = 2.91 e Å3
3929 reflectionsΔρmin = 2.69 e Å3
154 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0073 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0054 (6)0.20471 (16)0.5640 (5)0.0297 (8)
O20.0223 (7)0.35799 (17)0.0922 (5)0.0346 (9)
C10.0073 (7)0.2253 (2)0.4064 (6)0.0216 (9)
C20.0110 (8)0.1905 (2)0.2647 (6)0.0271 (11)
H20.0117760.1489420.2737510.032*
C30.0134 (8)0.2171 (2)0.1100 (6)0.0261 (10)
H30.0146410.1934760.0127380.031*
C40.0141 (8)0.2776 (2)0.0945 (6)0.0224 (9)
C50.0197 (8)0.3047 (2)0.0684 (7)0.0289 (11)
H50.0214140.2796780.1629370.035*
C60.0097 (8)0.3121 (2)0.2377 (6)0.0262 (10)
H60.0089620.3536030.2279910.031*
C70.0063 (9)0.2865 (2)0.3939 (7)0.0281 (11)
H70.0032880.3101290.4911210.034*
C80.0077 (9)0.1422 (2)0.5874 (7)0.0299 (11)
H8A0.1043600.1248580.5311180.045*
H8B0.0039670.1333010.7065060.045*
H8C0.1249400.1259130.5404040.045*
Sn10.0000000.0000000.0000000.01522 (16)
Cl10.23806 (17)0.07591 (5)0.03230 (15)0.0231 (3)
Cl20.02718 (18)0.02031 (5)0.29645 (13)0.0225 (3)
Cl30.25385 (17)0.06982 (5)0.05138 (14)0.0207 (3)
N10.5008 (6)0.02942 (18)0.2818 (5)0.0209 (8)
H1A0.533 (8)0.0662 (13)0.313 (8)0.025*
H1B0.544 (9)0.015 (3)0.183 (5)0.025*
H1C0.372 (4)0.029 (3)0.255 (8)0.025*
C90.5429 (9)0.0111 (2)0.4218 (6)0.0259 (11)
H9A0.6834080.0149420.4373700.031*
H9B0.4901620.0503890.3955860.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.049 (2)0.0189 (17)0.0210 (17)0.0022 (16)0.0011 (16)0.0025 (13)
O20.052 (3)0.0207 (18)0.031 (2)0.0010 (17)0.0017 (18)0.0066 (15)
C10.030 (2)0.016 (2)0.019 (2)0.0003 (18)0.0028 (18)0.0013 (16)
C20.043 (3)0.014 (2)0.025 (2)0.001 (2)0.001 (2)0.0011 (17)
C30.041 (3)0.015 (2)0.022 (2)0.001 (2)0.001 (2)0.0024 (16)
C40.030 (2)0.017 (2)0.020 (2)0.0004 (18)0.0019 (18)0.0007 (16)
C50.040 (3)0.022 (2)0.024 (2)0.000 (2)0.001 (2)0.0026 (19)
C60.042 (3)0.014 (2)0.023 (2)0.000 (2)0.001 (2)0.0024 (17)
C70.044 (3)0.016 (2)0.024 (2)0.000 (2)0.000 (2)0.0026 (17)
C80.043 (3)0.018 (2)0.029 (3)0.003 (2)0.002 (2)0.0067 (18)
Sn10.0197 (3)0.0131 (2)0.0128 (2)0.00059 (15)0.00159 (15)0.00193 (13)
Cl10.0246 (6)0.0173 (5)0.0275 (6)0.0032 (4)0.0004 (4)0.0059 (4)
Cl20.0294 (6)0.0242 (6)0.0138 (5)0.0038 (5)0.0010 (4)0.0003 (4)
Cl30.0240 (6)0.0181 (5)0.0199 (5)0.0040 (4)0.0016 (4)0.0032 (4)
N10.028 (2)0.0205 (19)0.0145 (17)0.0016 (16)0.0025 (15)0.0007 (14)
C90.035 (3)0.026 (2)0.017 (2)0.007 (2)0.003 (2)0.0041 (18)
Geometric parameters (Å, º) top
O1—C11.351 (6)C8—H8B0.9800
O1—C81.438 (6)C8—H8C0.9800
O2—C51.231 (6)Sn1—Cl1i2.4100 (12)
C1—C21.390 (7)Sn1—Cl12.4100 (12)
C1—C71.399 (7)Sn1—Cl3i2.4220 (11)
C2—C31.384 (7)Sn1—Cl32.4220 (11)
C2—H20.9500Sn1—Cl2i2.4322 (11)
C3—C41.385 (6)Sn1—Cl22.4322 (11)
C3—H30.9500N1—C91.482 (6)
C4—C61.395 (7)N1—H1A0.902 (19)
C4—C51.449 (7)N1—H1B0.92 (2)
C5—H50.9500N1—H1C0.925 (19)
C6—C71.386 (7)C9—C9ii1.490 (10)
C6—H60.9500C9—H9A0.9900
C7—H70.9500C9—H9B0.9900
C8—H8A0.9800
C1—O1—C8117.8 (4)Cl1i—Sn1—Cl1180.0
O1—C1—C2124.8 (4)Cl1i—Sn1—Cl3i90.80 (4)
O1—C1—C7114.4 (4)Cl1—Sn1—Cl3i89.21 (4)
C2—C1—C7120.7 (5)Cl1i—Sn1—Cl389.20 (4)
C3—C2—C1119.1 (4)Cl1—Sn1—Cl390.79 (4)
C3—C2—H2120.4Cl3i—Sn1—Cl3180.0
C1—C2—H2120.4Cl1i—Sn1—Cl2i90.64 (4)
C2—C3—C4121.2 (5)Cl1—Sn1—Cl2i89.36 (4)
C2—C3—H3119.4Cl3i—Sn1—Cl2i89.80 (4)
C4—C3—H3119.4Cl3—Sn1—Cl2i90.20 (4)
C3—C4—C6119.1 (5)Cl1i—Sn1—Cl289.36 (4)
C3—C4—C5120.4 (5)Cl1—Sn1—Cl290.64 (4)
C6—C4—C5120.5 (5)Cl3i—Sn1—Cl290.20 (4)
O2—C5—C4124.2 (5)Cl3—Sn1—Cl289.80 (4)
O2—C5—H5117.9Cl2i—Sn1—Cl2180.0
C4—C5—H5117.9C9—N1—H1A109 (4)
C7—C6—C4120.8 (4)C9—N1—H1B111 (4)
C7—C6—H6119.6H1A—N1—H1B120 (6)
C4—C6—H6119.6C9—N1—H1C110 (4)
C6—C7—C1119.0 (5)H1A—N1—H1C109 (6)
C6—C7—H7120.5H1B—N1—H1C97 (6)
C1—C7—H7120.5N1—C9—C9ii110.6 (5)
O1—C8—H8A109.5N1—C9—H9A109.5
O1—C8—H8B109.5C9ii—C9—H9A109.5
H8A—C8—H8B109.5N1—C9—H9B109.5
O1—C8—H8C109.5C9ii—C9—H9B109.5
H8A—C8—H8C109.5H9A—C9—H9B108.1
H8B—C8—H8C109.5
C8—O1—C1—C20.1 (8)C3—C4—C5—O2179.3 (6)
C8—O1—C1—C7179.6 (5)C6—C4—C5—O20.6 (9)
O1—C1—C2—C3179.7 (5)C3—C4—C6—C70.6 (9)
C7—C1—C2—C30.1 (9)C5—C4—C6—C7179.4 (5)
C1—C2—C3—C40.6 (9)C4—C6—C7—C10.0 (9)
C2—C3—C4—C60.9 (9)O1—C1—C7—C6179.5 (5)
C2—C3—C4—C5179.1 (5)C2—C1—C7—C60.2 (9)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1iii0.953.053.596 (5)118
N1—H1A···O2iii0.90 (2)1.89 (3)2.763 (6)162 (6)
N1—H1B···Cl1iv0.92 (2)2.71 (5)3.312 (4)124 (5)
N1—H1B···Cl3v0.92 (2)2.62 (4)3.404 (4)144 (5)
N1—H1C···Cl20.92 (2)2.44 (3)3.315 (5)158 (6)
N1—H1C···Cl30.92 (2)2.75 (6)3.292 (4)119 (5)
C9—H9B···O2vi0.992.623.319 (7)128
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) for support. The diffraction data were collected at RWTH Aachen University.

References

First citationAli, B. F., Al-Far, R. & Haddad, S. F. (2008). Acta Cryst. E64, m637–m638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. & Besagni, T. (2005). Appl. Phys. A, 81, 963–968.  Web of Science CrossRef CAS Google Scholar
First citationBoopathi, K., Babu, S. M., Jagan, R. & Ramasamy, P. (2017). J. Phys. Chem. Solids, 111, 419–430.  Web of Science CSD CrossRef CAS Google Scholar
First citationBouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChouaib, H. & Kamoun, S. (2015). J. Phys. Chem. Solids, 85, 218–225.  Web of Science CrossRef CAS Google Scholar
First citationChun, H. & Jung, H. (2009). Inorg. Chem. 48, 417–419.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDíaz, P., Benet-Buchholz, J., Vilar, R. & White, A. J. P. (2006). Inorg. Chem. 45, 1617–1626.  Web of Science PubMed Google Scholar
First citationDiop, M. B., Sarr, M., Cissé, S., Diop, L., Allen, G. O. & Akkurt, M. (2020). Int. J. Eng. Res. Appl. (IJERA) 10, 17–23.  Google Scholar
First citationHannon, M. J., Painting, C. L., Plummer, E. A., Childs, L. J. & Alcock, N. W. (2002). Chem. Eur. J. 8, 2225–2238.  CrossRef PubMed CAS Google Scholar
First citationKim, T., Lim, J. & Song, S. (2020). Energies 13, 5572, 1–16.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, M.-L. (2012). Acta Cryst. E68, m681.  CSD CrossRef IUCr Journals Google Scholar
First citationManser, J. S., Christians, J. A. & Kamat, P. V. (2016). Chem. Rev. 116, 12956–13008.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMasteri-Farahani, M., Bahmanyar, M. & Mohammadikish, M. (2012). J. Nanostruct. 1, 191–197.  Google Scholar
First citationMegen, M. van, Prömper, S. & Reiss, G. J. (2013). Acta Cryst. E69, m217.  CSD CrossRef IUCr Journals Google Scholar
First citationNewman, P. R., Warren, L. F., Cunningham, P., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P. & Lowe-Ma, C. K. (1989). MRS Online Proceedings Library 173, 557–561  Google Scholar
First citationPapavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265–271.  Web of Science CrossRef CAS Google Scholar
First citationRademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289–m292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShahzadi, S., Khan, H. N., Ali, S. & Helliwell, M. (2008). Acta Cryst. E64, m573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXue, R. & Kong, L. (2014). Acta Cryst. E70, m269.  CSD CrossRef IUCr Journals Google Scholar
First citationYin, R. Z. & Yo, C. H. (1998). Bull. Korean Chem. Soc. 19, 947–951.  CAS Google Scholar
First citationZhou, B. & Liu, H. (2012). Acta Cryst. E68, m782.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds