research communications
Bis(2-methylpyridinium) tetrachloridocuprate(II): synthesis, structure and Hirshfeld surface analysis
aDepartment of Chemistry, School of Sciences, Indrashil University, Rajpur, Gujarat, 382740, India
*Correspondence e-mail: rajeshbhosale24@gmail.com, j.prakashareddy@gmail.com
The title compound, (C6H8N)2[CuCl4], crystallizes in the monoclinic I2/c. The coordination around the copper atom is a distorted tetrahedron. The 2-methylpyridinium ion (C6H8N+) interacts with the tetrachlorocuprate anion through N—H⋯Cl and C—H(phenyl)⋯Cl contacts, forming a hydrogen-bonded layer-like structure. The supramolecular structure is further stabilized by C—H(methyl)⋯Cl interactions between the layers.
Keywords: 2-picoline complex; inorganic supramolecular chemistry; crystal structure; hydrogen bonding.
CCDC reference: 2090586
1. Chemical context
Supramolecular organic and inorganic chemistry have been studied both from the fundamental as well as the application point of view, which is evident from the literature (Ziach et al., 2018; Thorat et al., 2013; Burslem et al., 2016). With the surge in the number of compounds reported, potential applications of supramolecular inorganic materials in energy storage, separation, catalysis, sensors, molecular magnets, optoelectronic materials, etc., have attracted greater attention in recent years (Mueller et al., 2006; Wan et al., 2006; Férey et al., 2003; James, 2003; Eddaoudi et al., 2002; Ruben et al., 2005, Kitagawa et al., 2004, Stavila et al., 2014). Because of the divergent combination of ligands and metal salts, an enormous number of structural architectures with different sizes and shapes could be constructed (Moulton & Zaworotko, 2001). The special characteristics and features such as ease of synthesis of the material, geometrically well-defined structures, exceptional tunability, post-synthetic modification, along with robustness of the material resulting from strong directional bonding, produce new opportunities and offer a unique platform amenable to the synthesis of more and more functional solids. For example, Adams et al. (2005) reported the synthesis of coordination compounds using a new synthetic route involving a thermal dehydrochlorination reaction in crystals of a pyridinium chlorometallate bicomponent system, i.e., anionic metal complexes and organic cations.
As part of ongoing studies in our group (PrakashaReddy & Pedireddi, 2007; Reddy et al., 2014), the synthesis of coordination complexes using pyridine ligands has been reported. Hence, we further extended our studies to utilize the pyridinium ligand and to study in situ the single-crystal-to-single-crystal transition (SCSCT) to investigate the In our endeavours to synthesize new functional solids, using a transition-metal anion and a pyridinium cation, we have chosen the CuCl2 and 2-methylpyridinium salt complex. Herein, we report the synthesis and of a bis(2-methylpyridinium) tetrachlorocuprate coordination complex.
2. Structural commentary
The title complex crystallizes in the monoclinic I2/c. Since the Cu2+ cation occupies a special position, the consists of a 2-methylpyridinium cation, [2-Me(Py)H]+, and half of a tetrachlorocuprate(II) anion, [CuCl4]2–. The molecular structure of the complex along with the atom-labelling scheme is shown in Fig. 1. Each copper center is four-coordinated by chlorine anions and adopts a distorted tetrahedral geometry. Structural analysis shows that the Cl—Cu—Cl angles vary from 98.55 (2) to 137.4 (3)° with four angles smaller and two larger than the standard tetrahedral angle. A plausible reason for a larger deviation from the standard 109.5° might be due to the N—H⋯Cl and C—H⋯Cl interactions. A similar marked deviation from the standard tetrahedral angle has been previously observed by other research groups (Wyrzykowski et al., 2011; Jasrotia et al., 2018). The Cu—Cl bond lengths [Cu1—Cl1 = 2.250 (1) Å, Cu1—Cl2 = 2.249 (1) Å] agree well with those reported for other structures (Marsh et al., 1982; Dodds et al., 2018; Molano et al., 2020; Reddy, 2020). The intramolecular Car—Car bond lengths in the [2-Me(Py)H]+ fall in the range 1.370 (3)–1.395 (3) Å. The N1—C2 and N1—C6 bond lengths are 1.350 (2) and 1.346 (2) Å, respectively.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, complex molecules related by the twofold rotation axis are connected by pairs of N—H⋯Cl and Car—H⋯Cl interactions through a protonated N and an aromatic hydrogen attached to the carbon atom with the chloride ligand bonded to copper, forming a monomeric unit. These units interact with adjacent ones through Car—H⋯Cl hydrogen bonding (Table 1, Fig. 2). The N—H⋯Cl and C—H⋯Cl distances and associated bond angles lie within the ranges observed for other similar interactions reported in the literature (Adams et al., 2005; Vittaya et al., 2015; Wyrzykowski et al., 2011; Jasrotia et al., 2018). The supramolecular structure is further stabilized by Cmethyl—H⋯Cl interactions involving hydrogens of the methyl group and chlorides bonded to copper, generating layers along the crystallographic b axis (Fig. 3).
To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots were generated with Crystal Explorer17 (Turner et al., 2017). The Hirshfeld surface mapped over dnorm and corresponding colours representing various interactions are shown in Fig. 4. The red points on the surface correspond to the N—H⋯Cl and C—H⋯Cl interactions. The two-dimensional fingerprint plots (McKinnon et al., 2007) are shown in Fig. 5. On the Hirshfeld surface, the largest contribution (53.1%) comes from the weak van der Waals H⋯H contacts. The interaction of dnorm on the two-dimensional fingerprint plot shows two spikes; each one corresponds to H⋯H (39%) and H⋯Cl/Cl⋯H (32.5%) respectively. The H⋯Cl interaction highlights the hydrogen bond between adjacent moieties in the The C⋯H/H⋯C (16.5%) interactions appear as two shoulders. These interactions play a crucial role in the overall stabilization of the crystal packing.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of August 2020; Groom et al., 2016) revealed two related complexes containing 2-methylpyridinium: [2-methylpyridinium tetrachloroferrate(III)] (CCDC refcode WAYJEN; Wyrzykowski et al., 2011) and [bis(2-methyl-pyridinium) tetrachloro-zinc(II)] (CCDC refcode WIPCUW; Jasrotia et al., 2018). The molecular structures of both WAYJEN and WIPCUW display three-dimensional supramolecular networks arising from N—H⋯Cl and C—H⋯Cl interactions. In addition, the search also revealed a 2-methylpyridine and copper chloride complex: [dichloro-bis(2-methylpyridine)Cu(II)] (CCDC refcode CMPYCU01; Marsh et al., 1982) and [aqua-dichloro-bis(2-methylpyridine)Cu(II)] (CCDC refcode BIJWUM; Marsh et al., 1982) and a very recently published dichloridomethanolbis(2-methylpyridine)Cu(II) complex (Reddy, 2020). All of these structures display three-dimensional supramolecular networks stabilized by C—H⋯Cl and O—H⋯Cl interactions.
5. Synthesis and crystallization
Both 2-methylpyridine and anhydrous copper(II) chloride obtained from Aldrich were used for the reaction. Anhydrous copper(II) chloride (0.495 g, 0.005 mol) was dissolved in 10 ml of distilled water. To this solution, 2-methylpyridine (0.93 g, 0.01 mol) was added followed by addition of few drops of HCl (36%) and the resulting mixture was stirred for ∼30 min. at room temperature. The solution was then allowed to stand at room temperature for a few hours before being filtered and left at room temperature for crystallization. Block-shaped, pale-yellow-coloured crystals were obtained after 36 h.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and N—H = 0.88 Å and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(C, N)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 2090586
https://doi.org/10.1107/S2056989021006277/dj2020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021006277/dj2020Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C6H8N)2[CuCl4] | F(000) = 796 |
Mr = 393.62 | Dx = 1.618 Mg m−3 |
Monoclinic, I2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.2354 (8) Å | Cell parameters from 5462 reflections |
b = 8.3683 (3) Å | θ = 2.9–32.5° |
c = 12.8372 (6) Å | µ = 2.00 mm−1 |
β = 99.205 (5)° | T = 120 K |
V = 1615.60 (13) Å3 | Blocks, pale yellow |
Z = 4 | 0.32 × 0.27 × 0.25 mm |
Agilent Xcalibur, Sapphire3 diffractometer | 2324 reflections with I > 2σ(I) |
Detector resolution: 16.1511 pixels mm-1 | Rint = 0.071 |
ω scans | θmax = 32.6°, θmin = 2.9° |
Absorption correction: analytical (CrysAlisPro; Agilent, 2014) | h = −22→22 |
Tmin = 0.848, Tmax = 0.965 | k = −11→12 |
24556 measured reflections | l = −19→19 |
2821 independent reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0308P)2 + 1.4147P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2821 reflections | Δρmax = 0.58 e Å−3 |
88 parameters | Δρmin = −0.58 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.500000 | 0.22261 (4) | 0.250000 | 0.01825 (9) | |
Cl1 | 0.38953 (3) | 0.10590 (5) | 0.13863 (3) | 0.02196 (11) | |
Cl2 | 0.41898 (3) | 0.32033 (5) | 0.36739 (4) | 0.02260 (11) | |
N1 | 0.68501 (11) | 0.01294 (19) | 0.63521 (12) | 0.0218 (3) | |
H1 | 0.642734 | −0.054296 | 0.645210 | 0.026* | |
C2 | 0.66434 (12) | 0.1697 (2) | 0.62543 (13) | 0.0197 (3) | |
C3 | 0.73176 (13) | 0.2747 (2) | 0.61076 (14) | 0.0222 (4) | |
H3 | 0.720458 | 0.386273 | 0.605979 | 0.027* | |
C4 | 0.83354 (14) | 0.0533 (2) | 0.61276 (16) | 0.0261 (4) | |
H4 | 0.890816 | 0.012622 | 0.607122 | 0.031* | |
C5 | 0.81548 (14) | 0.2165 (2) | 0.60311 (15) | 0.0247 (4) | |
H5 | 0.861102 | 0.288380 | 0.591178 | 0.030* | |
C6 | 0.76632 (14) | −0.0468 (2) | 0.63060 (15) | 0.0254 (4) | |
H6 | 0.777088 | −0.158092 | 0.639704 | 0.031* | |
C7 | 0.57039 (13) | 0.2174 (2) | 0.62851 (16) | 0.0259 (4) | |
H7A | 0.536395 | 0.214343 | 0.556960 | 0.039* | |
H7B | 0.569141 | 0.325976 | 0.656845 | 0.039* | |
H7C | 0.543936 | 0.143189 | 0.673767 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02142 (16) | 0.01465 (15) | 0.01929 (16) | 0.000 | 0.00510 (12) | 0.000 |
Cl1 | 0.0253 (2) | 0.0174 (2) | 0.0226 (2) | −0.00165 (16) | 0.00223 (17) | −0.00185 (15) |
Cl2 | 0.0276 (2) | 0.0172 (2) | 0.0246 (2) | 0.00035 (16) | 0.00935 (17) | −0.00340 (16) |
N1 | 0.0268 (8) | 0.0154 (7) | 0.0235 (7) | −0.0023 (6) | 0.0054 (6) | 0.0011 (6) |
C2 | 0.0264 (9) | 0.0172 (8) | 0.0155 (8) | −0.0004 (7) | 0.0033 (7) | 0.0000 (6) |
C3 | 0.0311 (10) | 0.0150 (8) | 0.0203 (8) | −0.0030 (7) | 0.0040 (7) | 0.0004 (6) |
C4 | 0.0251 (10) | 0.0266 (10) | 0.0267 (9) | 0.0016 (8) | 0.0040 (8) | −0.0010 (8) |
C5 | 0.0281 (10) | 0.0221 (9) | 0.0244 (9) | −0.0069 (7) | 0.0056 (8) | −0.0008 (7) |
C6 | 0.0326 (10) | 0.0172 (9) | 0.0265 (10) | 0.0031 (7) | 0.0048 (8) | 0.0016 (7) |
C7 | 0.0263 (10) | 0.0243 (10) | 0.0276 (10) | 0.0018 (7) | 0.0061 (8) | 0.0004 (8) |
Cu1—Cl1i | 2.2496 (5) | C3—C5 | 1.383 (3) |
Cu1—Cl1 | 2.2496 (5) | C4—H4 | 0.9500 |
Cu1—Cl2 | 2.2492 (4) | C4—C5 | 1.395 (3) |
Cu1—Cl2i | 2.2492 (4) | C4—C6 | 1.370 (3) |
N1—H1 | 0.8800 | C5—H5 | 0.9500 |
N1—C2 | 1.350 (2) | C6—H6 | 0.9500 |
N1—C6 | 1.346 (2) | C7—H7A | 0.9800 |
C2—C3 | 1.387 (3) | C7—H7B | 0.9800 |
C2—C7 | 1.493 (3) | C7—H7C | 0.9800 |
C3—H3 | 0.9500 | ||
Cl1—Cu1—Cl1i | 128.54 (3) | C5—C4—H4 | 121.0 |
Cl2i—Cu1—Cl1 | 99.614 (17) | C6—C4—H4 | 121.0 |
Cl2i—Cu1—Cl1i | 98.550 (17) | C6—C4—C5 | 118.10 (19) |
Cl2—Cu1—Cl1 | 98.549 (17) | C3—C5—C4 | 120.61 (18) |
Cl2—Cu1—Cl1i | 99.616 (17) | C3—C5—H5 | 119.7 |
Cl2i—Cu1—Cl2 | 137.36 (3) | C4—C5—H5 | 119.7 |
C2—N1—H1 | 118.0 | N1—C6—C4 | 119.91 (18) |
C6—N1—H1 | 118.0 | N1—C6—H6 | 120.0 |
C6—N1—C2 | 124.00 (17) | C4—C6—H6 | 120.0 |
N1—C2—C3 | 117.46 (17) | C2—C7—H7A | 109.5 |
N1—C2—C7 | 117.88 (17) | C2—C7—H7B | 109.5 |
C3—C2—C7 | 124.64 (17) | C2—C7—H7C | 109.5 |
C2—C3—H3 | 120.1 | H7A—C7—H7B | 109.5 |
C5—C3—C2 | 119.88 (17) | H7A—C7—H7C | 109.5 |
C5—C3—H3 | 120.1 | H7B—C7—H7C | 109.5 |
N1—C2—C3—C5 | 2.2 (3) | C6—N1—C2—C3 | −0.6 (3) |
C2—N1—C6—C4 | −1.5 (3) | C6—N1—C2—C7 | 177.92 (17) |
C2—C3—C5—C4 | −1.7 (3) | C6—C4—C5—C3 | −0.4 (3) |
C5—C4—C6—N1 | 2.0 (3) | C7—C2—C3—C5 | −176.27 (18) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1ii | 0.88 | 2.93 | 3.4297 (16) | 118 |
N1—H1···Cl2ii | 0.88 | 2.41 | 3.2050 (16) | 150 |
C6—H6···Cl1iii | 0.95 | 2.62 | 3.453 (2) | 147 |
C7—H7A···Cl2 | 0.98 | 2.92 | 3.850 (2) | 159 |
C7—H7B···Cl2iv | 0.98 | 2.98 | 3.872 (2) | 151 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1/2, y−1/2, z+1/2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
We thank Dr J. S. Yadav, Provost and Director (R&D) for his support and encouragement.
Funding information
Funding for this research was provided by: Indrashil University.
References
Adams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457–2458. Web of Science CSD CrossRef Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Burslem, G. M., Kyle, H. F., Prabhakaran, P., Breeze, A. L., Edwards, T. A., Warriner, S. L., Nelson, A. & Wilson, A. J. (2016). Org. Biomol. Chem. 14, 3782–3786. CrossRef CAS PubMed Google Scholar
Dodds, C. A. & Kennedy, A. R. (2018). Acta Cryst. E74, 1369–1372. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. Web of Science CSD CrossRef PubMed CAS Google Scholar
Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976–2977. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
James, S. L. (2003). Chem. Soc. Rev. 32, 276–288. Web of Science CrossRef PubMed CAS Google Scholar
Jasrotia, D., Verma, S. K., Sridhar, B., Alvi, P. A. & Kumar, A. (2018). Mater. Chem. Phys. 207, 98–104. CSD CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679–2684. CSD CrossRef CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Molano, M. F., Lorett Velasquez, V. P., Erben, M. F., Nossa González, D. L., Loaiza, A. E., Echeverría, G. A., Piro, O. E., Tobón, Y. A., Ben Tayeb, K. & Gómez Castaño, J. A. (2020). Acta Cryst. E76, 148–154. CSD CrossRef IUCr Journals Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. (2006). J. Mater. Chem. 16, 626–636. Web of Science CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984. Web of Science CrossRef CAS IUCr Journals Google Scholar
PrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150–1158. Web of Science CSD CrossRef Google Scholar
Reddy, J. P. (2020). Acta Cryst. E76, 1771–1774. CSD CrossRef IUCr Journals Google Scholar
Reddy, J. P., Swain, D. & Pedireddi, V. R. (2014). Cryst. Growth Des. 14, 5064–5071. CSD CrossRef CAS Google Scholar
Ruben, M., Ziener, U., Lehn, J. M., Ksenofontov, V., Gütlich, P. & Vaughan, G. B. M. (2005). Chem. Eur. J. 11, 94–100. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stavila, V., Talin, A. A. & Allendorf, M. D. (2014). Chem. Soc. Rev. 43, 5994–6010. Web of Science CrossRef CAS PubMed Google Scholar
Thorat, V. H., Ingole, T. S., Vijayadas, K. N., Nair, R. V., Kale, S. S., Ramesh, V. V. E., Davis, H. C., Prabhakaran, P., Gonnade, R. G., Gawade, R. L., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Eur. J. Org. Chem. pp. 3529–3542. CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Vittaya, L., Leesakul, N., Saithong, S. & Chainok, K. (2015). Acta Cryst. E71, m201–m202. CSD CrossRef IUCr Journals Google Scholar
Wan, Y., Yang, H. & Zhao, D. (2006). Acc. Chem. Res. 39, 423–432. Web of Science CrossRef PubMed CAS Google Scholar
Wyrzykowski, D., Wera, M., Sikorski, A., Jacewicz, D. & Chmurzyński, L. (2011). Cent. Eur. J. Chem. 9, 1096–1101. CAS Google Scholar
Ziach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P. P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., Chaignepain, S., Pourquier, P. & Huc, I. (2018). Nat. Chem. 10, 511–518. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.